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SUMMARY
Geometric accuracy is a critical performance factor for parallel robots, and regardless of error com-
pensation, accuracy design or tolerance allocation is another way to ensure the pose accuracy of a
robot at design stage. A general method of both geometric error modeling and accuracy design of
lower-mobility parallel mechanisms is presented. First, a general approach for error modeling of
lower-mobility parallel mechanism is proposed based on screw theory, and then the geometric errors
affecting the compensatable and uncompensatable accuracy of the end-effector are separated using
the properties of dual vector space. The pose error aroused by compensatable geometric errors can
be compensated via kinematic calibration, while the uncompensatable geometric errors should be
minimized during the manufacturing and assembly processes. Based on that, the tolerance allocation
method is presented, giving each uncompensatable geometric error a proper tolerance by the use of
reliability theory. Compared with the traditional tolerance allocation method, the advantages of the
proposed method are as follows: the number of geometric errors to be allocated is greatly reduced;
the results of serialized tolerance allocation can be obtained according to different reliability indices
of pose accuracy of end-effector for designers to choose; on the premise of guaranteeing the same
pose accuracy of end-effector, the allocated tolerances are loose and easy to realize. Finally, the pro-
posed methods are successfully applied to an R(2-RPS&RP)&UPS lower-mobility parallel robot,
and the effectiveness and practicability of the proposed method are verified.

KEYWORDS: Lower-mobility parallel mechanism; Error modeling; Accuracy design; Tolerance
allocation; Reliability theory.

1. Introduction
In recent years, there has been a high demand for large, accurate parts for several “high-growth”
industries such as aviation, railways, and shipping.1 Traditionally, a large gantry 5-axis machine tool
is used, which weighs several tons and covers a large area. Using one or more machining modules,
which can move along a long trajectory that forms the basis of the manufacturing system, is an inno-
vative approach: each module is a parallel or hybrid robot. Compared to conventional serial industrial
robots, lower-mobility parallel mechanisms have advantages in many aspects, such as accuracy, rigid-
ity, high workspace/footprint ratio, dynamic response, and flexibility. Based on that, some parallel
kinematic robots have proved useful, for instance, the Ecospeed with the Sprint Z3 head2 has been
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2174 A systematic approach for accuracy design

used for manufacturing of large aluminum alloy components, and the Tricept3 and the Exechon4 have
been used for high-speed milling, drilling, deburring, and other manipulations, either as a stand-alone
machine or as part of a movable robotized cell.

Geometric accuracy is a critical performance factor for lower-mobility parallel mechanisms, espe-
cially when relatively high precision is one of the fundamental demands.5 Regardless of kinematic
calibration,6, 7 a process when estimating the actual kinematics such that the inverse kinematic model
stored in the computerized numerical control controller can be modified, accuracy design is another
way to ensure the pose accuracy of robot in the design stage. Tolerance allocation is a process of
determining which tolerances should be allocated tight values and how much tolerance is allocated;
it depends mainly on the experience of the designer; therefore, how to obtain a more reasonable allo-
cation or to provide designers with informative guidelines for accuracy design is a challenging issue.8

Geometric error modeling is the basis of accuracy design, involving a mapping between the pose
error of the end-effector and geometric source errors. In previous years, there have been several
studies undertaken on error modeling. The most extensive approach is to use a homogeneous trans-
formation matrix or Denavit–Hartenberg (D–H) transformation matrix to describe the coordinate
transformation between each rigid body frame and its reference coordinate system,9, 10 which is based
on rigid body kinematics. The vector loop method,11, 12 product of exponentials (POE) method,13, 14

and screw method15–17 are some other useful tools for such error modeling. Most recently, a gen-
eralized Jacobian method has been approved for describing unexpected small deviations from the
ideal motions of the end-effector18 and an error modeling approach is proposed for distinguishing
the source errors affecting compensatable pose errors from those affecting uncompensatable ones.19

Inspired by this idea, a new method for error modeling of lower-mobility parallel mechanisms will be
introduced here, such that appropriate measures can be taken for accuracy improvement via accuracy
design, manufacture, and assembly, as well as by kinematic calibration.

Tolerance allocation is an important part of mechanical design of industrial robot. Tighter
tolerances often result in higher-quality components and better performance in robotics system,
but unnecessarily tight tolerances can lead to excessive manufacturing costs for specific applica-
tions.5 Minimizing manufacturing cost, which is constrained by specified allowable pose accuracy,
manufacturing feasibility, etc., is an oft-used approach for dealing with tolerance allocation. Building
upon statistical or worst-case error models, several cost-tolerance functions for minimization and
algorithms for improving computational efficiency have been proposed;20–25 however, for these tra-
ditional methods, all geometric errors are taken into consideration; thus, the allocated tolerances are
often too tight to be realized in actual engineering practice; therefore, we propose a new method
for tolerance allocation. As mentioned above, we can divide all geometric errors into two types:
those that only influence compensatable pose accuracy and those that influence uncompensatable
pose accuracy. Apparently, the latter are more significant so more attention should be paid to them
in the process of tolerance design; however, how to divide the geometric errors into the above two
groups and how to assign appropriate weights thereto for tolerance design remain unsolved problems.

After Section 1 has briefly addressed current challenges in geometric error modeling and accuracy
design of lower-mobility parallel mechanisms, Section 2 proposes an error modeling approach for
lower-mobility parallel mechanism, which allows the geometric errors affecting the compensatable
and uncompensatable pose accuracy of the end-effector to be identified. In Section 3, a tolerance
allocation approach is proposed based on the reliability theory. Finally, the proposed methods are
applied to a parallel mechanism, and Monte Carlo simulation (MCS) verifies their effectiveness in
Section 4, before conclusions are drawn in Section 5.

2. Geometric Error Modeling and Error Separation
In this section, the linear map between the pose error twist of the platform and all possible geometric
errors in joints and links will be formulated using screw theory. Geometric errors affecting the com-
pensatable and uncompensatable pose accuracy of the parallel mechanism will then be separated,
thus providing guidance for designers with which they can improve accuracy through appropri-
ate approaches, that is, component tolerance allocation in design, manufacturing and assembly
processes, and kinematic calibration.

Figure 1 shows an f -degree of freedom (DOF) parallel mechanism composed of a base and a
platform, connected by l limbs. Here, we assume that the ith limb consists of (ni + 1) links which
are serially connected by ni (i = 1, 2, · · · , l) 1-DOF joints, with at most one of them actuated.
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Fig. 1. Schematic diagram of an f -DOF parallel mechanism.
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Fig. 2. Definition of coordinate frames in limbs.

Since all limbs share the same platform, the error model of a parallel mechanism can be con-
structed from the error model of an individual limb. Therefore, we will start from the error model of
an arbitrary limb.

2.1. Error model for limbs
In this section, we have n denoted by ni for convenience. Error modeling of the n-DOF limb uses
two global reference frames K and K′. Here, K is located at point O on the base, while K′ is located
at point O ′ on the platform and remains parallel to K, as shown in Fig. 2.

The body-fixed frames K0 and Kn+1 are built to describe the geometric errors within the limb,
which can also be related to the pose accuracy of the end-link as the frames are attached to the base
and platform, respectively, and their origins are coincident with those of K and K′. Body-fixed frame
K j is attached to the jth ( j = 1, 2, · · · , n) 1-DOF joint axis with O j being the origin, the z j -axis
being the joint axis. Two consecutive frames K j−1 and K j are defined to satisfy the requirements
of the D–H method (Fig. 2). Thus, transforming K j−1 into K j requires four steps in the nominal
configuration: (1) rotate about the z j−1-axis by θ j , (2) translate along the z j−1-axis by d j , (3) translate
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along the x j -axis by a j , and (4) rotate about the x j -axis by ϕ j . It should be noted that Kn+1 can be
arbitrarily placed on the platform and Kn requires another two steps for transformation to Kn+1:
(5) translate along the zn+1-axis by de and (6) rotate about the zn+1-axis by θe. Here, subscript e is
associated with the end-link.

Let � j denote the pose error produced by the geometric errors of the jth link. Ignoring higher-
order terms in the errors, � j evaluated in K j can be expressed by

� j =
4∑

m=1

ηm, j $̂m, j , j = 1, 2, · · · , n (1)

where ηm, j and $̂m, j are unexpected small deviation of the mth (m = 1, 2, · · · , M) transformation

and the unit twist of that transformation, respectively. The detailed expressions of $̂m, j are listed in
Appendix.

Due to the particularity of the end-link, that is, the (n + 1)th link, its pose error evaluated in Kn+1

can be expressed by

�n+1 =
6∑

m=1

ηm,n+1$̂m,n+1 (2)

The detailed expressions of $̂m,n+1 are listed in Appendix.
Evaluated in global reference frame K′, the pose error of the limb, $t , can be represented as a

linear combination of Eqs. (1) and (2) of all links:

$t =
n+1∑
j=1

A j� j =
n+1∑
j=1

A j C jη j (3)

A j =
⎡
⎣R j

[
r j×

]
R j

0 R j

⎤
⎦ , C j =

[
$̂1, j · · · $̂M, j

]
, η j =

⎛
⎜⎝

η1, j
...

ηM, j

⎞
⎟⎠ , M =

{
4 j = 1, 2, · · · , n

6 j = n + 1

where A j is the adjoint transformation matrix, R j is the orientation matrix of K j with respect to
K′, and

[
r j×

]
is the skew matrix of vector r j pointing from O ′ to O j . Besides, η j is consisted of

structure errors and the ( j − 1)th joint motion error, except for η1, which is entirely composed of
structure errors of the base.

To reveal which errors can be compensated by regulating the inputs of actuated joints, Eq. (3) can
be rewritten as two terms such that the joint motion errors are separated from the structure errors:

$t = Taξ + Tcη

Ta =
[

$̂ta,2 · · · $̂ta,n+1

]
, ξ =

⎛
⎜⎜⎝

ξ2

...

ξn+1

⎞
⎟⎟⎠ , ξ j = (1 − t) η1, j + tη2, j , t =

{
0 R joint

1 P joint

Tc = [
A1C1 . . . An+1Cn+1

]
, η =

⎛
⎜⎜⎝

η1

...

ηn+1

⎞
⎟⎟⎠ (4)

η1 =

⎛
⎜⎜⎝

η1,1

...

ηM,1

⎞
⎟⎟⎠ , η j =

⎛
⎜⎜⎜⎜⎝

tη1, j

(1 − t) η2, j

...

ηM, j

⎞
⎟⎟⎟⎟⎠ , M =

{
4 j = 1, 2, · · · , n

6 j = n + 1
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where ξ j and $̂ta, j ( j �= 1) are joint motion errors along/about the ( j − 1)th joint axis and the unit
twist of that axis. Here, subscripts a and c are associated with the joint motion errors and structure
errors, respectively.

2.2. Error model for parallel mechanism
Noting that all limbs in the parallel mechanism share the same platform (Fig. 1), the pose error twist
of the parallel mechanism can then be represented as:19

$t = $t,i = Ta,iξ i + Tc,iηi , i = 1, 2, · · · , l (5)

where subscript i denotes the ith limb.
To solve the pose error twist $t from the simultaneousness in Eq. (5), the entire set of applied

wrenches exerted on the platform is taken into consideration.19

W = [Wa Wc]

Wa = [
Wa,1 · · · Wa, f

]= [
$̂wa,g1,1 · · · $̂wa,g f , f

]
Wc = [

Wc,1 · · · Wc,l
]
, Wc,i =

[
$̂wc,1,i · · · $̂wc,6−ni ,i

]
(6)

where W is composed by the basic elements of a six-dimensional vector space, which is spanned by
the entire set of applied wrenches exerted on the platform; $̂wa,gk ,k is the unit wrench of actuations

associated with the actuated joint, numbered gk , in the kth (k = 1, 2, · · · , f ) limb; and $̂wc,gi ,i is
the gi th (gi = 1, 2, · · · , 6 − ni ) unit wrench of constraints in the ith (i = 1, 2, · · · , l) limb. Here,
subscripts a and c apply to the actuations and constraints, respectively.

In the light of the properties of dual vector space developed in ref. [18], taking inner products on
both sides of Eq. (4) with each of $̂wa,ga ,k and $̂wc,gi ,i leads to

WT
a $t = �aξ a + Gaηa (7)

WT
c $t = Gcηc (8)

�a = diag
[
$̂

T

wa,gk ,k $̂ta,gk ,k

]
, Ga = diag

[
WT

a,kAk
]
, Gc = diag

[
WT

c,i Ai
]

ξ a =
⎛
⎜⎝

ξ g1,1
...

ξ g f , f

⎞
⎟⎠ , ηa =

⎛
⎜⎝

η1
...

η f

⎞
⎟⎠ , ηc =

⎛
⎜⎝

η1
...

ηl

⎞
⎟⎠

Analyses of Eqs. (7) and (8) lead to the following conclusions: related to deviations of actuated
joints ξ a , WT

a $t is compensatable by adjusting ξ a through kinematic calibration; however, the pose
error twist WT

c $t is not compensatable and ηc should therefore be strictly controlled during the design
process and minimized in the processes of manufacture and assembly.

3. Accuracy Design with Reliability Theory
In this section, a commonly used method for tolerance allocation of lower-mobility parallel
mechanisms is proposed that involves the use of reliability theory.

3.1. Reliability model for tolerance allocation
For evaluating the geometric accuracy of the mechanism, an accuracy index, �λ, should be selected
according to the use, or structural characteristics, of the mechanism which will be used as the design
index at tolerance allocation stage. Without considering the compensatable geometric errors in ηa ,
any accuracy design index �λ can be expressed as a function of the uncompensatable geometric
error vector ηc.

�λ = f (ηc) (9)

where ηc = (
ηc,1 ηc,2 · · · ηc,nc

)T
, and nc is the number of uncompensatable geometric errors.
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g(ηc)μgO

1−R

g(ηc) = 0

g(ηc) < 0 g(ηc) > 0

βσg

f (g(ηc))

Fig. 3. Physical significance of reliability index β.

The tolerance allocation result of the mechanism is considered acceptable, if index �λ is less than
a critical limit �λ∗ (accuracy design requirement). Inspired by this idea, a function of �λ can be
defined as

g(ηc) = �λ∗ − �λ = �λ∗ − f (ηc) (10)

where �λ∗ is the largest �λ allowed, g(ηc) is the performance function where ηc,i (i = 1, 2, · · · , nc)
are random variables. When g(ηc) < 0, the design is in a failure state, and the design index �λ∗
is not satisfied, whereas when g(ηc) > 0, it is in a survival state: the limit state is g(ηc) = 0 which
represents a surface in n-dimensional vector space.

In this notation, the accuracy, and its reliability, of the mechanism can be stated as follows:

R = P
{
g(ηc) > 0

}
(11)

where P{•} denotes the probability that event “•” occurs.
Let μg and σg denote the mean and standard deviation of g(ηc). The reliability index can be

defined as26

β = μg

σg
(12)

If 
(•) represents the cumulative distribution of the standard normal variable, we have26

R = 
(β) (13)

As shown in Fig. 3, β is proportional to μg and inversely proportional to σg: the higher the value
of β, the higher the reliability R. According to Eqs. (10)–(13), it can be seen that, once R or β is
given, one constraint equation with respect to ηc,i can be established, which will be useful in the
following tolerance allocation process.

3.2. Tolerance allocation with FOSM algorithm
In probability theory, the random moments of a function with random input variables can be deter-
mined by a probabilistic, first-order second-moment (FOSM) method. Here, “first-order” means that
when calculated, only the first-order term of the Taylor expansion is retained; moreover, “second-
moment” indicates that FOSM is used to calculate the variance of a target variable (g(ηc)), which
can quantify the uncertainty in a problem.

Since the elements in ηc are mutually independent, the performance function g(ηc) can be
approximated by g̃(ηc):

g̃(ηc) = g(μ) + ∇g(μ)T
(
ηc − μ

)
(14)

μ = (
μ1 μ2 · · · μnc

)T
, ∇g (μ) =

[
∂g(μ)

∂μ1

∂g(μ)

∂μ2
· · · ∂g(μ)

∂μnc

]T

where μ is the mean vector of ηc, ∂g(μ)

∂μi
is the partial derivative of g(ηc) at the mean vector μ with

respect to the ith entry of ηc, and ∇g(μ) is the gradient vector of g(ηc) at μ. The mean and variance
of g̃(ηc) can thus be determined
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μg̃ ≈ E
[
g(μ)

]= g(μ) (15)

σ 2
g̃ = V

[
g̃(μ)

]= V
[
g(μ)

]+ [∇g(μ)T
]2

V
[
ηc

]
(16)

where

V
[
ηc

]= [
V
[
ηc,1

]
V
[
ηc,2

] · · · V
[
ηc,nc

] ]T

The reliability index can then be redefined as

β = μg̃
/
σg̃ (17)

which directly describes the relationship between reliability index and the mean and variance of
the design variable ηc. In summary, according to the Taylor expansion of the performance function
g (ηc), Eqs. (15) and (16) can be used to reveal the key algorithms of the FOSM probabilistic method
and will be used in the following tolerance allocation process.

According to Eq. (16), the sensitivity of �λ with respect to ηc,i , representing the standard
deviation of �λ caused by the unit standard deviation of ηc,i , can be defined as

ωi =
∣∣∣∣∂g(ηc)

∂ηc,i

∣∣∣∣ , i = 1, 2, · · · , n (18)

Assuming that all the geometric errors in ηc have the same effect on �λ, we have

ω2
1V

[
ηc,1

]= ω2
2V

[
ηc,2

]= · · · = ω2
n V

[
ηc,nc

]
(19)

Combining Eqs. (15) to (19), the relationship between σ [ηc,i ] and β can be obtained:

σ [ηc,i ] = 1√
n

�λ∗

ωi

1

β
, i = 1, 2, · · · , nc (20)

Thus, given the reliability index β or the tolerance allocation reliability R, the allocated tolerance
of each geometric error, ±σ [ηc,i ], can be obtained.

4. An Example
Here, the proposed method is applied to a machining hybrid robot27 which is formed of a 3-DOF
positioning parallel mechanism and a 2-DOF wrist (Fig. 4). Simulations are used to verify the
effectiveness of the tolerance allocation method.

4.1. Brief description of the mechanism
The hybrid robot under investigation is used for aeronautical component manufacturing (Fig. 4):
its basic structure is the over-constrained R(2-RPS&RP)&UPS parallel mechanism. Herein, we use
P, R, U, and S to denote prismatic, revolute, universal, and spherical joints, respectively, and the
underlined P represents an actuated prismatic joint. It comprises a 6-DOF UPS spatial limb plus a
stand-alone 1T1R planar parallel mechanism, and at each side of the base link, there is a pair of R
joints connecting the properly constrained non-actuated RP limb to the machine frame. The base is
located at the rearmost R joints of the two actuated RPS limbs and the R and P joints of the RP limb
forming a three-in-one part, which is a key feature of the robot. In this section, we will focus on error
modeling and tolerance allocation of the parallel mechanism, since it forms the main body of the
hybrid robot.

4.2. Error modeling
According to the proposed modeling method (Section 2), the coordinate system of the
R(2-RPS&RP)&UPS parallel mechanism is established (Fig. 5). The transformation parameters of
adjacent frames in four limbs are listed in Tables I and II.

For this particular problem, considering the bases of the wrench sub-spaces of each limb, we have
$̂wa,ga ,k in Wa and $̂wc,gi ,i in Wc expressed as:
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Table I. D–H parameters of the ith (i = 1, 2, 3) limb.

Link j θ j,i(rad) dj,i(mm) aj,i(mm) ϕj,i(rad) de(mm) θ e(rad)

1 0 0 αbi π
/

2
2 ξ1,i+π

/
2 (1 − α) bi 0 π

/
2

3 ξ2,i + π
/

2 0 0 π
/

2
4 0 ξ3,i 0 0
5 ξ4,i + (1 − α) π/2 0 0 π

/
2

6 ξ5,i + π
/

2 0 0 π
/

2
7 ξ6,i + π

/
2 0 ei π

/
2 0 π

/
2+πα

/
2

Note: (1) if i = 1, α = 1, else α = 0;
(2) ξ j,i denotes the motion of the jth joint in the ith limb;
(3) bi and ei denote structure parameters of the base and end-link.

RP limb

RPS limb

RPS limb

UPS limb

Three-in-one part

Base

Base

2-DOF rotary spindle head

Fig. 4. 3D CAD model of the 5-DOF hybrid robot.
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3,4ẑ
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0, ix

0, iy
0, iz

Limb 1

Limb 2

Limb 3

Limb 4

O�

O

Base

End-link

(Moving platform)

Fig. 5. Configuration and coordinate frames of the R(2-RPS&RP)&UPS parallel mechanism.
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Table II. D–H parameters of the ith (i = 4) limb (the UP limb).

Link j θ j,i(rad) dj,i(mm) aj,i(mm) ϕj,i(rad) de(mm) θ e(rad)

1 0 0 0 π
/

2
2 ξ1,i+π

/
2 0 0 π

/
2

3 ξ2,i + π
/

2 0 0 π
/

2
4 0 ξ3,i 0 0 0 π

/
2

$̂wa,3,k =
(

ẑ3,k

ai × ẑ3,k

)
, k = 1,2, 3

$̂wc,1,4 =
(

0
n1,4

)
, $̂wc,2,4 =

(
ẑ2,4

−ξ 3,4ẑ3,4 × ẑ2,4

)
, $̂wc,3,4 =

(
n2,4

−ξ 3,4ẑ3,4 × n2,4

)

n1,4 = ẑ1,4 × ẑ2,4, n2,4 = ẑ1,4 × ẑ3,4

The geometric error model can then be written as

WT
a $t = �aξ a + Gaηa (21)

WT
c $t = Gcηc (22)

Taking advantage of symbolic and numerical solvers, explicit expressions for Ga , ηa in Eq. (21)
and Gc, ηc in Eq. (22) can be derived as

Ga = diag
[
Ga,k

]
, ηa = (

ηT
a,1 ηT

a,2 ηT
a,3

)T

Ga,i = (−bi sξ2,i cξ1,i cξ2,i − cξ2,i sξ1,i sξ2,i cξ2,i 1 cξ5,i sξ5,i − cξ5,i sξ6,i cξ5,i cξ6,i − ai sξ5,i
)
, i = 1

ηa,i = (
δθ1,i δd1,i δa1,i δd2,i δa2,i δd5,i δa6,i δd7,i δa7,i δde,i δθe,i

)T
, i = 1

Ga,i = (−bi sξ1,i cξ2,i cξ1,i cξ2,i − sξ1,i cξ2,i − bi cξ1,i cξ2,i sξ2,i cξ2,i 1 cξ5,i sξ5,i

−cξ5,i sξ6,i cξ5,i cξ6,i − ai sξ5,1
)
, i = 2, 3

ηa,i = (
δθ1,i δd1,i δa1,i δϕ1,i δd2,i δa2,i δd5,i δa6,i δd7,i δa7,i δde,i δθe,i

)T
, i = 2, 3

Gc = [
GT

c1 GT
c2 GT

c3

]T

Gc1 = (
cξ1,4 0 0 − sξ1,4 0 0 1 0 0 − sξ2,4 cξ2,4 0 − sξ2,4 cξ2,4

)
Gc2 = (

0 sξ1,4 cξ1,4 0 0 0 0 1 0 0 0 0 ξ3,4 0
)

Gc3 = (
0 − cξ1,4 sξ2,4 sξ1,4 sξ2,4 0 cξ2,4 − sξ2,4 0 0 1 0 0 1 0 0

)
ηc = (

δθ1,4 δd1,4 δa1,4 δϕ1,4 δd2,4 δa2,4 δϕ2,4 δd3,4 δa3,4 δϕ3,4 δθ4,4 δa4,4 δϕ4,4 δθe,4
)T

Here, “s·” and “c·” denote “sin(·)” and “cos(·)”, and subscript e refers to the error element of the
end-link.

As proved elsewhere,19 one geometric error is uncompensatable, if, and only if, it meets the
following two conditions simultaneously: (1) it is an error of an under-constrained or properly
constrained limb and (2) its projection on the twist sub-space of restrictions is non-zero. For the
lower-mobility parallel mechanism under investigation, limbs 1, 2, and 3 are non-constrained limbs,
and limb 4 is a properly constrained non-actuated limb. Therefore, only the geometric errors in limb 4
are uncompensatable.
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Fig. 6. The task space of the R(2-RPS&RP)&UPS mechanism within the 5-DOF hybrid robot.

4.3. Error analysis and tolerance allocation
Considering the detailed nature of the structure of this mechanism, the intersection P of the two
mutually vertical axes of the 2-DOF rotary head is selected as the reference point, and its volumetric
error is defined as the accuracy design index:

�λ = ‖�r + �θ × l‖ (23)

where �r and �θ are position and orientation error vectors of the moving platform which arose from
ηc alone, and l is the position vector from O ′ to P . Since �λ covers both positional and orientational
information of the parallel mechanism, �λ is reasonable and effective for tolerance design purposes.

Theoretically, the relationship between �λ and ηc changes with the movement of the mechanism:
in other words, �λ is a function that depends on ηc and rP , the position vector of P measured in
frame O (Fig. 6).

�λ = f (rP , ηc) (24)

To ensure the validity of the tolerance allocation method throughout the task space, one special rP

should be determined to make �λ most sensitive to ηc. For this purpose, MCS, which is a method
used to solve complex problems using random numbers and probability, is adopted by following
these steps:

Step 1: Select m = 147 evenly spaced sample points rP, j ( j = 1, 2, · · · , m) in the whole task space
(Fig. 6);

Step 2: Assume that every geometric error in ηc obeys the standard normal distribution,
ηc,i ∼ N (0, 1), and generate random value of ηc,i based on its probability distribution
(i = 1, 2, · · · , nc);

Step 3: Substitute ηc,i and rP, j into the function �λ = f (rP , ηc) to obtain a set of random �λ j

( j = 1, 2, · · · , m);
Step 4: With the calculation repeated 104 times, estimate the standard deviation of �λ j , σ [�λ j ];
Step 5: Find the largest σ [�λ j ], and the corresponding rP, j is the desired position.

The simulation resulting from the aforementioned process is shown in Fig. 7, where the radius
of each error sphere denotes the standard deviation of �λ j at the jth sample point. It can be found
that σ [�λ j ] is more sensitive to changes in the x-coordinate. The position with the largest standard

deviation of �λ j is rP,32 = (−600 0 1000
)T

mm and σ [�λ32] = 0.96 µm. In the view of proba-
bility, rP,32 has the highest possibility of being the position of maximum volumetric error over the
whole task space. Therefore, it is reasonable to choose rP,32 for the following sensitivity analysis and
tolerance allocation.
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The sensitivities of geometric errors in ηc given by Eq. (18) are calculated and shown in Fig. 8.
It can be seen that ηc,i (i = 1, 4, 7, 10, 11, 14) has some effect on �λ, while ηc,5(δd2,4), ηc,9(δa3,4)
and ηc,12(δa4,4) exert significant influences on �λ, which should therefore be restricted in accuracy
design.

Since the hybrid robot composed of this R(2-RPS&RP)&UPS parallel mechanism is used for
machining and expected to reach the accuracy level of mid-range numerical control machine tools,
the design index �λ∗ is chosen to be 0.05 mm. Given the reliability index β varies from 0.5 to 3.0,
the reliability R and the allocated tolerance ±σ [ηc,i ] of each uncompensatable geometric error can
be obtained using Eqs. (14) and (20). The tolerance allocation results are listed in Table III. It can be
seen that, when β = 2.0, the reliability R reaches 97.72%, which can meet the reliability requirement
for accuracy design of this mechanism. In this case, the tolerances of all uncompensatable geometric
errors are determined.

4.4. Verification
Mechanism performance is considered acceptable, if the design index �λ, the volumetric error of the
reference point on the platform, is less than a critical limit �λ∗. The accuracy reliability R represents
the probability that the index �λ lies within a specified limit �λ∗ for all points in the workspace. In
consideration of this, MCS is adopted to verify the effectiveness of the tolerance allocation results:

Step 1: Randomly select one point (xi , yi , zi ) within the whole task space;
Step 2: Assume that the tolerance τi corresponding to the ith error element ηc,i

(i = 1, 2, · · · , nc) follows a uniform distribution on the interval [−σ [ηc,i ], σ [ηc,i ]],28

τi ∼ U [−σ [ηc,i ], σ [ηc,i ]] and generate τi based on its probability distribution;
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Table III. Tolerance allocation results for uncompensatable geometric errors.

Reliability index β 0.5 1.0 1.5 2.0 2.5 3.0

Reliability R (%) 69.14 84.13 93.32 97.72 99.38 99.87

No. Allocated tolerance values (unit: mm)

Allocated tolerances (±σ [ηc,i ])
of all the uncompensatable
geometric errors

1 ±3.271 ±1.635 ±1.090 ±0.818 ±0.654 ±0.545
2 ±0.512 ±0.256 ±0.171 ±0.128 ±0.102 ±0.085
3 ±0.325 ±0.163 ±0.108 ±0.081 ±0.065 ±0.054
4 ±11.854 ±5.927 ±3.951 ±2.963 ±2.371 ±1.976
5 ±0.136 ±0.068 ±0.045 ±0.034 ±0.027 ±0.023
6 ±0.529 ±0.265 ±0.176 ±0.132 ±0.106 ±0.088
7 ±3.133 ±1.566 ±1.044 ±0.783 ±0.627 ±0.522
8 ±0.334 ±0.167 ±0.111 ±0.083 ±0.067 ±0.056
9 ±0.130 ±0.065 ±0.043 ±0.032 ±0.026 ±0.022
10 ±9.639 ±4.819 ±3.213 ±2.410 ±1.928 ±1.606
11 ±3.366 ±1.683 ±1.122 ±0.842 ±0.673 ±0.561
12 ±0.130 ±0.065 ±0.043 ±0.032 ±0.026 ±0.022
13 ±0.428 ±0.214 ±0.143 ±0.107 ±0.086 ±0.071
14 ±3.366 ±1.683 ±1.122 ±0.842 ±0.673 ±0.561
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Fig. 9. Illustration of failure/safe samples within the whole task space.

Step 3: Estimate the volumetric error �λ using inverse kinematics and the error model;
Step 4: Repeat steps 1 through 3 104 times, analyze the statistical characteristics of �λ, and predict

the accuracy reliability R.

In Fig. 9, 104 simulated samples of �λ are plotted along with a sphere of radius equal to the
critical limit of volumetric error, �λ∗ = 50 µm. Thus, all cases of �λ > �λ∗ represent failures of
the mechanism which cannot meet the specified pose accuracy. As shown in Fig. 10, the histogram
illustrates the distribution of the simulated �λ values. Consequently, the mean �λ and its standard
deviation are 21.97 and 9.42 µm, respectively, and only 1.13% of samples fall into the failure region,
so that is to say, the reliability R reaches 98.87% for this tolerance allocation problem, which proves
the effectiveness of the proposed approach.

4.5. Comparison with traditional method
In the traditional tolerance allocation method, all geometric errors (ηa and ηc) are analyzed and
allocated together. The allocated tolerances are often too tight to be realized in engineering practice,

https://doi.org/10.1017/S0263574720000028 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000028


A systematic approach for accuracy design 2185

Table IV. Number of geometric errors.

Number Geometric errors Variable Limb

1, . . . , 14 δθ1,4, δd1,4, δa1,4, δϕ1,4, δd2,4, δa2,4, δϕ2,4, δd3,4, δa3,4, ηc 4
δϕ3,4, δθ4,4, δa4,4, δϕ4,4, δθe,4

15, 16, 17 ξa,1, ξa,2, ξa,3 ξ a 1,2,3

18, . . . , 28 δθ1,1, δd1,1, δa1,1, δd2,1, δa2,1, δd5,1, δa6,1, δd7,1, δa7,1, ηa,1 1
δde,1, δθe,1

29, . . . , 40 δθ1,2, δd1,2, δa1,2, δϕ1,2, δd2,2, δa2,2, δd5,2, δa6,2, δd7,2, δa7,2, ηa,2 2
δde,2, δθe,2

41, . . . , 52 δθ1,3, δd1,3, δa1,3, δϕ1,3, δd2,3, δa2,3, δd5,3, δa6,3, δd7,3, δa7,3, ηa,3 3
δde,3, δθe,3
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Fig. 10. Frequency distribution histogram of the evaluated volumetric error �λ.

since too many geometric errors have to be taken into consideration. However, in the light of the new
modeling and tolerance allocation method proposed here, all geometric errors can be separated into
two groups ηa and ηc. Only uncompensatable error vector ηc should be considered in the tolerance
allocation process, and this can be minimized in the processes of manufacture and assembly, since the
pose error twist WT

a $t aroused by ηa can be compensated by adjusting ξ a with kinematic calibration
such that:

ξ a = −�−1
a Gaηa (25)

To compare these two methods, the same analysis and allocation simulations are carried out using
traditional method with the same indices �λ∗ = 50 µm and R = 97.72%. The tolerance allocation
results considering all geometric errors are shown in Fig. 11, and the sequence numbers of geometric
errors are listed in Table IV. In Fig. 11, the red area on the left and the green area on the right represent
the tolerance allocation results of uncompensatable and compensatable geometric errors obtained by
traditional methods, respectively. Due to the great difference of each data, the larger values in the
graph are directly represented by numbers above the graph. The geometric errors with the value of
+8 have no effect on the accuracy design index, and the tolerance design values can be determined
according to the experience or manufacturing capacity. Compared with the results obtained by the
new method (as listed in Table 3 under the column containing the value R = 97.72%), it can be seen
that (1) on the premise of ensuring that the pose accuracy meets the design requirements with the
same reliability, the tolerances obtained by the traditional method are tighter; thus, more manufac-
turing costs are required to ensure these tolerances; (2) for the traditional method, several geometric
errors with extremely strict tolerances, such as ξa,i , δθ1,i , and δd5,i , can hardly be realized in practi-
cal manufacturing processes. Therefore, the proposed method is more practical and reasonable than
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Fig. 11. Tolerance allocation results of all geometric errors using the traditional method.

the traditional one when dealing with the problem of tolerance allocation for robotized machine
tools.

5. Conclusions
This paper presents a general method for geometric error modeling and accuracy design of lower-
mobility parallel mechanisms. The following conclusions can be drawn:

1. The proposed error modeling approach is general and systematic, and allows the geometric errors
affecting the compensatable and uncompensatable pose accuracy of the end-effector to be sepa-
rated. The geometric errors that affect the uncompensatable pose error of the mechanism should
be minimized during the processes of design, manufacture, and assembly.

2. The proposed tolerance allocation approach is efficient and accurate, giving each uncompen-
satable geometric error an appropriate tolerance based on reliability theory, which can ensure
that the pose accuracy satisfies the required index over the whole workspace with any given
probability.

3. The proposed methods have been successfully applied to a hybrid machining robot, which is
composed of an R(2-RPS&RP)&UPS lower-mobility parallel mechanism, and the effectiveness
thereof is verified by MCS.
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Appendix
For the jth link ( j = 1, 2, · · · , n),

$̂1, j =
[−a j x̂ j × ẑ j−1

ẑ j−1

]
, $̂2, j =

[
ẑ j−1

0

]
, $̂3, j =

[
x̂ j

0

]
, $̂4, j =

[
0

x̂ j

]

x̂ j =
⎛
⎜⎝

1

0

0

⎞
⎟⎠ , ẑ j−1 =

⎛
⎜⎝

0

sin ϕ j

cos ϕ j

⎞
⎟⎠

where x̂ j (ẑ j−1) is the nominal unit vector of the x j (z j−1)-axis.
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For the end-link (the (n+1)th link),

$̂1,n+1 =
[−an+1û × ẑn

ẑn

]
, $̂2,n+1 =

[
ẑn

0

]
, $̂3,n+1 =

[
û

0

]
, $̂4,n+1 =

[−de ẑn+1 × û

û

]
,

$̂5,n+1 =
[

ẑn+1

0

]
, $̂6,n+1 =

[
0

ẑn+1

]

ẑn =
⎛
⎜⎝

0

sin ϕn+1

cos ϕn+1

⎞
⎟⎠ , ẑn+1 =

⎛
⎜⎝

0

0

1

⎞
⎟⎠ , û =

⎛
⎜⎝

sin θe

cos θe

0

⎞
⎟⎠

where û is the nominal unit vector of the x-axis in the transition frame (see Fig. 2).
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