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SUMMARY

In this paper, we present a new method of enumeration of
parallel manipulators with one end-effector. The method
consists of enumerating all the manipulators possible with
one end-effector that a single kinematic chain can originate.
A very useful simplification for kinematic chain, mechanism
and manipulator enumeration is their representation through
graphs. The method is based on group theory where abstract
structures are used to capture the internal symmetry of a
structure in the form of automorphisms of a group. The
concept used is orbits of the group of automorphisms of a
colored vertex graph. The theory and some examples are
presented to illustrate the method.

KEYWORDS: Kinematic chain; Mechanism; Manipulator;
Group theory; Graph theory; Automorphism; Action; Orbit.

1. Introduction

The structural synthesis of kinematic chains consists of the
generation of a complete list of kinematic chains that satisfy
the general mobility criterion (1) without isomorphic and
degenerate chains. This phase is also known as Grüebler
synthesis, number synthesis, type synthesis or structural
synthesis. In this phase of the project, a kinematic chain can
be represented by the graph whose vertices correspond to the
links of the chain and whose edges correspond to the joints
of the chain. In graph theory terms, the structural synthesis of
kinematic chains corresponds to the enumeration of graphs
satisfying the general mobility criterion given by the equation

M = λ(v − e − 1) + e (1)

where M is the graph mobility (i.e., kinematic chain), λ is
the order of the screw system to which all the joint screws
belong, v is the number of graph vertices (i.e., links), and e

is the number of graph edges (i.e., joints).
Recently, Sunkari and Schmidt1 have presented a synthesis

method for planar kinematic chains based on group theory
techniques. They examined the most efficient algorithms
of isomorph-free exhaustive generation and used McKay’s
algorithm2,3 for the generation of an isomorphism class
representative in combination with degeneracy testing
algorithms for the generation of a complete set of planar
kinematic chains. Simoni et al.4,5 have presented a variation
of the Sunkari and Schmidt method.1 We adapt the graph
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generator of McKay to use the degeneracy test of Martins and
Carboni6 that identifies the degeneracy of kinematic chains
that operate in any screw system. Using this technique Simoni
et al.4 present new results for kinematic chain enumeration
in other screw systems, i.e., for λ �= 3.

Tuttle and coworkers7−9 enumerated the kinematic chains
and mechanisms systematically which reduced the need for
isomorphism testing. The theory of symmetry groups is
used successfully to eliminate isomorphic entities in the
generation of bases and kinematic chains. Simoni et al.4

used the concept of orbits of the group of automorphisms of
noncolored vertex graphs and enumerated mechanisms for
several screw systems.

Alizade and Bayram,10 present a structural synthesis
and classification of parallel manipulators with single and
multiple platforms, where parallel manipulators are classifed
according to their platform type(s) and the connections
between them. This method determines simple structural
groups for a given set of synthesis parameters and then a
number of required actuators are added to the group to form
the manipulator.

For certain synthesis parameters, the Alizade and Bayram
method10 finds one structure with the desired number
and type of platforms (nonbinary links) and the number
of binary links. After that, the number of binary links
is distributed between the number of branches and
legs originating only one manipulator for the specified
parameters. Tsai11 present a method of structural synthesis
of parallel manipulators with a single platform, distributing
the number of binary links between the number of legs of the
manipulator.

The method of enumeration of manipulators that will
be presented in this paper consists of enumerating all the
manipulators which a single kinematic chain can originate.
Some functional requirements such as mobility, number of
links, number of joints, number of loops and redundancy are
incorporated in the phase of structural synthesis of kinematic
chains and the chains are enumerated using some methods
of enumeration. All the manipulators are then enumerated
using the method which we will present in Section 3.3.
Finally, other functional requirements are incorporated, such
as connectivity, degree-of-control, redundancy, etc., and the
manipulators are classified.

In this paper, we present a method for the enumeration
of all possible manipulators with one end-effector, not
necessarily of the platform type, that a kinematic chain can
originate. The next step is the systematization of the criteria
of variety, connectivity, degree-of-control and redundancy,
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Fig. 1. Kinematic chain.

Fig. 2. Graph representation.

Fig. 3. Mechanism.

Fig. 4. Manipulator with one end-effector.

that are well established concepts,6,12,13 for classification of
the enumerated parallel manipulators.

2. Graph Representation of Mechanisms

and Manipulators

In this paper we explore the number of parallel manipulators
with one end-effector which a kinematic chain can originate.
The exploration is carried out using graph and group theory.
Therefore, we introduce the concepts of mechanism and
manipulator and their representation in graphs through
examples and figures.

Figure 1 shows a kinematic chain and Fig. 2 its graph
representation. Figure 3 shows a mechanism (i.e., inversion
of the kinematic chain) and Fig. 4 shows a manipulator
with one end-effector originated from the kinematic chain
in Fig. 1. In this paper, kinematic chains, mechanisms and
manipulators are represented by graphs. This is a very useful
simplification for analyzing the possible mechanisms or
manipulators which the kinematic chain can originate.

A mechanism is a kinematic chain with one of its
components (links) taken as a frame.14 In terms of graph
theory a mechanism corresponds to a graph with one of
its vertices detached (colored) to represent the fixed link.
Figure 5 shows the graph of the mechanism in Fig. 3 where
the detached vertex represents the fixed link.

A generalized parallel manipulator is a closed-loop
kinematic chain mechanism whose end-effector is linked to

Fig. 5. Graph representation of mechanism.

Fig. 6. Graph representation of manipulator.

the base by several independent kinematic chains.15 In other
words, a parallel manipulator is a kinematic chain with one of
its components (links) taken as a frame and the other taken as
an end-effector. In terms of graph theory a manipulator with
one end-effector corresponds to a graph with two detached
vertices (colored with distinct colors), one to represent the
fixed link and the other to represent the end-effector. Figure 6
shows the graph of the manipulator in Fig. 4, where one of the
detached links represents the base and the other represents the
end-effector. If the manipulator possess more than one end-
effector, more graph vertices must be detached to represent
it.

Simoni et al.4 used the concept of orbits of the group of
automorphism of noncolored vertex graphs, of group theory,
to enumerate all the possible inversions of a single kinematic
chain. Using this technique, Simoni et al.4 presented several
new results in the enumeration of inversions of kinematic
chains.

In this paper, we present an extension of the mecha-
nism enumeration method for enumeration of parallel
manipulators with one end-effector. For this we represent
parallel manipulators by graphs with two of their vertices
colored (detached), one to represent the base and the other to
represent the end-effector, and use tools from group theory
for enumeration of all the possible manipulators with one
end-effector that a single kinematic chain can originate.

3. New Method for Enumeration of Parallel

Manipulators

Our method for the enumeration of parallel manipulators
consists of calculating orbits of the group of automorphism
of colored vertex graphs and selecting all the possible distinct
label listing of vertices (one to represent the base and the other
to represent the end-effector) which can originate distinct
manipulators.

Firstly, we present the fundamentals of group and graph
theory and after that our method for the enumeration of
parallel manipulators with one end-effector together with
examples.
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3.1. Group and graph theory
Groups are abstract structures used in mathematics and
science in general to capture the internal symmetry of a
structure in the form of automorphisms of a group. Below
we present the essential definitions of group theory found in
the literature.16–19

Definition 1. A group is a set G with a binary operation
• : G × G → G that satisfies the following 3 axioms:
(i). Associativity: For all a, b, and c in G,
(a • b) • c = a • (b • c).
(ii). Identity element: There is an element e in G such that
for all a in G, e • a = a • e = a.
(iii). Inverse element: For each a in G, there is an element
b in G such that a • b = b • a = e, where e is the identity
element.

Definition 2. A set G’ is a subgroup of a group G if it is a
subset of G and is a group using the operation defined on G.

Definition 3. If X is a set and G is a group, then G acts on
X if there is a function

G × X → X

(g, x) �→ g · x

such that
(i). (gh) · x = g · (h · x) for all g, h in the group G and x in
the set X.
(ii). e · x = x for every element x in the set X (where e is
the identity in G).

We also call X a G-set if G acts on X.

Definition 4. The symmetric group on a set X, denoted by
SX or Sym(X), is the group whose underlying set is the set
of all bijective functions from X to X, in which the group
operation is that of composition of functions.

The symmetric group on the finite set X ={1, 2, . . . , n} is
denoted as Sn and all σ ∈ Sn will be denoted by

σ =
(

1 2 · · · n

σ (1) σ (2) · · · σ (n)

)
.

Permutations can also be represented by a binary matrix
operation. For instance,

σ =
(

a b c

b a c

)

can be represented as:

⎡
⎣b

a

c

⎤
⎦ =

⎡
⎣0 1 0

1 0 0
0 0 1

⎤
⎦ ·

⎡
⎣a

b

c

⎤
⎦ .

Subgroups of Sn are called permutation groups.
The set of graph vertices Vn = {1, 2, 3, . . . , n} form a

permutation group and the definitions above can be applied.

Example 1. Figure 7 shows the graph of a Stephenson
kinematic chain and Figs. 8 and 9 show the action of σ1 and

Fig. 7. Graph representation.

Fig. 8. σ1 action.

Fig. 9. σ2 action.

σ2 in G, respectively, on the labels of the Stephenson graph
(see Fig. 7), where

σ1 =
(

1 2 3 4 5 6
3 5 4 1 6 2

)
= (134)(256) and

σ2 =
(

1 2 3 4 5 6
4 3 2 1 6 5

)
= (14)(23)(56).

Definition 5. Let G1 and G2 be two groups. A
homomorphism of G1 in G2 is an application
φ : G1 → G2 such that, for all x and y in G1

φ(x · y) = φ(x) · φ(y).

If φ is bijective, the application is an isomorphism. An
isomorphism φ is an automorphism if G1 = G2.

In terms of graph theory, two graphs H and H ′, with graph
vertices Vn = {1, 2, . . . , n}, are said to be isomorphic if there
is a permutation σ of Vn such that {x, y} is in the set of graph
edges E(H ) if and only if {σ (x), σ (y)} is in the set of graph
edges E(H ′).

An automorphism of a graph is a graph isomorphism with
itself, i.e., a mapping of the vertices of a given graph H from
the vertices of H such that the resulting graph is isomorphic
with H . The sets of these permutations which map the graph
into itself form a group called the group of automorphisms of
the graph. This group of automorphisms is said to be a vertex-
induced group. The group of automorphisms of the graph is a
subgroup of the symmetric group and contains all the possible
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permutations of the vertices that preserve the adjacency.
The group of automorphisms of a graph characterizes its
symmetries and are therefore very useful for determining
some of its properties.

The McKay algorithm2,20 is, to the authors’ knowledge,
the best algorithm for computing graph automorphisms and
isomorphisms.

Definition 6. Consider a group G acting on a set X. The
orbit of the point x ∈ X is denoted by

Ox = {g · x | g ∈ G}.

The orbit of a point x in the set X is the set of elements
of the set X to which the point x can be moved by the
elements of the group G. The set of orbits of the set X under
the action of the group G form a partition of the set X.
The associated equivalence relation is defined by x ∼ y if
and only if there exists an element g in the group G such
that g · x = y. The orbits are equivalence classes under this
relation; two elements x and y are equivalent if and only if
their orbits are the same, i.e., Ox = Oy .

The action of the group of automorphisms of the graph
permutes the graph vertices. If a graph vertex of the label
x is moved by the action of an element of the group of
automorphisms to a vertex of the label y, then x and y are
in the same orbit, i.e., Ox = Oy . For graphs, the equivalence
relation is associated with the symmetry of their vertices. If
the vertices of labels x and y are in the same orbit they possess
the same properties of symmetry in the graph. The orbit of a
graph vertex corresponds to the set of vertices for which the
vertex is moved by the action of the group of automorphisms
of the graph.

3.2. Orbits of noncolored vertex graphs
and corresponding mechanisms
Using the tools of group theory presented above we can
obtain the inversions (i.e., mechanisms) of a kinematic chain
choosing a representative of each orbit of the group of
automorphism of a noncolored vertex graph. The number
of orbits is equal to the number of mechanisms that the graph
(i.e., kinematic chain) can originate. To ascertain which are
the possible choices for the fixed link there only needs to be
chosen a representative of each orbit.4

Example 2. Figure 10 shows a planar kinematic chain
with mobility three (M = 3) and two loops, the chain is
represented by a labeled, noncolored graph (without vertices
detached) as shown in Fig. 11 which will be called H .
The group of automorphisms of graph H possesses four
elements: σ1 = (0)(1)(2)(3)(4)(5)(6)(7), σ2 = (23)(45)(67),

Fig. 10. Kinematic chain.

Fig. 11. Graph representation.

Fig. 12. σ1 action.

Fig. 13. σ2 action.

Fig. 14. σ3 action.

Fig. 15. σ4 action.

σ3 = (01)(24)(35), and σ4 = (01)(25)(34)(67). The action
of the group of automorphisms on graph H is shown in
Figs. 12, 13, 14, and 15 respectively.

The orbit of vertex 0 is equal to the orbit of vertex 1, i.e.,
O0 = O1 = {0, 1}, the orbit of vertex 2 is equal to the orbit of
vertices 3, 4 and 5, i.e., O2 = O3 = O4 = O5 = {2, 3, 4, 5},
and the orbit of vertex 6 is equal to the orbit of vertex 7, i.e.,
O6 = O7 = {6, 7}; therefore, there are three orbits of the
group of automorphisms, i.e., {0, 1}, {2, 3, 4, 5}, and {6, 7}.

The possible mechanisms for the kinematic chain shown
in Fig. 10 are obtained by choosing a representative of each
orbit of the group of automorphism induced by associated
noncolored graph vertices, for example 0, 2, and 6.

The number of orbits of the group of automorphisms
(i.e., 3) is equal to the number of mechanisms that the
kinematic chain can originate. The links that are in the same
orbit originate identical mechanisms, i.e., the changing of
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a fixed link does not cause different characteristic in the
movement of the mechanism in relation to the fixed link.
The changing of a fixed link, for links that are in different
orbits, leads to different characteristic in the movement of the
mechanism originating distinct mechanisms for the kinematic
chain.

3.3. Orbits of colored vertex graphs and corresponding
parallel manipulators with one end-effector
For enumeration of the possible parallel manipulators with
one end-effector for a kinematic chain we use colored vertex
graphs. The method of enumeration of all the possible
manipulators with one end-effector for a kinematic chain
consists of calculating orbits of the group of automorphisms
of colored vertex graphs which represent the inversions. With
the proposed technique for the enumeration of inversions in
Section 3.2, we enumerate all the possible choices of the
fixed link. To enumerate all the possible parallel manipulators
with one end-effector which can be originated by a single
kinematic chain we only need to enumerate all the possible
choices of the end-effector for each inversion. The simplest
way to do this is to color one vertex (which originates the
inversion) of each time and to calculate the orbits of the group
of automorphisms of a colored vertex graph (with the vertex
that originates the inversion colored). The vertex (link) that
represents the inversion will be considered as a base for the
manipulator and a representative of each orbit of the colored
graph will represent the end-effector.

With this technique all the manipulators with one
end-effector that the kinematic chain can originate are
enumerated. Having established the possible choices of a
base, for each colored base (colored graph vertex) the group
of automorphisms of colored vertex graph captures the
internal symmetries of graph and supplies the information
through the orbits of the group. In the case of colored
graphs, the group of automorphisms captures equivalence
between the graph vertices in relation to the colored vertices.
The vertices that are in the same orbit originate identical
manipulators with one end-effector. Now we present some
examples of the method.

Example 3. Enumeration of planar manipulators with

one end-effector: In example 2, we enumerated the
inversions of the kinematic chain in Fig. 10, i.e., 0, 2, and 6.
Now, we enumerate all the possible manipulators with one
end-effector for the kinematic chain in Fig. 10.

We begin with inversion 0. The graph vertex of label
0 in Fig. 11 is colored as shown in Fig. 16 and the
orbits of the group of automorphisms of the colored
graph are calculated. The group of automorphisms of the
graph with vertex 0 colored possesses two elements; σ1 =
(0)(1)(2)(3)(4)(5)(6)(7) and σ2 = (23)(45)(67). Therefore,
the orbits of the group of automorphisms are; O0 = {0},
O1 = {1}, O2 = O3 = {2, 3}, O4 = O5 = {4, 5}, and O6 =
O7 = {6, 7}.

The vertex of label 2 in Fig. 11 is then colored as shown
in Fig. 17. In this case the group of automorphisms of the
graph with vertex 2 colored possesses only one element, i.e.,
the identity σ1 = (0)(1)(2)(3)(4)(5)(6)(7). Thus, the number
of orbits is equal to the number of vertices.

Fig. 16. Vertex 0 colored.

Fig. 17. Vertex 2 colored.

Fig. 18. Vertex 6 colored.

Finally, the vertex of label 6 in Fig. 11 is colored as shown
in Fig. 18. In this case the group of automorphisms of the
graph with vertex 6 colored possesses two elements; σ1 =
(0)(1)(2)(3)(4)(5)(6)(7) and σ2 = (01)(24)(35). Orbits are;
O0 = O1 = {0, 1}, O2 = O4 = {2, 4}, O3 = O5 = {3, 5},
O6 = {6}, and O7 = {7}.

With this technique, we enumerate all the possible string
listings of vertices that can originate distinct manipulators
selecting the colored vertex (inversion) and a vertex of each
orbit of the group of automorphisms of the graph with colored
vertices, where the string listings x|y represent the two
colored vertices of the graph, i.e., one manipulator where
x is the fixed link and y is the end-effector.

Table I shows the list of parallel manipulators with one
end-effector that the kinematic chain in Fig. 10 can originate.
Column 1 shows the orbits of the noncolored graph, column 2
shows the possible inversions (i.e., one representative of each
orbit of the noncolored graph), column 3 shows the orbits
of the colored graph where the colored vertex is the vertex
that originates the inversion shown in column 2, and column
4 shows the possible manipulators with one end-effector for
the kinematic chain in Fig. 10. In column 4, the manipulator
with one end-effector is originated from one representative of
each orbit of the noncolored graph (i.e., inversion) to be the
base and one representative of each orbit of the colored graph
to be the end-effector. Using this technique, we enumerate 15
distinct parallel manipulators with one end-effector that the
kinematic chain in Fig. 10 can originate.

Figure 19 shows some results of Table I, the kinematic
chain in Fig. 10 on the first level, the mechanisms derived
from this chain (i.e., 0, 2, and 6) on the second level, and the
manipulators with one end-effector for the first mechanism
(inversion 0), i.e., 0|1, 0|2, 0|4, and 0|6 on the third level.
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Fig. 19. Representation of the method for the results of Table I.

We choose always the vertex of the lowest label in each
orbit to represent the mechanism and/or the manipulator, but
the choice could be another. Therefore, if the vertices are
in the same orbit they have exactly the same kinematic and
structural characteristics as the mechanism or manipulator.
For example, in line 1 of Table I, we choose the vertex
of label 0 (see column 2) to represent the inversion but
we could choose the vertex of label 1. The orbits of the
colored graph with one of the two vertices colored (i.e.,
0 or 1) will be the same as that shown in column 3 and,
consequently, the manipulators indicated in column 4 will
have the same kinematic characteristics. The manipulator
0|6 shown in Fig. 20 is the same as 1|7.

Note that the vertices that are in the same orbit as the
group of automorphisms of the noncolored vertex graph only
originate one manipulator with one end-effector because the
base-end-effector change does not cause alterations in the
kinematic and structural characteristics of the manipulator
and therefore the manipulator only appears once in Table I,

Fig. 20. Base 0, end-effector 6.

for example 0|1. The vertices that are in the same orbits as
the group of automorphisms of different noncolored vertex
graphs appear twice on the list of manipulators, for example
0|6 and 6|0 (see Figs. 20 and 21). They possess totally
different kinematic and structural characteristics. Often the
manipulators originated by the same two vertices appear
camouflaged, as is the case of 2|7 and 6|3.

If the vertices are in different orbits to the group of
automorphisms of a noncolored vertex graph then the base-
end-effector change does not originate manipulators with
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Table I. Results of the enumeration of manipulators for the
kinematic chain in Fig. 10.

1 2 3 4

Orbit of non- Orbit of colored
colored graph Inversions graph Manipulators

0, 1 0

0 –
1 0|1

2, 3 0|2
4, 5 0|4
6, 7 0|6

2, 3, 4, 5 2

0 2|0
1 2|1
2 –
3 2|3
4 2|4
5 2|5
6 2|6
7 2|7

6, 7 6

0, 1 6|0
2, 4 6|2
3, 5 6|3

6 –
7 6|7

Total number of manipulators � = 15

different structural characteristics and therefore they appear
twice on the list of manipulators.

The results presented in Table I are new and therefore we
do not have references for comparison.

Example 4. Enumeration of planar manipulators with

one end-effector: Figure 22 shows a planar kinematic chain
with a mobility of three (i.e., M = 3), ten links (i.e., n = 10)
and variety zero (i.e., V = 0). The graph of the chain is
shown in Fig. 23.

Fig. 21. Base 6, end-effector 0.

Fig. 22. Kinematic chain.

Fig. 23. Graph representation.

Fig. 24. Kinematic chain.

The orbits of the group of automorphisms of the noncolored
vertex graph (see Fig. 23) are:

• {0, 1, 7, 8},
• {2, 5, 6, 9} and
• {3, 4}

which originates three inversions; 0, 2, and 3. Applying our
method, coloring the vertex that originates the inversion and
calculating the orbits of the group of automorphisms we have
that:

• for vertex 0 colored, the orbits are {0}, {1}, {2}, {3},
{4}, {5},{6}, {7}, {8}, {9},

• for vertex 2 colored, the orbits are {0}, {1}, {2}, {3},
{4}, {5}, {6}, {7}, {8}, {9} and

• for vertex 3 colored, the orbits are {0, 8}, {1, 7}, {2, 6},
{3}, {4}, {5, 9}.

Table II shows the possible manipulators with one end-
effector for the kinematic kinematic chain in Fig. 22.

Example 5. Enumeration of spatial manipulators with

one end-effector: Figure 24 shows a spatial kinematic chain
with M = 6 and n = 14 enumerated by Tischler et al.21 and
Simoni et al.22 as one of the most promising candidates for
the design of robotic fingers. The graph of the chain is shown
in Fig. 25.

Table II. Results of the enumeration of planar manipulators with
one end-effector.

Inversion Manipulators Total number

0 0|1; 0|2; 0|3; 0|4; 0|5; 0|6; 0|7; 0|8; 0|9 9
2 2|0; 2|1; 2|3; 2|4; 2|5; 2|6; 2|7; 2|8; 2|9 9
3 3|0; 3|1; 3|2; 3|4; 3|5 5
Total number of manipulators � = 23
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Fig. 25. Graph representation.

The orbits of the group of automorphisms of a noncolored
vertex graph (see Fig. 23) are:

• {0, 1},
• {2, 5, 6, 9, 10, 13} and
• {3, 4, 7, 8, 11, 12}.

which originates three inversions; 0, 2, and 3. Applying our
method, coloring the vertex that originates the inversion and
calculating the orbits of the group of automorphisms we have
that:

• for vertex 0 colored, the orbits are {0}, {1}, {2, 6, 10},
{3, 7, 11}, {4, 8, 12}, {5, 9, 13},

• for vertex 2 colored, the orbits are {0}, {1}, {2}, {3},
{4}, {5}, {6, 10}, {7, 11}, {8, 12}, {9, 13} and

• for vertex 3 colored, the orbits are {0}, {1}, {2}, {3},
{4}, {5}, {6, 10}, {7, 11}, {8, 12}, {9, 13}.

Table III shows the possible manipulators with one end-
effector for the kinematic chain in Fig. 24.

3.4. Implementation and discussion
McKay2,3 implemented the Nauty (No AUTomorphisms,
Yes?) which is a set of very efficient C language procedures
for determining the group of automorphism of a colored
vertex graph. It provides this information in the form of a
set of generators, the size of the group, and the orbits of the
group.

Our implementation consists of adapting the Nauty
program of McKay2,3 to calculate the orbits of noncolored
and colored vertex graphs, which represent kinematic chains
(or mechanisms), in algorithmic form, as we present in the
examples. In this way we can enumerate all the possible
parallel manipulators with one end-effector that a set of
kinematic chain can originate.

This method of enumeration of parallel manipulators with
one end-effector is presented for the first time and can be
applied to a high number of graphs (i.e., kinematic chains).

Table III. Results of the enumeration of spatial manipulators with
one end-effector.

Inversion Manipulators Total number

0 0|1; 0|2; 0|3; 0|4; 0|5 5
2 2|0; 2|1; 2|3; 2|4; 2|5; 2|6; 2|7; 2|8; 2|9 9
3 3|0; 3|1; 3|2; 3|4; 3|5; 3|6; 3|7; 3|8; 3|9 9
Total number of manipulators � = 23

We are working on a more general method to enumerate
manipulators with more than one end-effector. The next step
is the elaboration of classification criteria for the enumerated
manipulators, because generally the number is very great
and it is difficult to analyze the individual merits of each
manipulator. These criteria depend on the requirements of
each task.

4. Conclusions

A new method for the enumeration of all the possible parallel
manipulators with one end-effector that one kinematic chain
can originate was presented. This method uses the concept
of orbits of the group of automorphisms of colored vertex
graphs. To the best of the authors’ knowledge, this is the
first method for enumeration of all the possible manipulators
which a kinematic chain can originate. In the implementation
of the method we use the Nauty program of McKay which
determines the group of automorphisms of colored vertex
graphs very quickly.

Future work will be carried out to extend the method to
enumerate parallel manipulators with more than one end-
effector. Another stage is the elaboration of criteria for
the classification of the manipulators because the number
of parallel manipulators which each chain can originate is
generally very great and it is difficult to analyze the individual
merits of each manipulator.
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