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We consider complex-valued solutions of the conserved Kuramoto–Sivashinsky
equation which describes the coarsening of an unstable solid surface that conserves
mass and that is parity symmetric. This equation arises in different aspects of surface
growth. Up to now, the problem of existence and smoothness of global solutions of
such equations remained open in R

d and in the torus T
d, d � 1. In this paper, we

answer partially to this question. We prove the finite time blow-up of complex-valued
solutions associated with a class of large initial data. More precisely, we show that
there is complex-valued initial data that exists in every Besov space (and hence in
every Lebesgue and Sobolev space), such that after a finite time, the complex-valued
solution is in no Besov space (and hence in no Lebesgue or Sobolev space).
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1. Introduction

In this paper, we consider the conserved Kuramoto–Sivashinsky (cKS) equation
described by the following partial differential equation,

∂tv + Δ2v + Δ|∇v|2 = 0 (1.1)

with initial condition

v(0) = v0 (1.2)

on Rd with solutions vanishing at infinity as |x| → ∞ or on the d-dimensional torus
Td ≡ Rd/(2πZ)d, with periodic boundary conditions and in this case, we require,
in addition, v0 that is a periodic scalar function of period 2π with zero mean value,
that is

∫
Td v0(x) dx = 0.

The cKS equation models the step meandering instability on a surface character-
ized by the alternation of terraces with different properties [14]. It appeared as a
model for the boundaries of terraces in the epitaxy of Silicon [14]. It also describes
the growth of an amorphous thin film by physical vapour deposition [23,24]-in this
case, conserved dynamics are obtained by transforming to a frame that translates
upward with constant velocity.
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For simplicity of presentation, we consider the rescaled version (1.1) with a dimen-
sional length-scales. Sometimes the equation is considered with a linear instability
+Δv, which leads to the formation of hills, and the Kuramoto–Sivashinsky-type
nonlinearity −|∇v|2 leading to a saturation in the coarsening of hills (see [21,24]).
Both terms are neglected here. They are lower order terms not important for
questions regarding regularity and blow up. Furthermore, the equation is usually
perturbed by space-time white noise referred as η (see for instance [21,23,24]),
which we also neglect here, although many results do hold for the stochastic PDE
also (see [9]).

Previous work shows that numerical simulations based on (1.1) can be well fit-
ted to experimental data, and that (1.1) adequately describes the phenomena of
coarsening and roughening that are characteristic for the growth of corresponding
surfaces on intermediate timescales [21,24,27]. In particular, the characteristic sta-
tistical measures of the surface morphology such as the correlation length and the
surface roughness calculated from the cKS model show very good agreement with
available experimental data and, therefore, support the validity of this modelling
approach (see [21] for more details).

Nevertheless, without the existence of a unique solution, there is no hope of
guaranteeing that a numerical approximation is really an approximation in any
meaningful sense, since it is not clear what is being approximated.

Thus, a crucial open problem for the cKS equation (1.1) is the fact that exis-
tence and uniqueness of global solutions is not known (see [5,6]) even in the
one-dimensional case (see [5] and references therein).

For the one-dimensional case, the existence of global weak solutions on bounded
domains has been established in [8,27]. The key point of the construction of global
weak solutions lies on a L2−energy estimate deriving from the fact that, in this
case, the nonlinearity in (1.1) is orthogonal to the solution itself in the sense of L2.

For the two-dimensional case, the situation seems even worse, as the existence
of global weak solutions could only be established in H−1 using the non-standard
Lyapunov function

∫ 2π

0
ev(x) dx (see [29]).

However, up to now, the question of global regularity for the cKS equation (1.1)
is still open (see [5,6] and references therein). Only existence, uniqueness and reg-
ularity of local solutions or global strong solutions with smallness condition on the
initial data have been established in [4,27] with initial values in W 1,q with q � 2
for d = 1 and W 1,4 for d = 1, 2, 3 and later improved in [5,6] for initial values in
the critical Hilbert space Hd/2 or in a critical space of BMO-type.

The main difficulties for treating problem (1.1) are caused by the nonlinearity
term Δ|∇v|2 and the lack of a maximum principle. Due to its nonlinear parts, there
are more difficulties in establishing the existence of global strong solutions. Then
in [10], numerical methods have been proposed for proving numerical existence,
uniqueness and smoothness of global solutions of (1.1).

As in [20], in this paper, we omit the condition that v̂ is the Fourier transform
of a real-valued solution v of (1.1) in the d−dimensional space and consider it in
the space of all possible complex-valued functions.

In this situation, we answer to the existence and smoothness problem for the cKS
equation (1.1) in the d−dimensional space, d � 1, by showing that for sufficiently
large initial data, we get complex-valued solutions which blow-up in finite time. We
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thus extend to the whole domain Rd and the torus Td for any d � 1 the finite time
blow-up result obtained in [7] in the situation of complex-valued solutions, which
was established only in the one-dimensional torus case.

More precisely, by borrowing the arguments used in [22], in our theorem 5.1
combined with corollary 5.2, we show that there is complex-valued initial data that
exists in every Triebel-Lizorkin or Besov space (and hence in every Lebesgue and
Sobolev space), such that after a finite time, the solution is in no Triebel-Lizorkin
or Besov space (and hence in no Lebesgue or Sobolev space).

This finite time blow-up result may suggest as it was shown in [1], that a better
taking into account of the main physical phenomena and a better approximation
of terms related to them in the surface growth mathematical model can help to get
existence and uniqueness of global strong solutions for such equations as the ones
modelling epitaxy thin film growth.

The paper is organized as follows: In § 2, we give some notations. In § 3, we
introduce some Banach spaces. In § 4, we deal with local existence in the time of
mild solutions in admissible spaces which contains the critical spaces. In § 5, we
prove our theorem 5.1 with our corollary 5.2.

If we set u = −v and u0 = −v0, we notice that u satisfies the following equivalent
equation to (1.1):

∂tu + Δ2u − Δ|∇u|2 = 0, (1.3)

with initial condition

u(0) = u0. (1.4)

Then, without loss of generality, in what follows, we will consider equation (1.3)
rather than (1.1).

2. Some notations

For any x ∈ Rd, we denote by {x}+ the vector having for components the values
max{xm, 0} for 1 � m � d. We denote by | · | the modulus of a complex number.
We denote by ‖ · ‖, the Euclidean norm on Cd defined for all x ∈ Cd by ‖x‖ =(∑

1�m�d
|xm|2

)1/2

. We denote by ‖ · ‖∞, the infinity norm on Cd defined for all

x ∈ Cd by ‖x‖∞ = max
1�m�d

|xm|.
For x ∈ Cd and r > 0, let Br(x) = {y ∈ Cd : ‖y − x‖∞ � r}. Notice, here that

the ball of Cd is defined with the norm ‖ · ‖∞ and not with the Euclidean norm of
Cd as it is usually the case. This change is made in order to deal with the periodic
case also.

For any a ∈ R and r > 0, we denote with the same notation Br(a) the ball Br(A)
where A ∈ Rd is such that for all 1 � m � d, Am = a.

For any x ∈ Rd and y ∈ Rd, we say that x � y (resp. x � y) if for all 1 � m � d,
xm � ym (resp. xm � ym).

For any x ∈ Rd and a ∈ R, we say that x � a (resp. x � a) if for all 1 � m � d,
xm � a (resp. xm � a).
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We use X � Y to denote the estimate X � CY with C > 0 a constant. For any
function f defined on Rd × R+, for any t � 0, for a simplicity in the notation, we
denote by f(t) the function x �−→ f(x, t) defined on Rd.

For Ωd = Rd or Td, d ∈ N∗, for any f ∈ Lp(Ωd), with 1 � p � ∞, we denote by
‖f‖p and ‖f‖Lp(Ωd), the Lp−norm of f .

Given an absolutely integrable function f ∈ L1(Rd), we define the Fourier
transform f̂ : Rd �−→ C by the formula,

f̂(ξ) =
∫

Rd

e−ix·ξf(x) dx,

and extend it to tempered distributions. For a function f which is periodic with
period 1, and thus representable as a function on the torus Td, we define the discrete
Fourier transform f̂ : Zd �−→ C by the formula,

f̂(k) =
∫

Td

e−ix·kf(x) dx,

when f is absolutely integrable on Td, and extend this to more general distributions
on Td.

3. Some Banach spaces

We denote by S (Rd) the class of complex-valued tempered Schwartz functions on
Rd and by S (Td) the set of all complex-valued, 2π−periodic (in each component)
and infinitely differentiable functions (on Td). Their dual space respectively S ′(Rd)
and S ′(Td) are called the space of distributions.

In particular, any function f ∈ S (Td)(resp. S ′(Td)) can be represented as
f(x) =

∑
k∈Zd

f̂(k)eik·x for any x ∈ Rd with sup
k∈Zd

(1 + |k|)m|f̂(k)| < ∞ for any m ∈
N (resp. m ∈ Z−) (see [25] for more details).

For any s � 0, we denote by Ḣs(Td) the space of complex-valued, 2π−periodic
(in each component) functions with finite Ḣs(Td)−norm given by ‖f‖Ḣs(Td) :=(∑

k∈Zd
|k|2s |f̂(k)|2

)1/2

(with the convention 00 = 1). For any p � 1, we denote

by L p(Rd) the space of complex-valued measurable functions of Lp(Rd) and by
L p(Zd) the space of p−summable complex-valued sequences of �p(Zd).

3.1. Besov spaces

In this subsection, we introduce the Besov spaces based on the dyadic unity par-
tition of Littlewood-Paley decomposition (see [3,11,12,28] for more details). We
detail the construction of these spaces due to the specific choice of our dyadic unity
partition of Littlewood-Paley decomposition. To get the proof of Theorem 5.1, we
take an arbitrary real-valued radial function ϕ in S (Rd) but whose Fourier trans-
form ϕ̂ is non-negative and is such that supp ϕ̂ ⊂ B1(3/2) and ϕ̂(ξ) � 1/2 for ξ ∈
B1/2(3/2), and define ϕj(x) = 2jdϕ(2jx) so that ϕ̂j(ξ) = ϕ̂(2−jξ) for j ∈ Z. We
may assume, ∀ξ ∈ Rd\{0},

∑
j∈Z

ϕ̂j(ξ) = 1.
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For any f ∈ S ′(Rd) or S ′(Td), we denote by Δjf , j ∈ Z, the function, Δjf :=
ϕj � f .

If f ∈ S ′(Rd), we notice that for all x ∈ Rd and for all j ∈ Z,

Δjf(x) = F−1(ϕ̂j f̂)(x) =
∫

Rd

ϕ̂j(ξ)f̂(ξ)eiξ·xdξ. (3.1)

If f ∈ S ′(Td), we notice that for all x ∈ Rd and for all j ∈ Z,

Δjf(x) =
∑
k∈Zd

ϕ̂j(k)f̂(k)eik·x. (3.2)

Then a tempered distribution f belongs to the homogeneous Besov space
Ḃs

p,q(R
d) (resp. Ḃs

p,q(T
d)) modulo polynomials if and only if ‖f‖Ḃs

p,q(Rd) < ∞ (resp.

‖f‖Ḃs
p,q(Td) < ∞) where for Ωd = Rd or Td,

‖f‖Ḃs
p,q(Ωd) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎝∑

j∈Z

2jsq‖Δjf‖q
Lp(Rd)

⎞
⎠

1/q

if q < ∞

sup
j∈Z

2js‖Δjf‖Lp(Rd) elsewhere,

(3.3)

and f =
∑

j∈Z
Δjf ∈ S ′/Pm where Pm is the space of polynomials of degree � m

and m = [s − d/p], the integer part of s − d/p.

4. Local existence of mild solutions

In this section, we deal with local existence in the time of mild solutions in admis-
sible spaces (see 4.0.2) which contains the critical spaces (see 4.0.3). It has been
shown in [6] local existence in the time of mild solutions for the d−dimensional cKS
equation (1.3) in the critical space B = Ḃ0

∞,∞(Rd) and in [5] for the one-dimensional
case in the critical space Ḣ1/2(T). In this section, we extend their results to all criti-
cal spaces both on Rd and Td for d ∈ N∗. More precisely, we establish local existence
in the time of mild solutions for the d−dimensional cKS equation (1.3) in admissible
spaces.

We set Ωd = Rd or Ωd = Td for the periodic case, Fd = Rd or Fd = Zd for the
periodic case. We set also Fd

+ = (R+)d or Fd
+ = (Z+)d for the periodic case. We

set A = Δ2. In either Rd or Td, we let e−tA for t > 0 be the usual biharmonic heat
semigroup associated with the biharmonic heat equation wt + Aw = 0 (see [16], for
an explicit form of its solution on Rd). From [6], the biharmonic heat kernel K on
Rd is given for all x ∈ Rd and t > 0 by K(x, t) := t−d/4k(xt−1/4), where k ∈ S (Rd)
is the function such that k̂(ξ) = e−|ξ|4 . After elementary computations, one has for
any 1 � p � ∞ and any multi-index α ∈ Nd

‖∂αK(·, t)‖p � t−(((mα)/(4))+d/4(1−1/p)), (4.1)

where mα =
∑d

i=1 αi. Further, the biharmonic heat kernel K on Td is obtained
from K as follows: for all x ∈ Rd, t > 0, K(x, t) =

∑
m∈Zd

K(x + 2πm, t). Then,
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we start with the definition of mild solutions of cKS equation (1.3) obtained from
Kato’s semigroup approach [18].

Definition 4.0.1. We say that u is a mild solution of cKS equation (1.3) for the ini-
tial data u0 if u is a solution to the equation u = Gu0(u) where Gu0 : C([0, T ],X) →
C([0, T ],X), with X being a space of complex-valued tempered distributions on Ωd:
for a.e t ∈ [0, T ]

Gu0(u)(t) = e−tAu0 +
∫ t

0

e−(t−s)AΔ|∇u(s)|2 ds. (4.2)

The Kato’s semigroup approach used to find a fixed point of Gu0 is to show that
Gu0 is a contraction mapping on C([0, T ],X) or on some subset of C([0, T ],X).

We introduce now the notion of admissible spaces.

Definition 4.0.2. We say that X is an admissible space if X is a complex-valued
Banach space of tempered distributions on Ωd satisfying:

(i) S (Ωd) is dense in X;
(ii) for all f ∈ X and λ > 0, λ1/4‖∇e−λAf‖∞ � ‖f‖X .
(iii) only if L∞(Ωd) �⊂ X, for all (f, g) ∈ X × X,

‖fg‖X � ‖f‖∞‖g‖X + ‖f‖X‖g‖∞.

One can find in lemma X4 of [19] and corollary 2.54 of [2], some examples of Banach
spaces satisfying property (iii). We continue with the notion of critical spaces.

Definition 4.0.3. We say that X is a critical space if X is an admissible space
in the sense of definition 4.0.2 satisfying: for all f ∈ X, λ > 0, ‖f(λ·)‖X = ‖f‖X

(called scale-invariance property).

Here, we give some examples of critical spaces in the sense of definition 4.0.3 such
that the Lebesgue space L∞(Ωd), the homogeneous Sobolev space Ḣd/2(Ωd) and
the Besov spaces Ḃ

d/p
p,∞(Ωd) with 0 < p � ∞ (for property (iii) we refer to corollary

2.54 in [2] and lemma X4 in [19] and for property (ii) we refer to lemma 3.1 in [6]
and lemma 2.4 in [2] to be adapted for our semigroup e−tA ). Notice that Ḃ0

∞,∞(Ωd)
is also a critical space in the sense of definition 4.0.3 since we do not have to ensure
property (iii) due to the fact that L∞(Ωd) ⊂ Ḃ0

∞,∞(Ωd).
Further, it can be shown (arguing similarly as in Frazier, Jawerth and Weiss in

[13]) that all scale-invariant spaces of distributions (the distributions having the
scale-invariance property), that also contain all Schwartz functions, are contained
in the Besov space Ḃ0

∞,∞, namely any critical space X ⊂ Ḃ0
∞,∞.

Before to deal with the local existence in the time of mild solutions in admissible
spaces, we need the following lemma,

Lemma 4.4. Let X be an admissible space in the sense of the definition (4.0.2).
Then for any f ∈ X,

lim
λ→0+

λ
1
4 ‖∇e−λAf‖∞ = 0 and lim

λ→0+
λ1/4‖∇e−λAf‖X = 0.
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Proof. Let Y = L∞(Ωd) or Y = X. Let f ∈ X and ε > 0. Since S (Ωd) is dense in
X due to property (i), we get that there exists g ∈ S (Ωd) such that ‖g − f‖X � ε.
Further, we get for any λ > 0,

λ1/4‖∇e−λAf‖Y � λ1/4‖∇e−λAg‖Y + λ1/4‖∇e−λA(f − g)‖Y . (4.3)

Thanks to property (ii) if Y = L∞(Ωd) and inequality (4.1) if Y = X used with
p = 1 and α ∈ Nd s.t |α| = 1, we deduce λ1/4‖∇e−λA(f − g)‖Y � ‖f − g‖X . Fur-
thermore, for any λ > 0, we have also ‖∇e−λAg‖Y � ‖∇g‖Y . Hence, from (4.3), we
get λ

1
4 ‖∇e−λAf‖Y � λ1/4‖∇g‖Y + ‖f − g‖X � λ1/4‖∇g‖Y + ε. We thus infer

lim sup
λ→0+

λ1/4‖∇e−λAf‖Y � lim sup
λ→0+

λ1/4‖∇g‖Y + ε = ε. (4.4)

Since inequality 4.4 is valid for all ε > 0, then we deduce lim sup
λ→0+

λ1/4‖∇e−λAf‖Y =

0 which implies lim
λ→0+

λ1/4‖∇e−λAf‖Y = 0. Then, we conclude the proof. �

Let us turn now to the proof of local existence of mild solutions in
admissible spaces.

To get these mild solutions, we proceed similarly as in [5–7,15,17]. As in [6], we
introduce the map V defined by

V(f, h)(t) :=
∫ t

0

e−(t−s)AΔ(∇f(s) · ∇h(s)) ds.

We notice that Gu0(u)(t) = e−tAu0 + V(u, u)(t). We introduce also for T > 0 the
space

MT,X := {v ∈ C(]0, T ] : S ′(Ωd)) : ‖v‖MT,X
< ∞},

equipped with the norm,

‖v‖MT,X
:=

⎧⎪⎨
⎪⎩

sup
t∈]0,T ]

t1/4(‖∇v(t)‖X + ‖∇v(t)‖∞) if L∞(Ωd) �⊂ X

sup
t∈]0,T ]

t1/4‖∇v(t)‖∞ otherwise.
(4.5)

Then, we get the following proposition.

Proposition 4.5. Let X be an admissible space in the sense of definition (4.0.2).
Let u0 ∈ X. Then there exists T > 0 such that there exists a unique mild solu-
tion u ∈ MT,X to the cKS equation (1.3) for the initial data u0. Moreover, u ∈
C([0, T ];X).

Proof. Thanks to (4.1) used with p = 1 and α ∈ Nd s.t |α| = 3, we get for any λ > 0,
‖∇Δe−λAf‖∞ � λ−3/4‖f‖∞ and ‖∇Δe−λAf‖X � λ−3/4‖f‖X , then by combining
these inequalities with property (iii), we deduce that for all (f, h) ∈ MT,X × MT,X

‖V(f, h)‖MT,X
� ‖f‖MT,X

‖h‖MT,X
. (4.6)

Thanks to property (ii), we get for any t > 0, t1/4‖∇e−tAu0‖∞ � ‖u0‖X and thanks
to (4.1) used with p = 1 and α ∈ Nd s.t |α| = 1 we get also t1/4‖∇e−tAu0‖X �
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‖u0‖X . We introduce v0 the function defined on Ωd × [0,+∞[ by

v0(t) := e−tAu0 for all t � 0.

Therefore, for any T > 0, we have

‖v0‖MT,X
� ‖u0‖X .

Moreover, thanks to lemma 4.4, we get

lim
T→0

‖v0‖MT,X
= 0. (4.7)

We observe that for all (f, g) ∈ MT,X × MT,X , Gu0(f) − Gu0(g) = V(f − h, f + h),
then owing to (4.6), we deduce that there exists a constant c0 > 0 such that

‖Gu0(f) − Gu0(g)‖MT,X
� c0‖f − g‖MT,X

(‖f‖MT,X
+ ‖g‖MT,X

). (4.8)

Thanks again to (4.6), we get also

‖Gu0(f)‖MT,X
� ‖v0‖MT,X

+ c0‖f‖2
MT,X

. (4.9)

For any ρ > 0, we denote by MT,X,ρ the ball of centre 0 and radius ρ in MT,X ,
that is MT,X,ρ := {f ∈ MT,X ; ‖f‖MT,X

� ρ}. Thanks to (4.8) and (4.9), we obtain
that Gu0 is a contraction mapping on MT,X,ρ for some T > 0 if ρ satisfies

2c0ρ < 1 and ‖v0‖MT,X
+ c0ρ

2 � ρ. (4.10)

The inequalities in (4.10) are satisfied if and only if 1 − 4c0‖v0‖MT,X
> 0 and ρ <

((1 − √
1 − 4c0‖v0‖MT,X

)/(2c0)). However, thanks to (4.7), there exists T0 > 0 such
that ‖v0‖MT0,X

� ((1)/(8c0)) which implies 1 − 4c0‖v0‖MT0,X
� 1/2, therefore,

with ρ0 = ((1 −
√

1 − 4c0‖v0‖MT0,X
)/(4c0)), we deduce that Gu0 is a contraction

mapping on MT0,X,ρ0 . Thanks to the contraction mapping theorem, we deduce that
there exists an unique u ∈ MT0,X,ρ0 fixed point of Gu0 , i.e u = Gu0(u).

Since u ∈ MT0,X and u = Gu0(u), we deduce that u ∈ C([0, T ];X) by using 4.1
and property (iii) (notice that if L∞(Ωd) ⊂ X, we do not need property (iii)). Then,
we conclude the proof. �

5. Blow-up of complex-valued solutions of the cKS equation

The main ingredient of the proof of the existence of blowing-up solutions as in [22]
consists in noticing that if the initial data has a positive Fourier transform, then
that positivity is preserved for the solution at all further times. One can then use
the Duhamel formulation of the solution and deduce a lower bound for the Fourier
transform that blows up in finite time.

Theorem 5.1. Let d ∈ N∗. Let w ∈ S (Ωd) such that ŵ is a real-valued function, ŵ
is non-negative, has L 1−norm equal to 1, and has support in B1/2(3/2) ∩ Fd (so w

is in every Triebel-Lizorkin or Besov space). Then if A > 216/15, and if u is a mild
solution to cKS equation (1.3) whose Fourier transform is a non-negative real-valued
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function supported in Fd
+, with initial data u0 = 27Aw, then for any σ ∈ R, u blows

up in the Besov space Ḃσ
∞,∞, at some time smaller than Td := log(2((1)/(15d2))).

Proof. To get the proof, we proceed by using a contradiction argument. For this,
we assume that there is σ ∈ R such that u do not blow-up in finite time in the
Besov space Ḃσ

∞,∞.
To get the contradiction, we adapt the construction of [22] to our case.
We begin by setting wn = w2n

with n ∈ N. We observe that wn+1 = w2
n and then

ŵn+1 = ŵn � ŵn. Since ŵ is non-negative, has L 1−norm equal to 1 and is supported
in B1/2(3/2) ∩ Fd = {ξ ∈ Fd : 1 � ξ � 2}, then by using an induction argument, we
deduce that for all n ∈ N, ŵn is also non-negative, has L 1−norm equal to 1 and is
supported in {ξ ∈ Fd : 2n � ξ � 2n+1}.

Let t � 0. We will show now by induction that the proposition P(n) defined by
(5.1) is true for all n ∈ N.

We give just below the definition of the proposition P(n),

P(n) := {û(t) � A2n

αn(t)ŵn}, (5.1)

where {αn}n∈N is the sequence of functions defined for all s � 0 by αn(s) =
27e−2n+4d2s1{s�tn} with {tn}n∈N the sequence defined by t0 = 0 and tn =

((log(2))/(d2))
n+1∑
j=1

2−4j for all n � 1. Notice that the sequence {tn}n∈N is increasing

and lim
n→∞ tn = log(2((1)/(15d2))) = Td which implies that for all n ∈ N, tn < Td.

Let us show that the proposition P(n) is true for n = 0.
Since, we have

u = Gu0(u), (5.2)

where Gu0(u) is given by (4.2), then after taking the Fourier transform of equation
(5.2), we deduce that for all ξ ∈ Fd,

û(ξ, t) = e−t|ξ|4 û0(ξ) −
∫ t

0

e−(t−s)|ξ|4 |ξ|2(∇̂u � ∇̂u)(ξ, s) ds. (5.3)

We notice that ∇̂u(ξ, s) = iξû(ξ, s). Since û(·, s) is supported in Fd
+, then we get

∇̂u(ξ, s) = i{ξ}+û(ξ, s) and, therefore,

− i∇̂u(ξ, s) = {ξ}+û(ξ, s). (5.4)

Since û(·, s) is non-negative, from (5.4) we get −i∇̂u(ξ, s) � 0 and, therefore, we
deduce,

(∇̂u � ∇̂u)(ξ, s) = −((−i∇̂u) � (−i∇̂u))(ξ, s)
� 0.

(5.5)

Therefore, from (5.3), we get û(ξ, t) � e−t|ξ|4 û0(ξ) which gives us û(ξ, t) �
27Ae−t|ξ|4ŵ(ξ) and then û(ξ, t) � 27Ae−24d2tŵ(ξ) since |ξ| �

√
d‖ξ‖∞ and ŵ is

supported in {ξ ∈ Fd : 1 � ξ � 2}. Hence, we get that the proposition P(0) is true.
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Let us assume that the proposition P(n) is true for a given n ∈ N.
Then, let us show that P(n + 1) will also be true.

From (5.3), since û0 = 27Aŵ � 0, we have,

û(ξ, t) � −
∫ t

0

e−(t−s)|ξ|4 |ξ|2(∇̂u � ∇̂u)(ξ, s) ds. (5.6)

Since P(n) is true, then from (5.4), we get −i∇̂u(ξ, s) � {ξ}+A2n

αn(s)ŵn(ξ).
Since ŵn is supported in {ξ ∈ Fd : 2n � ξ � 2n+1}, then we get −i∇̂u(ξ, s) �
2nA2n

αn(s)ŵn(ξ) � 0 (which means that each component of the vector is
>2nA2n

αn(s)ŵn(ξ) � 0) and, therefore, we deduce,

(∇̂u � ∇̂u)(ξ, s) = −((−i∇̂u) � (−i∇̂u))(ξ, s)
� −d(2nA2n

αn(s))2(ŵn � ŵn)(ξ)
= −d(2nA2n

αn(s))2ŵn+1(ξ).
(5.7)

Using (5.7), from (5.6), we deduce

û(ξ, t) �
∫ t

0

e−(t−s)|ξ|4 |ξ|2d(2nA2n

αn(s))2ŵn+1(ξ) ds. (5.8)

Since ŵn+1 is supported in {ξ ∈ Fd : 2n+1 � ξ � 2n+2}, then we get 22(n+1)d �
|ξ|2 � 22(n+2)d, hence from (5.8) we get,

û(ξ, t) � d2 24n+2A2n+1
ŵn+1(ξ)

∫ t

0

e−(t−s)24(n+2)d2
αn(s)2ds

= 214d2 24n+2A2n+1
ŵn+1(ξ)

∫ t

0

e−(t−s)24(n+2)d2
e−2n+5d2s1{tn�s�t}ds

� 214d2 24n+2A2n+1
ŵn+1(ξ)e−2n+5d2t1{t�tn}

∫ t

tn

e−(t−s)24(n+2)d2
ds

= 28A2n+1
ŵn+1(ξ)e−2n+5d2t1{t�tn}(1 − e−24(n+2)d2(t−tn)).

However, for all t � tn+1, we have 1 − e−24(n+2)d2(t−tn) � 1/2, since tn+1 − tn �
((log(2))/(d2)) 2−4(n+2). Then, we deduce,

û(ξ, t) � 27A2n+1
ŵn+1(ξ)e−2n+5d2t 1{t�tn+1}

= A2n+1
ŵn+1(ξ)αn+1(t).

Then, we deduce that the proposition P(n + 1) is true.
By induction, we thus deduce that for all n ∈ N and for all ξ ∈ Fd,

û(ξ, t) � A2n

ŵn(ξ)αn(t). (5.9)

Thanks to (5.9), we have for all j ∈ N, for all ξ ∈ Fd,

ϕ̂j(ξ)û(ξ, Td) � A2j

ϕ̂j(ξ)ŵj(ξ)αj(Td).

From § 3.1, we notice that ϕ̂j(ξ) � 1/2 for all ξ ∈ {ζ ∈ Fd : 2j � ζ � 2j+1} which is
the support of ŵj and moreover, ŵj is non-negative, then we deduce that for all
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ξ ∈ Fd, ϕ̂j(ξ)ŵj(ξ) � 1/2ŵj(ξ). Therefore, we infer that for all j ∈ N, for all ξ ∈ Fd,

ϕ̂j(ξ)û(ξ, Td) � 1
2
A2j

ŵj(ξ)αj(Td) � 0. (5.10)

Since for any j ∈ Z, ϕ̂j û � 0 (thanks to ϕ̂ � 0 and û � 0), then thanks to (3.1) and
(3.2), we deduce that for all j ∈ Z, Δju(0, Td) = ‖Δju(Td)‖L∞(Rd). Moreover, we
observe also that Δju(0, Td) = ‖ϕ̂j û(Td)‖L 1(Fd). Then we infer,

‖u(Td)‖Ḃσ∞,∞(Ωd) := sup
j∈Z

2jσ‖Δju(Td)‖L∞(Rd)

= sup
j∈Z

2jσ‖ϕ̂j û(Td)‖L 1(Fd).

Thanks to (5.10), we infer,

‖u(Td)‖Ḃσ∞,∞(Ωd) � 1
2

sup
j∈N

2jσA2j

αj(Td)‖ŵj‖L 1(Fd).

However, for any j ∈ N, ‖ŵj‖L1(Fd) = 1 and since for all j ∈ N, Td > tj , we get
αj(Td) = 27e−((2j+4 log(2))/(15)) = 27(e−((16 log(2))/(15)))2

j

. Then, we deduce that,

‖u(Td)‖Ḃσ∞,∞(Ωd) � 26 sup
j∈N

2jσ(Ae−((16 log(2))/(15)))2
j

.

Therefore, we deduce that if A > e((16 log(2))/(15)) = 216/15 then ‖u(Td)‖Ḃσ∞,∞(Ωd) =
∞, which yields to a contradiction and thus we conclude the proof. �

Corollary 5.2. Let d ∈ N∗. Let Ωd = Rd or Td for the periodic case. Let w be as in
theorem 5.1 and let A > 216/15. Let X be a critical space and Td := log(2((1)/(15d2))).
Then there is no mild solution u ∈ C([0, Td];X) to the cKS equation (1.3) for the
initial data u0 = 27Aw.

Proof. For the proof, we borrow some arguments used in [22]. Suppose for a con-
tradiction that there is a mild solution u ∈ C([0, Td];X). We point out that since
u0 ∈ S (Ωd) ⊂ X thanks to property (i), thanks to proposition 4.5 we get the local
existence in the time of a unique mild solution of (1.3) for the critical space X. To
get a contradiction, we need to use theorem 5.1.

In order to use theorem 5.1, we have to show that for all s ∈ [0, Td], û(s) is
a non-negative real-valued function supported in Fd

+.
The main ingredient to prove this property of the solution u is to propagate

this property from the initial data u0 to the local solution built from a fixed point
argument on some interval [0, t0], t0 > 0, identify this local solution to u thanks to
the uniqueness and re-iterate this procedure with the new initial data u(t0) and
continue until reaching the time Td.

Therefore, we begin by showing that: for any t ∈ [0, Td[, if û(t) is a non-negative
real-valued function supported in Fd

+, then there exists some ε(t) > 0 such that
for all s ∈ [t, t + ε(t)] ∩ [0, Td], û(s) is a non-negative real-valued function supported
in Fd

+.

https://doi.org/10.1017/prm.2018.54 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.54


1186 L. Agélas

Thanks to proposition 4.5, we get that for every t ∈ [0, Td[ there is a number
ε(t) > 0 depending on u(t) such that there is an unique mild solution vt ∈ C([t, t +
ε(t)],X) to equation (1.3) with vt(t) = u(t), obtained as the fixed point of the
iterated sequence {v(n)(· − t)}n∈N defined by v(0) = 0 and for all n ∈ N by

v(n+1)(σ) = Gu(t)(vn)(σ) for all σ ∈ [0, ε(t)], (5.11)

where Gu(t)(vn) is defined from (4.2). Then, after taking the Fourier transform of
(5.11), we obtain for all σ ∈ [0, ε(t)] and ξ ∈ Rd,

v̂(n+1)(ξ, σ) = e−σ|ξ|4 û(ξ, t) −
∫ σ

0

e−(σ−τ)|ξ|4 |ξ|2(∇̂v(n) � ∇̂v(n))(ξ, τ) dτ. (5.12)

Thus, if û(t) is a non-negative real-valued function supported in Fd
+ then from

equation (5.12) just above, by using an induction argument, we infer that for all n ∈
N, for all σ ∈ [0, ε(t)], v̂(n)(σ) is also a non-negative real-valued function supported
in Fd

+ which implies that for all s ∈ [t, t + ε(t)], v̂t(s) is a non-negative real-valued
function supported in Fd

+.
As a consequence of the uniqueness of the mild solutions, we get that for all

s ∈ [t, t + ε(t)[∩[0, Td], u(s) = vt(s).
Therefore, we deduce that for every t ∈ [0, Td[, if û(t) is a non-negative real-valued

function supported in Fd
+ then for all s ∈ [t, t + ε(t)] ∩ [0, Td], û(s) is a non-negative

real-valued function supported in Fd
+.

Let us show now that for all s ∈ [0, Td], û(s) is a non-negative real-valued function
supported in Fd

+.
Since u(0) = u0 = 27Aw and ŵ is a non-negative real-valued function supported

in Fd
+, then we infer that for all s ∈ [0, ε(0)] ∩ [0, Td], û(s) is a non-negative real-

valued function supported in Fd
+, where we recall that ε(0) > 0.

If ε(0) � Td, then we get that for all s ∈ [0, Td], û(s) is a non-negative real-valued
function supported in Fd

+.
Otherwise ε(0) < Td. Then, we consider the set P defined by

P := {t0 ∈]0, Td]; for all s ∈ [0, t0], û(s) � 0 and û(s) is supported in Fd
+}.

We observe that ε(0) ∈ P and, therefore, P is non empty. We thus consider t∞ :=
supP then we get ε(0) � t∞ � Td and we have also that for all s ∈ [0, t∞[, û(s) is
a non-negative real-valued function supported in Fd

+.
Let us show that t∞ = Td. For this, let us assume that t∞ < Td.
We show first that û(t∞) � 0 and û(t∞) is supported in Fd

+.
Indeed, due to the definition of t∞, there exists a sequence {tn}n∈N of elements

of P such that t∞ = lim
n→∞ tn. Since u ∈ C([0, Td];X) and S (Ωd) ⊂ X thanks to

property (i), we deduce that for all ϕ ∈ S (Ωd), 〈u(t∞), ϕ̂〉 = lim
n→∞〈u(tn), ϕ̂〉. How-

ever, for any s ∈ [0, Td], we have 〈û(s), ϕ〉 = 〈u(s), ϕ̂〉 for all ϕ ∈ S (Ωd). Then, we
infer that for all ϕ ∈ S (Ωd), 〈û(t∞), ϕ〉 = lim

n→∞〈û(tn), ϕ〉 which implies that for all

ϕ ∈ S (Ωd), ϕ � 0, 〈û(t∞), ϕ〉 � 0 due to the fact that for all n ∈ N, tn ∈ P. This
means that û(t∞) � 0 and similarly we show that û(t∞) is supported in Fd

+.
As a consequence, we get for all s ∈ [t∞, t∞ + ε(t∞)] ∩ [0, Td], û(s) is a non-

negative real-valued function supported in Fd
+, with ε(t∞) > 0. Then by gathering
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the results in italics, with t	 := min(Td, t∞ + ε(t∞)) > t∞, we thus obtain that for
all s ∈ [0, t	], û(s) is a non-negative real-valued function supported in Fd

+ and this
contradicts the definition of t∞. Then we deduce that t∞ = Td which means that
for all s ∈ [0, Td] û(s) is a non-negative real-valued function supported in Fd

+.
As a result, we finally get that for all s ∈ [0, Td] û(s) is a non-negative real-

valued function supported in Fd
+. Then by theorem 5.1, we get that u blows up

in any Triebel-Lizorkin space or Besov space, at some time smaller than Td and,
in particular, u blows up in X at some time smaller than Td, which leads to a
contradiction and then we conclude the proof. �
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1 L. Agélas. Global regularity of solutions of equation modeling epitaxy thin film growth in
R

d, d = 1, 2. J. Evol. Equ. 15 (2015), 89–106.

2 H. Bahouri, J.-Y. Chemin and R. Danchin. Fourier analysis and nonlinear partial differential
equations. Grundlehren der mathematischen Wissenschaften, vol. 343 (Springer, 2011).
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