
          

Modeling and control of biped robot dynamics
S. Caux and R. Zapata
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SUMMARY
This paper addresses the problem of modeling biped
dynamics and the use of such models for the control of
walking, running and jumping robots. We describe two
approaches to dynamic modeling: the basic Lagrange
approach and the non-regular dynamic approach. The new
non-regular dynamic approach takes into account dis-
continuities due to rigid contact between punctual feet and
the ground without computing the exact impact time. The
contact is close to the physical situation given by non-linear
laws (impenetrability, non-smooth contact and real friction
cone). Contact dynamics can be well managed with an
accurate dynamic model that respects energy consistency
during all the phases encountered during a step (0, 1 or 2
contacts). With this model, we can first study the equilibrum
of a biped standing on one foot by a linearisation method. In
the second stage, the unified modelized equation is used to
establish a general control frame based on non-regular
dynamical decoupling. A comparison is made and some
simulation results are given with a two degree of freedom
planar biped robot.

KEYWORDS: Biped robot; Contact dynamics; Constrained
dynamics; Linearization; Non-linear decoupling.

1. INTRODUCTION
For a long time, many research groups have tried to adapt
biological mechanisms to copy animal or human walking
(e.g. mechanical horse of L. Rygg, 1893). Legged locomo-
tion has many advantages like obstacle avoidance
capabilities and the possibility of discontinuous contacts
with the ground (allowing the robot to step over obstacles
and climb stairs.1 A small overall dimension makes biped
robots very useful in constrained environments and all-
terrain environments (outdoor, forest, industrial
environment, etc).

Numerous prototypes have been made in the last fifteen
years, but these studies have been based on dynamic
modeling of behavior during the different phases encoun-
tered in walking or running. These models are generally
simplified and linearized.2–4 The simplifications are justified
because the robots walk slowly (<1 m/s), this is quasi-
dynamic walk. This means that the robot always has one
foot (or more) on the ground and keeps its center of gravity
in the support polygon formed by its generally very large
feet.5,6 Impact and slippery phenomena are often neglected

and the models used in simulations or for control purposes
are limited to dynamic modeling, which is very popular in
robotic fields. The switch between two different modes
occurring during a step (left stance phase → right stance
phase etc.) are computed as a circular permutation of the
joint vector coordinates.7 A model thus corresponds to each
phase and the transitions have only been estimated in few
studies by adding another set of equations to take this
impulsive effect into account. Lagrange’s equation under its
impulsive form, or zero landing velocity, is a classical
assumption made to solve the transition problem.3,6 But
computing the exact time of impact is time consuming or
impossible to solve for simulation software. Here we try to
work with a fixed integration step, regardless of the contact
and use this modeling to obtain a fixed sample control
scheme.

In the biped research field, few papers have dealt with
high speed biped robots, except for Hodgins hopper derived
from the famous C.M.U. hopper.8 In general, in order to
increase the speed of forward displacement, a biped must
run with a characteristic ballistic flight during which all the
feet leave the ground. In the case of the C.M.U. hopper, the
knee joints act as springs and the robot jumps from one leg
to the other to reach a speed of around 4 m/s. A state
machine describes the state of the robot to detect each phase
and apply an adequate control law using a P.I.D. controller.

Here, we have tried to model a running biped throughout
its displacement. Modeling and identification of the main
parameters is essential.9 The model we obtain manages the
different phases and constraints encountered during the run.
In case of running, impacts are non-linear phenomena of
paramount importance to balance the robot, and we propose
to design a model that includes contact dynamics.10 This
theory is derived from the mechanics field for rigid body
contact modeling.11,12

In the first part of this paper (paragraph 2), we present
Lagrange’s approach for modeling the constraint dynamics
of a mechanism submitted to various contacts with the
ground. Then we present our equations of motion under
unified formalism, including changes of modes during
walking, running or jumping. Finally, we introduce several
notions issued from non-regular dynamics theory to com-
pute impact forces in every case. We discuss and compare
the results obtained with regular and non-regular dynamics
applied to a simulated planar biped robot.

The second part (paragraph 3), presents different control
schemes concerning, the equilibrium of the robot near one
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of its natural unstable equilibrium position (robot on one
foot), and a general control scheme to be applied throughout
the motion of the biped. The non-regular dynamic model is
presented before using the classical non-linear decoupling
control scheme. Simulation results are presented to illustrate
our specific control scheme applied to a robot interacting
with its environment.

2. DYNAMIC MODELING OF LEGGED
MACHINES

2.1. Lagrange’s equations of motion
The motion of a moving non-holonomic or scleronomic
structure, described by n generalized coordinates qi, can be
derived by using Lagrange’s equations of motion:

d
dt S L

q̇i D2
L
qi = G i 2 Oj =m

j =1

lj cji (1)

where:

– L is the Lagrangian of the system,
– G i the ith generalized force,
– l j the jth Lagrange multiplier.

The jth constraint can be written as a linear combination of
the generalized velocities q̇i:

Oi=n

i=0

cjiq̇
i =0 (2)

For a legged robot, l j represents a force constraint
associated to a contact constraint. For instance, in the case
of a planar robot, if one leg is on the ground, two contact
forces appear (horizontal and vertical forces), due to the
appearance of two constraints (horizontal and vertical
positions of the foot are both determined by the ground and

by the generalized coordinates.13

The classical set of dynamic equations of motion can be
derived from Lagrange’s equations. The direct dynamical
model can be written:

A(q)q̈=G2B(q, q̇)+C T(q)l (3)

where:

– A is the inertia matrix
– B the Coriolis-Centrifugal-Gravity matrix
– q the n-dimensional vector of generalized coordinates
– C(q, t)={cji} the mxn-dimensional constraint matrix

verifying C(q)q̇=0. The notation C T stands for ‘C
transpose’.

– G the n-dimensional vector of generalized forces.

In general, for legged machines, the vector q is made up
of articular coordinates as well as cartesian coordinates and
only the first ones are actuated. This implies that the vector
G has as many zeros as the number of these cartesian
coordinates. For the planar biped robot shown in Figure 1,
the dynamics are 5th-dimensional, the generalized co-
ordinates q=[x z u q1 q2]

T and G =[0 0 0 C1 C2]T.
For control purposes, the inverse dynamical model can be

written:

G =A(q)q̈+B(q, q̇)2C T (q)l (4)

This equation has as many expressions as the number of
modes encountered during motion (zero, one or two legs on
the ground changes the number of constraints 0, 2 or 3, as
shown in Figure 1). These modes represent different parts of
the configuration space.

Depending on the relations between the robot and its
environment, we must select the corresponding set of
dynamic equations:

– For a free robot we have a 5-dimensional generalized
coordinate vector and no Lagrange’s multiplier.

– With one contact, the normal and tangential forces
(R=[RN RT]) due to the punctual contact appears
through 2 Lagrange multipliers and the generalized

Fig. 1. The different phases encountered: To each phase corresponds an expression of the constraints, changing the dimensions of the
matrix C(q) and of course the dynamics.
Where:
– q1, q2 are the angles of leg 1 and 2 referred to the body.
– 1 is the length of the different segments, and m, mt, mh the different masses.
– (x, z, u) are the Cartesian coordinates of the head of the robot expressed in the world frame.
– R=[RN RT ] the local normal and tangential reaction forces vector due to contact.
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coordinates become 3-dimensional.
– With both feet in contact, 4 forces appear (RN1 RT1 RN2

RT2), but only 3 independent Lagrange multipliers
describe the constraints, and only 2 generalized co-
ordinates are needed to describe the robot.

First approach of a unified solution. To come up with a
homogeneous formalization of a motion (for walking,
running or jumping tasks), it is necessary to take all these
expressions into account in the same equation by adding
exteroceptive information to equation (4) to obtain:

G =A(q)q̈+B(q, q̇)2C T(q, m)l(m) (5)

where m is a “bifurcation” parameter characterizing the
Robot/Environment interaction and therefore, the mode the
configuration vector belongs to. m has four possible values
corresponding to the four different Matrices C describing
the four different phases (0 contact, 1 contact on left leg,
one contact on right leg, double contact). These values are
given by sensors on each foot to detect the different
contacts.

Accurate modeling is of paramount importance because:

– for simulation, the generalized forces G are given and we
need to compute the accelerations q̈.

– to control a real robot, it is necessary to compute the
state-feedback function G (q).

Here, q̈ is derived from the state vector [q q̇] (or
measured) and contact forces are either measured or
computed by using equation (5) written for a model of the
robot (the computed solution can sometimes be easier) but
we note that control must be computed with a fixed sample
time.

The transition from one mode to another (driven by m)
can be obtained by re-initializing the state vector [q q̇] at the
exact time of this switch. In the case of legged machines,
these changes of modes represent discontinuities of equa-
tion (5) appearing between sample times. Therefore, these
switches should generate acceleration changes during the
sample interval just after contact (which is impossible,
because the exact time of contact is unknown). In order to
solve this problem, we can either change the acceleration at
the sample time after the impact or reduce the sample
interval before the impact. In the first case, a modelling
error occurs in the position or acceleration computation. In
the second case, the process has to be reiterated several
times and becomes time consuming and unusable for
control.

Hence, the basic Lagrange’s equations cannot take the
impulsion phases into account due to the switches between
modes (Figure 2).

2.2. Non-regular dynamics
Another approach to impulsion phases management
involves rewriting the dynamical equations of motion in an
implicit form [11], with only velocities considered:

A (q[i+1])
q̇[i+1]2 q̇[i]

h
=F +R[i+1] (6)

where:

– q[i+1] is the generalized coordinate vector at time i+1.
– h=t[i+1]2 t[i] is the sample interval.
– R the sum of all generalized forces due to contact.
– the force term is:

F =G [i+1]2B (q[i+1], q̇[i+1]) (7)

Equation (6) is similar to equation (3) but computed at time
i+1 and uses a percussional computation of q̈ between the
2 critical samples i and i+1 (NB: it is not an assumption of
an integration method but an assumption on the left and
right limits of q̈ at impact). Equation (6) has 3 unknowns
q[i+1], q̇[i+1] and R [i+1] depends on the ‘initial’
condition q̇ [i] and can be expressed:

P (u, n)=0=A (u)(n2 q̇[i])2h(F +R[i+1]) (8)

where u, n respectively stand for q[i+1] and q̇[i+1] for the
sake of simplicity.

This approach uses the iterative Newton-Raphson method
of resolution between i and i+1, which provides the
solution of (8) as the limit of the sequence:

nk+1 =nk 2
P21

n
(uk, nk)3 P (uk, nk) (9)

where nk denotes the kth iteration of n (so q̇[i+1]) and uk the
kth iteration of u (so q[i+1]). At each iteration, the
generalized coordinate is derived from the velocity by an
implicit integration.

uk +1 =uk +hnk +1 so uk +1 = f (nk +1) (10)

Detail of the non-regular algorithm. The 6-step algorithm
works as follows:

u (i) For the unforced system (R=0 ), we seek the limit of
the sequence:

n f
k+1 =n f

k 2W k3 (Ak(n
f
k 2 q̇[i])2hFk) (11)

where f stands for ‘free’, Ak denotes the kth iteration of A(u)
and where

Wk =FAk 2h
Fk

 q̇
2h2 Fk

q G21

=
P(u, n)21

n
(12)

Fig. 2. A falling planar biped robot.
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u (ii) The generalized free velocity at time i + 1 is the limit
of this sequence: n f = lim

k→∞
n f

k. The free generalized co-

ordinate is also derived from this velocity uf =q[i]+hn f.

u (iii) This coordinate vector determines whether or not
there is an impact between i and i+1. This determination
involves computing the direct kinematic model H(q) of the
robot. The matrix H relates the generalized velocities q̇ to
the velocities U of all candidates for contact (feet for
instance) through a relation U =H(q)q̇.

Using this matrix we can dynamically manage the
generalized coordinates and the contact laws at each
iteration step, which allows us to define another way to
compute the dynamics and to take impact phenomena into
account, as shown in Figure 3.

We must now define a frame for each contact point
(Figure 4). Velocity determination in this frame consists of
computing the direct kinematic model H(q) of the robot.

In each contact frame, we can thus express the two exact
physical laws describing relations between the relative
forces and velocities. By this computation, we obtain the
generalized forces R respecting non-linear contact laws.

u (iv) If there is no contact, the algorithm increments i and
goes to step (i). In this case, equation (11) converges on one
step like usual integration methods. If contacts occur, the
method implies that:

nk+1 =n f
k+1 +hW k Rk+1 (13)

The multiplication of both sides of equation (13) by the
jacobian matrix H(qk) gives:

U k+1 =U f
k+1 +hH(uk)W kH

T(uk)Rk+1 (14)

where Rk +1 =H 2T(uk)3 R k+1 are the contact forces.
As before, we seek the limit of the sequence U k+1, but this

time we have to first compute an approximation of the term
Rk+1. This latter vector verifies unilateral and/or bilateral
constraints in order to respect Coulomb’s laws of contacts
and Signorini’s laws (impenetrability of the ground and
non-attraction by the ground).

u (v) If the relative velocity U k+1 is zero after contact,
equation (14) could be solved by using the iterative Gauss-
Seidel’s method. In this case, the convergence of the
algorithm would be tested by i Rm+1

k+1 2Rm
k+1 i ≤ P, where

Rm
k+1 is the mth estimation of Rk+1. Unfortunately, the

velocities U k+1 are not zero. Fortunately, equation (14)
represents a hyperplane in space (R U ) with the given
orientation hH(uk)W kH

T (uk). As we are only interested in
estimating the reactions Rk+1, we have to know the
intersection of this hyperplane with the R-subspace charac-
terized by the equation U k+1 =0. Therefore, at step m, Rm

k+1

is computed by Gauss-Seidel’s algorithm and modified in
order to respect Coulomb and Signorini’s laws. This time
the convergence of the algorithm has to be tested by
i U m+1

k+1 2U m
k+1 i ≤ P recomputed from equation (14).

In order to illustrate how the reactions are computed, let
us assume the very simple example of a planar contact of
one point (R=[RN RT ] and U =[UN UT ]). The space (R U )
is 4-dimensional.

Once RN is chosen (Rm
k+1, N of the mth iteration),

Coulomb’s laws of contacts are applied:

u RT u < j RN (15)

Equation (14) represents a plane in 3-dimensional space
(RN RT U T ). Its intersection with (U T RT ) is a line with a
given slope.

u (vi) If ;m ≥ M, U m
k+1 remains stable Rk+1 is correctly

set (equation (14) is verified) and R k+1 =H T(uk )Rk+1 can be
computed. Hence, the limit of equation (13) can be found
and q[i+1], q̇[i+1] and R[i+1] obtained.

Fig. 3. Local (R U ) and generalized (R q̇ ) variables relations.

Fig. 4. Location of the different frames.

Fig. 5. Signorini’s graph relating the normal reaction to the
normal velocity.

Fig. 6. Coulomb’s law of friction.
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2.3. Comparisons of explicit and implicit algorithms
To compare both algorithms, we propose two brief schemes
(Figure 7, Figure 8). We can note the similarities and
differences between these to simulation methods.

In the robotic field, mechanical systems are generally
well modelled with masses and damped-springs. The
equations are expressed under an explicit form. Lagrange
dynamics can be solved classically (Figure 7).

With knowledge of the state vector of the previous
integration step i, we compute the coordinates at time i+dt.
We compute accelerations with the inverse dynamics and
then integrate two times to obtain the corresponding
velocities and positions at time dt. We must verify that the
solutions obtained by testing the foreseen positions of points
of contact with the position of the environment are in the
physical space. This position must respect the constraints of
impenetrability. If the positions are wrong (contact has been
encountered) the estimation is wrong, and we must decrease
the iteration step dt to resolve the dynamics and approach
the impact time in order to be able to accurately switch the
model and obtain a smaller error. We must therefore make
an over-sampling to accurately manage discontinuities due
to contact.

The implicit method (Figure 8) has a constant integration
step (the estimation given is the state at time i + h) but to

manage the contact laws we must make several estimations
of this state (stage 2) in order to be energetically correct.14

We need constant sampling time for control of the actuators.
It is of paramount importance to have a model which is able
to deliver a result at constant sampling time, to use its
information about the behavior in a control scheme.15

2.4. Simulation results
We compared these two approaches on a simulated biped
planar robot with Matlab®. This robot is described in Figure
9. The generalized coordinates are the position and
orientation of the head (x z u) and the angles between the
body and the two legs (q1 q2).

The robot is launched with a horizontal velocity Vx =m/s.
The initial configuration vector is: (x0 =0m z0 =1.5m
u0 =20.5rd q10 =0.9rd q20 =21rd). The generalized forces
are the two torques G1 and G2, which servocontrol the legs to
their initial configuration (no leg movement). We then show
the results obtained with non-regular modeling, which is the
only physically realistic approach with a fixed integration
step.

Detail of the Cartesian coordinates. The Figure 11
represents the behavior of the cartesian coordinates. We can

Fig. 7. Explicit algorithm for Lagrange.

Fig. 9. Experimental setup.

Fig. 8. Non regular implicit algorithm.
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note a ballistic flight (Figure 11-b) of the robot with a
constant angle u for t < 0.33s (Figure 11-c). During this
period, the robot is free and both Lagrange and non regular
methods provide the same solution because there is no
contact.

After t=0.33s, the non-regular method is active. The
robot has persistent friction and starts to slip in the direction
of the x-axis (x continues to grow (Figure 11-a)). The robot
loses energy until it stops and its center of gravity is located
at the left of the point of contact, hence the robot falls
backwards (x decrease).

Behavior of the external forces. The Figure 12-a repre-
sents the normal force using the non-regular approach. The
impulsion is well detected (Dirac’s function). There are

several impacts due to bouncing and stabilization appears
after t=0.55s. Note also that the normal force decreases at
the end of the simulation because the robot turns backward
until the second foot reaches the ground (not shown here).

The Figure 12-b represents the tangential force, the
constant value shown after t=0.55s means that the robot
pushes not vertically on the ground, but this does not mean
slipping because the reaction force is in the friction cone.
This conclusion is verified by a null tangential velocity for
the contact point (not shown here).

3. CONTROL OF DISPLACEMENT OF THE NON-
REGULAR MODEL
This modeling can be applied to every mechanism with
interactions and discontinuous contact with its environment

Fig. 10. Results of the simulation.

Fig. 11. Cartesian behavior of the head of the robot.
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(manipulators, gears etc.). In this paragraph, we study the
unified equation issued from the above theory in order to
stabilize the biped with a linearization step and control its
displacement.

3.1. Linearization and singular points
To specify a control scheme, we first study the system
around some point of equilibrium. The unified equation
describing the sytem can be written:

A(q)q̈ = (G2B(q, q̇, R)) (16)

Here we can easily solve the dynamics for each configura-
tion phase as we want to isolate specific singular points.
Considering the planar biped structure, we have defined
three possible configurations, as shown in Figure 13 (0, 1 or
2 contacts).

The singular points can be computed by solving equation
(16) with zero accelerations and velocities. The singular
points here are the stable or unstable equilibrium points of
the structure in each configuration phase. If torques are
applied to let the legs on position, stable equilibrium of the
robot can only be reached with 2 contacts and of course
there is no equilibrium in flight and unstable equilibrium on
one foot. By rewriting (16) we obtain thus the following
equation (17):

G = B(q, R) (17)

In this article, we do not consider the case of free robots and
double contact phase. We only explain and treat the robot in
its unstable equilibrium on one foot.

Solving (17), we obtain five relations on generalized
forces (R), generalized torques (G ) and generalized posi-
tions (q) of the robot.

Fx =0 (18)

Fz = O mi*g (19)

sin(u)=
G1 +G2

lt mt*g
(20)

sin(u +q1)=
2G1

l(mt + m + mh)*g
(21)

sin(u +q2)=
G2

lm*g
(22)

Relations (18) and (19) show that at equilibrium, the center
of gravity of the robot is located exactly above the point of
contact (RT =F x =0) and the normal force RN is equal to the
weight of the robot (F z) (19). Equation (22) shows that the
torque of the free leg (G 2) in equilibrium only compensates
for its mass.

This set of equations has an infinite number of solutions
(G , q).

We can give for example the upright position
(q = q1 =q2 =0 ) (Figure 14-1), equilibrium at right angles
(u=p/2, q1 =2p/2, q2 =0 ) (Figure 14-2), equilibrium

Fig. 12. Local reaction forces.

Fig. 13. Configurations delivering singular points.
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given by other solutions of the three equations (20), (21) and
(22) (Figure 14-3).

Linearization with one contact. We linearize the set of
equations (16) which gives q̈= f (q, q̇, u) around a given
singular point (q0, q̇0, u0 ). For little variation (dq, dq̇, du)
around the considered point, we obtain:

Ẋ =F dq̇
dq̇ G=

033 3

f
q

I 3

f
q̇

(q0, q̇0, u0)

X +

033 2

f
u

(q0, q̇0, u0)

du (23)

Where:

– 0 mxn represents the zero matrix (dim mxn)
– In represents the identity matrix (dim nxn)

This can be written again in the well known first order linear
differential form:

Ẋ = Acde X + B cdeV (24)

With the dynamics written in (16) and the partial derivatives
through the different variables computed at the point (X0,
u0 ), we obtain the coefficients of the above equation:

– Acde =
033 3 I 3

q̈
x (X0, u0)

Evolution matrix of the system
63 6.

– Bcde =
033 2 I 3

q̈
u (X0, u0)

Control matrix 63 2.

– V = du = (dG 1 dG 2)
T Vector of the two torques

around u0 .

We now study the controllability around the used point
(X0, u0 ). We must study all the singular points of the
system. We use the Kalman criterion: using the matrix Acde

and Bcde we build the controllability matrix and, if the rank
of this matrix is equal to the order of the system, the whole
system and all the variables are controllable. We have not
computed all the singular point, only the three presented in
(Figure 14). In each point, Kalman’s criterion is verified,
that means all of these configuration are controllable and we

can linearly stabilize the system around the designed point
(no impact and no transition problem).

Control with state feedback. The more generic method to
servocontrol the system around one singular point is to
make a state feedback on the linearized point to place the
poles at desired values and make it stable. On the first order
linear differential equation (24), we thus compute the
control V=U2L*X to obtain the equivalent system:

Ẋ = ( Acde 2Bcde*L)X + Bcde U (25)

L is computed in order to place the poles of the equivalent
evolution matrix ( Acde 2Bcde*L). The poles must have
negative real parts and we choose the values 23, 23.3,
23.9, 24.2 and 24.6 for the next experiments. We can
build the corresponding control scheme to study equilibrium
and the robustness of the system (Figure 15).

The system has null eigenvalues but state feedback allows
us to place the poles anywhere. The system is servo-
controlled only to the resting point considered because all
the feedback has been made with linearization around it.
The disturbances are introduced through a noise input and
an error on the initial conditions vector. The error made on
the initial condition corresponds to an error made on the
equilibrium position at the beginning of the test. The
behaviour of the non-linear system (16) is equal to that of
the linearized system (25) because it is controllable around
this point.

3.2. Simulations on balance
We study the position as shown in Figure 14-3 (free foot
mass and head mass compensate for the hip mass). We
simulate the behavior of the biped for two different initial
positions near the solution of equilibrium (u0 =20.41rd,
q10 =0.57rd, q20 =0.82rd) with noise (white between
+/2 0.1 Nm) on torques limited to 10 Nm.

– test 1: u ini=20.45 The robot recovers its stability
(Figure 16 a-b-c)

– test 2: u ini=20.381rd The robot falls backwards
and never straightens up
(Figure 16 a-b-c).

The robot cannot be servocontrolled to the desired steady
point in the presence of high disturbance (test 2). The free
leg rotates several times to provide internal forces without
being able to recover the balance of the robot (Figure 16-c).
However, there is a domain that enables correct control, this

Fig. 14. Special point of equilibrium.
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domain corresponds to the domain of validity of the
linearization.  This is why in the second test (2) the robot
moves away from the desired point. The feedback is not
well computed and the robot never stays stable (Figure 16 a-
b-c).

It is important to note that we can balance a quasi double
inverted pendulum, without actuators at ground contact
point, but this double pendulum is counterbalanced with the
mass of the free leg.

Here, we only study the controllability of the biped but
we did not define any trajectories to follow. The system is

controllable but this does not mean that we can follow a
trajectory, moreover we are limited to the domain of validity
of this control scheme. We can therefore only compute
torques to go from one point to another in finite time
regardless of the trajectory, but here the trajectory obtained
must always stay in the domain. We shall now try to control
the displacement of the robot using another approach.

3.3. Under-actuated systems
We noted that G has zero components, which means that we
have an under-actuated system. We can separate equation

Fig. 15. Linear control scheme.

Fig. 16. Evolution of the three coordinates.
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(5) in two subsystems. The first one (indexed “c”) is the
controlled part. The complementary system (indexed “f”)
lets the other variables evolve freely according to the
coupling between each variables. We obtain:

F0
C G=F A f(q)

Ac(q) Gq̈ +F B f(q, q̇, R)
Bc(q, q̇, R) G (26)

To control parts of the acceleration vector q̈, we must define
which components have to be driven and reduce the system
to a controllable subsystem. We choose 2 components
(indexed “c”) from among the 5 generalized accelerations.
Note that there are 10 different ways to choose the variables,
and thus 10 diffeent ways to write A f, Ac, B f and Bc
components. Two dependant sub-systems can be written in
each case:

[0] = [Aff (q)]( q̈ f ) + [Bf (q, q̇, R)] + [A f c(q)]( q̈c ) (27)

[C] = [Acc(q) Ac f (q)]S q̈c

q̈ f
D+ [Bc(q, q̇, R)] (28)

Separating and combining equations (27) and (28), we
finally obtain the dynamics of the reduced controllable
system (dimension 2):

Ars(q)q̈c = C 2 B rs(q, q̇, R) (29)

Where:

– Ars(q)=Acc2Acf*(Aff 21)*A fc(q) Equivalent evolution
matrix (23 2)

– B rs(q, q̇) = Bc2Ac f*(A ff 21*Bf ) Equivalent vector of
all forces (23 1 )

Global control scheme. Now we can use the classical non-
linear dynamical decoupling on this equivalent sub-system.
Here the control involves computing the torque vector C
using the known matrix A rs and B rs as follows:

C = Ars(q)e + B rs(q, q̇, R) (30)

Regarding (29) and (30), we obtain (if Ars is invertible
(idem for Aff)):e = q̈. In other words, we obtain a behavior
of 2 double integrators on the 2 chosen coordinates.

Finally, to control these double integrators, classical PID
controllers are added to follow the desired trajectories. We
build the unified control scheme Figure 17. Here, we choose

to control the displacement x and the pitch angle u that
makes one kind of decomposition. In this case, we must still
avoid different configurations where the computed torques
are infinite.

Using the computation of the reaction forces computed
by the non-regular model we obtain a non-regular vector
Brs which represents the coriolis, centrifugal, gravity and
reaction forces. We have built a non-regular control scheme
able to compute torques regardless of the phases encoun-
tered during walking or running of the biped (fly phase, one
contact or two contacts).

We made the first decomposition to reduce the system to
one with as many coordinates as number of actuators, and
we used the dynamics to make a decoupling feedback
before considering the control of the equivlent system with
PID controlles.

3.4. Simulation results
The same planar biped robot (Figure 9) is used with two hip
joints limited to 10 Nm. We let the robot fall (from less than
1 cm) to the ground, and we try to track two desired
trajectories:

– a global linear displacement x (Vxdes = 0.3 m/s)
– a constant posture of the body (udes = 0rd)

The robot starts with leg 1 near the ground (q1=20.1rd)
and the free leg higher (q2=1.4rd). In this case, we are thus
able to control the displacement and attitude of the head of
the robot while letting its legs move freely. The next figure
(Figure 18) shows different samples obtained during the
simulation.

The robot starts to fall without initial velocities, the robot
reaches the desired trajectories and is servo-controlled near

Fig. 18. Robot in contact with limited torques.

Fig. 17. Unified control scheme.
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these specified values. (Figure 19-a and Figure 19-e). The
robot lands on the rigid ground on one foot, moves with
contact before the free foot (Figure 19-d) strikes the ground
(t=0.36s). After this disturbance, the robot is still controlled
before the second shock (t=0.9s) occurs, the robot takes off
and enters in an unexpected flying phase, but during the
ballistic flight the robot is still controlled (Figure 19-b).

– From t=0 to t=0.36s, the robot follows the desired
trajectories (x and u). These trajectories can be tracked
due to the movement of the free leg (Figure 19-d).

– We can notice the effect of the first impact on the pitch

angle at t=0.36. The impact is not significant on the x
coordinate (Figure 19-a), but the disturbance is evident on
the pitch angle (Figure 19 e).

– From t=0.36s to t=0.5s, the robot is on its two feet and
this is a slipping phase. This could be avoided by the
action of a knee which may allow the robot to cross its
legs without hitting the ground.

– From t=0.5s to t=0.95s, the robot is on one foot and the
free leg is on the other side of the body. Its action is well
defined to balance the robot because the x displacement is
still correct and the pitch angle returns to the desired
position (0 for instance).

Fig. 19. Time course of the five generalized coordinates.
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– The second impact occurs at t=0.95s. The free lag again
strikes the ground strongly (Figure 19-d). An error occurs
on the x position and on the pitch angle (Figure 19-e).

– For t > 0.95s, the robot is servocontrolled during the flight
phase, but it still continues to fall thus prohibiting the
walk that we want to obtain.

Description of torques. The control scheme uses the
computed generalized reaction forces to compute the
desired torques (Figure 20) allowing robot control during all
the phases. There is no switch between different models and

no switch between different control schemes. We only use
the external forces estimated to use the same dynamics all
the time.

Description of reaction forces. The external forces are
shown in the next figures (Figure 21-a-b-c-d). These
reaction forces allow us to identify the different phases
encountered during the simulation.

Most of the time the robot is in contact on one foot, but
2 contact phases on the second foot appear (at t=0.4s, and

Fig. 20. Computed limited torques.

Fig. 21. Normal and tangential reactions.
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t=0.95) which leads to a bouncing and impact phenomenon.
At the end of the simulation, the robot takes off and enters
a flying phase with no feet on the ground.

At the beginning, the robot is free (t=0 to 0.01s) after
there is a landing phase with substantial impulse forces and
a constant contact phase on one foot. The movement
depends on the evolution of the free leg as described above
(Figure 19-d).

In this example, the robot follows the desired trajectories
regardless of the constraints under the robot. Takeoff is due
to the stroke of the free leg on the ground and the control
scheme computes two torques, which are important and the
two legs lose contact. The ballistic flight is well managed
but the movement cannot continue because the step
configuration is not respected.

4. ANALYSIS AND CONCLUSIONS
Much current research deals with legged locomotion but the
problem remains partially unsolved. Interesting structures
have been studied for a long time and some prototypes
bounce or walk slowly. In this paper, we addressed the
problem of dynamic modeling of legged structures and
examples are given with a planar biped robot.

We focused on establishing a unified equation to globally
describe the behavior of a walking robot in every configura-
tion to be able to define a global control scheme. We have
derived non-regular dynamic modeling from the basic
Lagrange’s equations using contact dynamics. By using
non-regular dynamics and implicit equation solving, the
robot may be kept from intruding the ground, contrary to
regular dynamics. There is no switch between modes, but
unified modeling regardless of the phases encountered (0, 1
or 2 contacts). This new method has different kinds of
advantages. Slipping and impact are well managed, respect-
ing unilateral and non-linear constraints. There is no fixed
geometrical condition and no computation a posteriori. A
constant integration step can be used throughout the
displacement of the robot. We estimate all the generalized
coordinates and all forces and velocities acting during all
phases on each contact point.

A control scheme was studied too. The control scheme
must be built in two stages. In one stage, we dealt with the
under-actuation of the system (G has as many zero
components as cartesian coordinates) to obtain a con-
trollable sub-system. In the second stage, we used the
knowledge obtained by our non-regular dynamic model to
make a non-regular dynamical decoupling. We thus
obtained an equivalent linear system which can be con-
trolled. Simulations were done to implement the theory, and
the global control scheme seems to be satisfactory. Despite
the unified control scheme, no stable walking is achieved
due to the trajectory tracking approach. The problem now is
to define reachable trajectories. In fact, the desired trajecto-
ries must comply with limitations due to the dynamics and
take limitations of the actuators into account. One approach
to solve this problem would be to define a switch from
different sets of desired trajectories, depending on the
possibilities of the biped during the different walking

phases, or to consider a learning or fuzzy control scheme
rather than trajectory tracking.

As shown in the picture (Figure 22), we are now in the
process of building a prototype to validate our model. The
first experiment must test equilibrium on one foot before
testing a walk.
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