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Convergence of equilibria for bending-torsion
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We prove that, in the limit of vanishing thickness, equilibrium configurations of
inhomogeneous, three-dimensional non-linearly elastic rods converge to equilibrium
configurations of the variational limit theory. More precisely, we show that, as
h↘ 0, stationary points of the energy Eh, for a rod Ωh ⊂ R

3 with cross-sectional
diameter h, subconverge to stationary points of the Γ-limit of Eh, provided that the
bending energy of the sequence scales appropriately. This generalizes earlier results
for homogeneous materials to the case of materials with (not necessarily periodic)
inhomogeneities.
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1. Introduction

The derivation of asymptotic models for two or three-dimensional elastic objects by
lower-dimensional models has a long history, going back as far as to Bernoulli [3]
and Euler [7]. Both considered thin rods but starting from a two-dimensional model
instead of the three-dimensional one, as we study here. Since then a multitude of
such models has been proposed, some incompatible with each other, as they usually
depend on strong a priori assumptions. An in-depth study of the early history can
be found in [13].

We start with the nonlinear three-dimensional model: Let Ωh ⊂ R
3 be the refer-

ence configuration of a thin elastic body, with ‘thickness’ h > 0. The stored elastic
energy of a deformation y : Ωh → R

3 is then given by

Eh(y) :=
∫

Ωh

W (∇y(x)) dx,

where W is the stored energy density ; typical assumptions on W are similar
to (M1) –(M3), stated in § 2.2. We are interested in the limiting behaviour of Eh as
h↘ 0. One of the first results in terms of Γ-convergence were for sets of the form
Ωh := ω × (−h, h) with ω ⊂ R

2. Roughly speaking Γ-convergence is equivalent to
the convergence of global minimizers yh of Eh, possibly perturbed by a force term,
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to global minimizers of some limiting energy. For example in [12] the theory for
membranes, that is, the limit for h−1Eh was obtained, in [8] the bending theory
for plates, that is, for h−3Eh, has been studied. The latter result contains, as a
special case, the model proposed by Bernoulli and Euler. Further scalings h−αEh

were later studied in [9]. In this present paper, we study rods with small cross-
sectional diameter. So in our case, the reference configuration is Ωh := (0, L) × hω
for some L > 0 and ω ⊂ R

2. The bending-torsion theory for rods, that is, the Γ-limit
for h−3Eh was obtained by [15]. Under the additional assumption of a linear stress
growth, the result was strengthened in [16] by proving that also stationary points
yh of Eh subconverge to stationary points of the Γ-limit.

All the previous mentioned results were obtained in the case of a single, homoge-
neous material. In [18] the first Γ-convergence result for a rod in this regime, that
is, h−3Eh, with inhomogeneities was proved. This was done under the assumption
that the inhomogeneity was periodic, rapidly oscillating and only depending on the
‘in-plane’ variable x1 ∈ (0, L). All these additional assumptions can be dropped, as
was shown in [14]. In the present paper, we extend the result of [14] by showing
that also stationary points subconverge to stationary points of the Γ-limit.

In [5] the more linear case of h−5Eh, called the von Kármán model, was studied,
and Γ-convergence and convergence of stationary points was proved. This result,
and the one presented here, heavily depend on methods developed in [14,20].

Now we turn to the precise mathematical description. Let L > 0 and let ω ⊂ R
2

be open, bounded, connected. The (scaled) energy of a non-homogeneous rod with
length L and cross-section hω and external forces g ∈ L2((0, L), R

3), deformed by
ỹ : [0, L] × hω → R

3, is given by

Ẽh(y) :=
1
h4

∫
(0,L)×hω

Wh

(
x1,

x′

h
,∇y(x)

)
dx− 1

h2

∫
(0,L)×hω

g(x1) · y(x) dx.

The hypotheses on the elastic energy density Wh : (0, L) × ω × R
3×3 → [0, ∞)

are listed in § 2.2. We perform the usual change of variables (x1, x2, x3) �→
(x1, hx2, hx3). Then the rod Ωh is transformed to Ω := Ω1, the deformation ỹ
becomes y : [0, L] × ω → R

3 and the energy transforms to

Eh(y) :=
1
h2

∫
(0,L)×ω

Wh(x,∇hy(x)) dx−
∫

(0,L)×ω

g(x1) · y(x) dx, (1.1)

where ∇h = (∂1, (1/h)∂2, (1/h)∂3). As already mentioned, in [14] the Γ-
convergence of Eh along a subsequence to a limiting functional E0 was proved.
This limit is given by

E0(y, d2, d3) :=

{∫ L

0
Q0

1(x1, R
T(x1)R′(x1)) − g(x1) · y(x1) dx1 if (y, d2, d3) ∈ A,

∞ else,
(1.2)
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where Q0
1 is a quadratic form in the second argument, which will be introduced in

proposition 2.4; the class of limiting deformations A is given by

A := {(y, d2, d3) ∈W 2,2((0, L),R3) ×W 1,2((0, L),R3) ×W 1,2((0, L),R3) :

(y′ | d2 | d3) ∈W 1,2((0, L),SO(3))},
(1.3)

and R = (y′ | d2 | d3) is the rotation associated with (y, d2, d3).

Formally, the first variation of the energy functional Eh in direction ψ : [0, L] ×
ω → R

3 is given by

DEh(y)[ψ] :=
1
h2

∫
(0,L)×ω

DWh(x,∇hy(x)) : ∇hψ dx−
∫

(0,L)×ω

g(x1) · ψ(x) dx.

(1.4)
For the first integral to be well-defined, however, we need to impose a strong growth
condition on DWh (see (M3) in § 2.2). Deformations y satisfying DEh(y)[ψ] = 0
for all test functions ψ are said to be stationary points. If we impose the bound-
ary condition y(0, x′) = (0, hx′) for x′ ∈ ω, then the natural class of test functions
are smooth maps, which vanish on {0} × ω; we denote this class by C∞

bdy(Ω, R
3).

Another notion of stationary points exists, introduced by J. Ball in [1], which
requires a significant weaker condition on DW , allowing for physical growth, that
is, W (F ) → ∞ if detF ↘ 0 and W (F ) = ∞ if detF � 0. In [6] the convergence
of such stationary points for the von Kármán rod (for homogeneous materi-
als) was shown. Due to the highly inhomogeneous material, we will need the
stronger growth condition. Regardless of the notion of stationarity, and even for
homogeneous materials, the existence of stationary points is a subtle issue, see
[2, §§ 2.2, 2.7].

For α, β, M positive constants with α � β we denote by W(α, β, M) the set of
admissible density functions Wh; the precise definition of the class W(α, β, M) is
given by (S1) –(S3) in § 2.2. We can now state the main result of this paper:

Theorem 1.1. Let (Wh) ⊂ W(α, β, M), g ∈ L2((0, L), R
3). Let (yh) ⊂W 1,2

(Ω, R
3) satisfy yh(0, x′) = (0, hx′) on {0} × ω for all h > 0 in the trace sense.

Assume, in addition, that

lim sup
h↘0

1
h2

∫
Ω

Wh(x,∇hy
h(x)) dx <∞. (1.5)

Let (hl) ⊂ (0, ∞) be a converging sequence with limit 0, such that Ehl , given in (1.1)
has the Γ-limit E0, given in (1.2).

Assume in addition, that for all l ∈ N the deformation yhl satisfies

DEhl(yhl)[ψ] = 0 for all ψ ∈ C∞
bdy(Ω,R

3).

Then there exists a (not relabelled) subsequence and (y, d2, d3) ∈ A, such that yhl →
y strongly in W 1,2(Ω, R

3) as l → ∞, and

lim
l→∞

∇hy
hl = (y′ | d2 | d3) strongly in L2(Ω,R3×3).
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Furthermore, y(0) = 0, dk(0) = ek for k = 2, 3, and (y, d2, d3) is a stationary point
of E0.

Remark 1.2. The trivial deformation yh(x) = (x1, hx
′) has no stored elastic energy

and satisfies the boundary condition yh(0, x′) = (0, hx′). Hence an application of
Poincaré’s inequality shows that (1.5) holds automatically for a minimizing sequence
(yh) of Eh.

Remark 1.3. The theorem also holds true for more general forces g̃ ∈ L2(Ω, R
3).

In this case, the forces in the limiting energy must be replaced by the mean of g̃ on
ω, that is, by

∫
ω
g(·, x′) dx′. The more general statement can be proved identically,

up to a few additional error terms, but which converge trivially to zero for h↘ 0.

The proof of theorem 1.1 is split into two main parts. For the first one, we
follow closely the paper [16], where the corresponding result for the homogeneous
rod was proved. Their methods for studying the stress can also be applied, with
minor modifications, in the more general case considered here. Furthermore, we use
additional cancellation effects, which simplifies parts of their proof. To conclude
their proof they exploit an explicit, linear relationship between the limiting stress
and strain, which allows to easily identify the limit equations. In the inhomogeneous
case addressed here, such a relationship is less clear and the identification of the
limit equation is more involved. Thus for the second part, we apply results and
methods developed in [5] to identify the limit equation and conclude the proof.

2. Preliminaries

2.1. Notation

Let x = (x1, x
′) ∈ R

3, and let p(x) = (0, x′) ∈ R
3 be the projection of x onto

{0} × ω. Let (ei)
3
i=1 be the standard basis of R

3. For A ∈ R
3×3 let tr(A) be the

trace of A, and for A, B ∈ R
3×3 let A : B := tr(ATB) be the inner product of

R
3×3. By v · w we denote the inner product for v, w ∈ R

3. Let the twist function t
be given by

t : L1(Ω) × L1(Ω) → L1(0, L), t(φ, ψ)(x1) =
∫

ω

x3φ(x1, x
′) − x2ψ(x1, x

′) dx′.

We denote by ι : R
3 → R

3×3 the natural inclusion ι(v) = v ⊗ e1, by axl : R
3×3
skew →

R
3 the axial vector axl(A) = (−A23, A13, −A12) and by id3×3 we denote the 3 ×

3 identity matrix. By ()′ we denote the derivative with respect to x1, by ∇ =
(∂1, ∂2, ∂3) the gradient with respect to x and for every h > 0 we define the scaled
gradient as ∇h = (∂1, (1/h)∂2, (1/h)∂3). Finally, we define the function spaces

C∞
bdy([0, L]) := {f ∈ C∞([0, L]) | f(0) = 0};

W 1,2
bdy([0, L]) := {f ∈W 1,2([0, L]) | f(0) = 0};

and

C∞
bdy(Ω) := {f ∈ C∞(Ω) | f = 0 on {0} × ω};

W 1,2
bdy(Ω) :=

{
f ∈W 1,2(Ω) | f = 0 on {0} × ω in the trace sense

}
.
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2.2. The nonlinear bending-torsion theory for beams

Let L > 0 and let ω ⊂ R
2 be an open, bounded, connected Lipschitz domain such

that L2(ω) = 1, and such that ω is centred, that is, ω satisfies∫
ω

x2x3 dx2 dx3 =
∫

ω

x2 dx2 dx3 =
∫

ω

x3 dx2 dx3 = 0. (2.1)

The reference domain Ω ⊂ R
3 is given by Ω = (0, L) × ω. The assumption on the

elastic energy density W are as follows:
Let α, β, M be positive constants with α � β. The class W(α, β, M) contains

all differentiable functions W : R
3×3 → [0, ∞) that satisfy:

(M1) Frame indifference: W (RF ) = W (F ) for all F ∈ R
3×3 and R ∈ SO(3).

(M2) Non-degeneracy and continuity:

α dist2(F,SO(3)) � W (F ) � β dist2(F,SO(3)) for all F ∈ R
3×3.

In particular, this implies the minimality at the identity, that is, W (id3×3) =
0.

(M3) Linear stress growth: Let DW be the derivative of W . Then

|DW (F )| � M(|F | + 1) for all F ∈ R
3×3.

Remark 2.1. The condition (M3) is already needed for the first term in the first
variation of Eh, given in (1.4), to be well-defined. Hence the growth condition
appears in a similar form also in [16,17]. But it is not needed to prove the Γ-
convergence, for example, the result in [14]. In this case, the upper bound (M2) is
also only needed locally, that is,

∃ρ, β′ > 0 : W (F ) � β′ dist2(F,SO(3)) for all F ∈ R
3×3 with dist(F,SO(3)) � ρ.

It is, however, easily seen that this local upper bound together with linear stress
growth implies the global estimate (M2) for some β > 0.

Let now α, β, M be as above. A family of energy densities (Wh)h>0, W
h : Ω ×

R
3×3 → [0, ∞) describes an admissible composite material of class W(α, β, M) if

for every h > 0 it holds:

(S1) Wh is a Borel function on Ω × R
3×3.

(S2) Wh(x, ·) ∈ W(α, β, M) for almost every x ∈ Ω.
(S3) There exist a monotone function r : [0, ∞] → [0, ∞] and quadratic forms

Qh : Ω × R
3×3 → [0, ∞) such that r(ε) ↘ 0 as ε↘ 0 and

ess sup
x∈Ω

|Wh(x, id3×3 +G) −Qh(x,G)| � r(|G|)|G|2 for all G ∈ R
3×3.

Let (Qh) be the family of corresponding quadratic forms associated with a fam-
ily (Wh) ⊂ W(α, β, L). Then for every h > 0 we easily obtain, that Qh is a

https://doi.org/10.1017/prm.2018.109 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.109


238 M. Pawelczyk

Carathéodory function, which for almost every x ∈ Ω satisfies

α|symF |2 � Qh(x, F ) = Qh(x, symF ) � β|symF |2 for all F ∈ R
3×3,

|Qh(x, F1) −Qh(x, F2)| � β|symF1 − symF2|
· |symF1 + symF2| for all F1, F2 ∈ R

3×3.
(2.2)

Let A
h denote the linear, symmetric, positive semidefinite operator associated with

the quadratic forms Qh. In particular, Qh(F ) = (1/2)AhF : F for all F ∈ R
3×3.

In [16, proposition 4.1] the following compactness result was proved:

Proposition 2.2. Let (uh) ⊂W 1,2(Ω, R
3) be a sequence satisfying

lim sup
h↘0

1
h2

∫
Ω

dist2
(∇hu

h,SO(3)
)
dx <∞. (2.3)

Then there exists a constant C > 0, depending only on the domain Ω, and a sequence
(Rh) ⊂ C∞([0, L], SO(3)), such that

‖∇hu
h −Rh‖L2(Ω) � Ch, (2.4)

‖(Rh)′‖L2(0,L) + h‖(Rh)′‖L2(0,L) � C (2.5)

for every h > 0. If, in addition, uh = hp on {0} × ω in the trace sense, then

|Rh(0) − id3×3| � C
√
h. (2.6)

The following observations are standard, and follow the approach taken in [16]:
Let (yh) be the sequence of deformations satisfying the assumptions of

Theorem 1.1. The non-degeneracy assumption (M2) implies that (yh) satisfies (2.3).
Thus, by the previous proposition, there exists a sequence (Rh) satisfying (2.4)
and (2.5). By using the frame indifference of Wh we have that

Wh(·,∇hy
h) = Wh(·, (Rh)T∇hy

h) = Wh

(
·, id3×3 +h

(Rh)T∇hy
h − id3×3

h

)
= Wh

(·, id3×3 +hGh
)
,

where we introduced

Gh =
(Rh)T∇hy

h − id3×3

h
. (2.7)

Estimate (2.4) implies that (Gh) is uniformly bounded in L2(Ω). We define zh

implicitly by introducing the ansatz

yh(x) =
(∫ x1

0

Rh(s)e1 ds
)

+ hx2R
h(x1)e2 + hx3R

h(x1)e3 + hzh(x). (2.8)

We plug this ansatz into (2.7), and obtain

Gh =
(Rh)T∇hy

h − id3×3

h
= ι
(
Ahp

)
+ (Rh)T∇hz

h, (2.9)
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where we introduced Ah := (Rh)T(Rh)′. Clearly, (Ah) is uniformly bounded in
L2(I), and since (Gh) is uniformly bounded in L2(Ω), the sequence (∇hz

h) is
uniformly bounded in L2(Ω). Furthermore, on {0} × ω we have the boundary condi-
tions yh(x) = hx2e2 + hx3e3, and thus also we can assume (2.6) holds. With this we
obtain |zh| � C

√
h on {0} × ω. Hence Poincaré’s inequality implies that (zh) is uni-

formly bounded in W 1,2(Ω). Thus, after extracting a subsequence (not relabelled),
we have in L2 the weak convergences

Gh ⇀ G, Ah ⇀ A and (Rh)T∇hz
h ⇀ R(∂1z | q2 | q3)

for some G ∈ L2(Ω, R
3×3), z ∈W 1,2(Ω, R

3), A ∈ L2((0, L), R
3×3
skew ) and q2, q3 ∈

L2(Ω, R
3). The uniform L2 bound on ((1/h)∂2z

h, (1/h)∂3z
h) implies that z does

not depend on x2, x3. Thus passing to the limit in (2.9) we obtain

G(x) = ι
(
RT(x1)∂1z(x1) +A(x1)p(x)

)
+RT(x1)(0 | q2(x) | q3(x)).

For brevity, we set p := RT∂1z ∈ L2((0, L), R
3).

Next, we focus on symGh. In [14, proof of theorem 2.15] sequences (vh) ⊂
W 1,2(Ω, R

3), (Ψh) ⊂W 1,2((0, L), R
3×3
skew ) and oh ⊂ L2(Ω, R

3×3) were constructed,
such that

symGh = sym ι
(
Ap + p1e1

)
+ sym ι

(
(Ψh)′p

)
+ sym∇hv

h + oh,

and such that (∇hv
h) is uniformly bounded in L2(Ω), and Ψh ⇀ 0 in W 1,2(0, L),

vh ⇀ 0 in W 1,2(Ω) and oh → 0 strongly in L2(Ω).

We define the fixed part md by

md := Ap + p1e1 (2.10)

and the corrector sequence (ψh) by

ψh(x) = Ψhp − 1
h

(
Ψ̂h

12e2 + Ψ̂h
13e3

)
+ vh, (2.11)

where Ψ̂h(x1) =
∫ x1

0
Ψh(s) ds. Direct calculation yields

∇hψ
h =

(
(Ψh)′p − 1

hΨh
12e2 − 1

hΨh
13e3,

1
hΨhe2,

1
hΨhe3

)
+ ∇hv

h,

as well as

sym∇hψ
h = sym ι

(
(Ψh)′p

)
+ sym∇hv

h. (2.12)

Thus we have that

symGh = sym ι
(
md

)
+ sym∇hψ

h + oh, (2.13)

with easily verifiable strong convergences

(ψh
1 , hψ

h
2 , hψ

h
3 ) → 0 in L2(Ω,R3) and t(ψh

2 , ψ
h
3 ) → 0 in L2(0, L).
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2.3. The Γ-limit

We will briefly introduce the variational approach developed in [14], with which
the Γ-convergence for the inhomogeneous rod was proved. A similar variational
approach for thin elastica was used earlier in [4] for the membrane model. The
approach was also already adapted and used in [5] to show the convergence of
stationary points for the inhomogeneous von Kármán rod.

By applying the frame indifference (M1) and Taylor expansion (S3) we obtain

1
h2
Wh(·,∇hy

h) =
1
h2
Wh

(·, id3×3 +hGh
)

≈ 1
h2
Qh(·, hGh) = Qh(·, Gh) = Qh(·, symGh).

(2.14)

This motivates, together with the decomposition (2.13), the definitions

K−
(h)(m,O) := inf

{
lim inf

h↘0

∫
O×ω

Qh(x, ι(m) + ∇hψ
h) dx

}
,

K+
(h)(m,O) := inf

{
lim sup

h↘0

∫
O×ω

Qh(x, ι(m) + ∇hψ
h) dx

}
,

where we take the infimum over all sequences (ψh) ⊂W 1,2(O × ω, R
3), such that

(ψh
1 , hψ

h
2 , hψ

h
3 ) → 0 strongly in L2(O × ω,R3) and t(ψh

2 , ψ
h
3 ) → 0 in L2(O).

It is proved in [14, lemma 2.6] that there exists a subsequence, still denoted by
(h), such that:

∀m ∈ L2(Ω,R3),∀O ⊂ [0, L] open : K(h)(m,O) := K−
(h)(m,O) = K+

(h)(m,O).
(2.15)

This can be done by extracting a diagonal sequence such that K−
(h) and K+

(h) agree
on a dense, countable subset of L2 and of open subsets of (0, L). Utilizing the
continuity of the maps L2(Ω, R

3) → R, m �→ K−
(h)(m, O), m �→ K+

(h)(m, O) for any
open set O ⊂ (0, L), proved in [14, lemma 2.5], it is then easy to see that (2.15)
holds.

We now introduce the relaxation sequence and state its most important
properties, which were proved in [5,14]:

Lemma 2.3. Let (h) ⊂ (0, ∞) with h↘ 0 be a sequence such that (2.15) holds true.
Then there exists a subsequence (not relabelled) such that for every m ∈ L2(Ω, R

3)
there exists (ψh

m) ⊂W 1,2(Ω, R
3), with the property that for every open set O ⊂

(0, L) we have that

K(h)(m,O) := lim
h↘0

∫
O×ω

Qh(x, ι(m) + ∇hψ
h
m) dx, (2.16)
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Moreover, (ψh
m) satisfies the following:

(a) (ψh
m · e1, hψh

m · e2, hψh
m · e3) → 0 and t(ψh

m · e2, ψh
m · e3) → 0 strongly in L2.

(b) The sequence (|sym∇ψh
m|2) is equi-integrable, and there exist sequences Bh

m ⊂
W 1,2((0, L), R

3×3
skew ) and (ϑh

m) ⊂W 1,2(Ω, R
3) with Bh

m → 0, ϑh
m → 0 strongly

in their respective L2-norm, and

sym∇hψ
h
m = sym ι

(
(Bh

m)′p
)

+ sym∇hϑ
h
m.

Moreover, for a subsequence (|(Bh
m)′|2) and (|∇hϑ

h
m|2) are equi-integrable, and

the following inequality holds for some C > 0 independent of O ⊂ (0, L):

lim sup
h↘0

(
‖Bh

m‖W 1,2(O) + ‖∇hϑ
h
m‖L2(O×ω)

)
� C(β‖m‖2

L2(O×ω) + 1).

(c) If (ψ̂h) ⊂W 1,2(Ω, R
3) is any other sequence that satisfies (a) and (sym∇hψ̂

h)
is bounded in L2(Ω, R

3×3), then

lim
h↘0

∫
Ω

A
h(ι(m) + ∇hψ

h
m) : sym∇hψ̂

h dx = 0.

(d) If (ψ̂h) ⊂W 1,2(Ω, R
3) is any sequence that satisfies (2.16) and (a) , then

‖sym∇hψ
h
m − sym∇hψ̂

h‖L2(Ω) → 0,

and (|sym∇hψ̂
h|2) is equi-integrable.

(e) The map K(h)(·, (0, L)) : L2(Ω, R
3) → R is continuously Fréchet-differentiable,

and for every m, n ∈ L2(Ω, R
3) we have that

∂K(h)(m, (0, L))
∂m

[n] = lim
h↘0

∫
Ω

A
h(ι(m) + sym∇hψ

h
m) : ι(n) dx. (2.17)

The sequence (ψh
m) is called the relaxation sequence for m. For our purposes, m

will always be of the form m = Bp + be1 for some B ∈ L2((0, L), R
3×3
skew ) and b ∈

L2(0, L). Thus we introduce the linear map

m : L2((0, L),R3×3
skew ) × L2((0, L),R) → L2(Ω,R3), m(B, b) := Bp + be1. (2.18)

By applying the chain rule together with (e) we thus can compute the deriva-
tive of K(h)(·, (0, L)) ◦m. Indeed, for every B, M ∈W 1,2((0, L), R

3×3
skew ), b, μ ∈

L2(0, L) we have that

∂K(h)(m(B, b), (0, L))
∂B

[M ] = lim
h↘0

∫
Ω

A
h(ι(m(B, b)) + sym∇hψ

h
m(B,b)) : ι(Mp) dx,

∂K(h)(m(B, b), (0, L))
∂b

[μ] = lim
h↘0

∫
Ω

A
h(ι(m(B, b)) + sym∇hψ

h
m(B,b)) : ι(μe1) dx.

(2.19)
To shorten notation we define K(m) := K(m, (0, L)) for every m ∈ L2(Ω, R

3).
In [14, proposition 2.12] also the following result regarding the existence of a

density for K(h) was proved:
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Proposition 2.4. Let (h) ⊂ (0, ∞) with h↘ 0 be a sequence such that (2.15)
holds true for every m ∈ L2(Ω, R

3). Then a measurable function Q0
(h) : [0, L] ×

R
3×3
skew × R → [0, ∞) exists, such that for every O ⊂ [0, L] open, and every (B, b) ∈

L2((0, L), R
3×3
skew × R) we have that

K(h)(m(B, b), O) =
∫

O

Q0
(h)(x1, B(x1), b(x1)) dx1.

Furthermore, for almost every x1 ∈ [0, L] the map Q0
(h)(x1, ·, ·) is a quadratic form,

and there exists a constant C > 0, depending only on the domain ω and the sequence
(h), such that for every B̂ ∈ R

3×3
skew , b̂ ∈ R we have that

C−1(|B̂|2 + |̂b|2) � Q0
(h)(x1, B̂, b̂) � Cβ(|B̂|2 + |̂b|2).

Let (h) be as in the hypothesis of proposition 2.4. We define the map

b̂(h),min : [0, L] × R
3×3
skew → R, b̂(h),min(x1, B̂) = arg min

b∈R

Q0
(h)(x1, B̂, b).

It is easily seen that b̂(h),min is well-defined, linear in B̂, and there exists a constant
C ′ = C ′(α, β, ω, (h)) > 0 such that for almost every x1 and all B̂ ∈ R

3×3
skew we have

that

|̂b(h),min(x1, B̂)| � C ′|B̂|.
We define

Q0
(h),1 : [0, L] × R

3×3
skew → R, Q0

(h),1(x1, B̂) := Q0
(h)(x1, B̂, b̂(h),min(x1, B̂)).

Then for almost every x1 ∈ [0, L] the map Q0
(h),1(x1, ·) is a quadratic form, and

there exists C ′ = C ′′(α, β, ω, (h)) > 0 such that for all B̂ ∈ R
3×3
skew it holds

(C ′′)−1|B̂|2 � Q0
(h),1(x1, B̂) � C ′|B̂|2.

We now define the limiting bending energy K0
(h) : L

2((0, L), R
3×3
skew ) → R by

K0
(h)(B) :=

∫ L

0

Q0
(h),1

(
x1, B(x1)

)
dx1

=
∫ L

0

Q0
(h)

(
x1, B(x1), b̂(h),min

(
x1, B(x1)

))
dx1.

From the linearity of B̂ �→ b̂(h),min(·, B̂) and the Fréchet-differentiability of K(h)

we deduce that also K0
(h) is Fréchet-differentiable. For fixed B̂ ∈ R

3×3
skew and almost

every x1 the function Q0
(h)(x1, B̂, ·) has quadratic growth, thus b̂(h),min(x1, B̂) is
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the unique stationary point of Q0
(h)(x1, B̂, ·). Hence

(∂bQ
0
(h))(x1, B̂, b) = 0 ⇐⇒ b = b̂(h),min(x1, B̂).

Furthermore, the mapping

b(h),min : L2((0, L),R3×3
skew ) → L2(0, L), b(h),min(B) = b̂(h),min(·, B)

is well-defined and linear. Thus for any B ∈ L2((0, L), R
3×3
skew ) and b ∈ L2(0, L) we

have that{
∂K(h)(m(B, b))

∂b
[μ] = 0 for all μ ∈ L2(0, L)

}
⇐⇒ b = b(h),min(B). (2.20)

We are now able to compute the variations of K0
(h). For fixed B, M ∈

L2((0, L), R
3×3
skew ) we calculate by using the chain rule(

∂

∂B
K0

(h)

)
(B)[M ] =

∂

∂B

(
K(h)

(
m
(
B, b(h),min(B)

)))
[M ]

=
(
∂K(h)

∂m

(
m
(
B, b(h),min(B)

)))[∂m(B, b(h),min(B))
∂B

[M ]
]
.

(2.21)
From (2.18) and the linearity of b(h),min we obtain that

∂m(B, b(h),min(B))
∂B

[M ] = Mp + ((∂Bb(h),min)(0) : M)e1

and thus (2.21) can be rewritten as(
∂

∂B
K0

(h)

)
(B)[M ] = lim

h↘0

∫
Ω

A
h
(
ι(m(B, b(h),min(B))) + sym∇hψ

h
m(B,b(h),min(B))

)
: ι(Mp + ((∂Bb(h),min)(0) : M)e1).

(2.22)
The function b(h),min(B) satisfies according to (2.20) the equation

0 =
∂K(h)

∂b
(m(B, b(h),min(B))[μ]

= lim
h↘0

∫
Ω

A
h
(
ι(m(B, b(h),min(B))) + sym∇hψ

h
m(B,b(h),min(B))

)
: ι(μe1)

(2.23)

for all μ ∈ L2(0, L). Finally, using μ := (∂Bb(h),min)(0) : M in (2.23) allows us to
simplify (2.22) to
(
∂

∂B
K0

(h)

)
(B)[M ] = lim

h↘0

∫
Ω

A
h
(
ι(m(B, b(h),min(B))) + sym∇hψ

h
m(B,b(h),min(B))

)
: ι(Mp).

(2.24)
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2.4. Derivation of the limit Euler-Lagrange equation

Let A be given by (1.3). We define

A0 = {(y, d2, d3) ∈ A : y(0) = 0, (y′ | d2 | d3)(0) = id3×3} .

Let (y, d2, d3) ∈ A0 and define the associated SO(3)-valued function R = (y′ | d2 |
d3). The regularity of y, d2, d3 implies that R ∈W 1,2((0, L), SO(3)). Recall that
the limit energy of (y, d2, d3) is given by

E0(y, d2, d3) = K0
(h)(R

TR′) −
∫ L

0

g · y dx1

= K0
(h)(R

TR′) −
∫ L

0

ĝ · y′ dx1,

where ĝ(x1) =
∫ L

x1
g(s) ds. We say (y, d2, d3) is a stationary point of E0, if for any

C1-curve γ : (−∞, ∞) → A0 with γ(0) = (y, d2, d3) and derivative γ̇, we have that

(
∂εE0(γ(ε))

) ∣∣
ε=0

= DE0(y, d2, d3)[γ̇(0)] = 0,

The following lemma gives an alternative characterization by identifying the tangent
spaces of A0 and explicitly computing the derivative DE0.

Lemma 2.5. Let (y, d2, d3) ∈ A0. Define R = (y′ | d2 | d3) and A = RTR′.
Then (y, d2, d3) is a stationary point of E0 if and only if for every Φ ∈
W 1,2((0, L), R

3×3
skew ) with Φ(0) = 0 we have that

(
∂

∂B
K0

(h)

)
(A)[AΦ − ΦA+ Φ′] =

∫ L

0

ĝ · (RΦe1) dx1. (2.25)

The left-hand side of (2.25) can be represented by (2.24).

Proof. Let (yε, dε
2, d

ε
3)ε ⊂ A0 be a C1-curve with (y0, d0

2, d
0
3) = (y, d2, d3), and

define (Rε)ε ⊂W 1,2((0, L), SO(3)) by Rε = ((yε)′ | dε
2 | dε

3); in particular R0 = R.
It is well-known that the tangent space of SO(3) in R is given by {RΦ : Φ ∈ R

3×3
skew }.

Thus, denoting the derivative of (Rε) with respect to ε by (Ṙε), we obtain
RT

0 Ṙ0 = Φ for some Φ ∈W 1,2((0, L), R
3×3
skew ). Moreover, for every ε ∈ R we have

that Rε(0) = id3×3, and thus Φ(0) = 0. Hence the tangent space of A0 in (y, d2, d3)
is given by

T(y,d2,d3)A0 =
{

(v1, v2, v3) ∈W 2,2((0, L),R3) ×W 1,2((0, L),R3) ×W 1,2((0, L),R3) :

(y′ | d2 | d3)T(v′1 | v2 | v3) ∈W 1,2((0, L),R3×3
skew ), (v′1 | v2 | v3)(0) = 0

}
.
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With the chain rule, we obtain that

∂εE0(yε, dε
2, d

ε
3)
∣∣
ε=0

= ∂ε

(
K0

(h)(R
T
ε R

′
ε) −

∫ L

0

ĝ · y′ε dx1

)∣∣∣∣∣
ε=0

=
∂K0

(h)

∂B
(RTR′)[∂ε(RT

ε R
′
ε)]

∣∣∣∣∣
ε=0

−
∫ L

0

ĝ · (R0Φe1) dx1

=
∂K0

(h)

∂B
(RTR′)[ṘT

0 R
′
0 +RT

0 Ṙ
′
0] −

∫ L

0

ĝ · (R0Φe1) dx1.

By using the relationship RT
0 Ṙ0 = Φ we obtain that

ṘT
0 R

′
0 = −ΦRTR′ and RT

0 Ṙ
′
0 = RT(RΦ)′ = RTR′Φ +RTRΦ′,

and thus

ṘT
0 R

′
0 +RT

0 Ṙ
′
0 = −ΦRTR′ +RTR′Φ + Φ′. (2.26)

Furthermore, we can insert A = RTR′ into (2.26), obtaining

ṘT
0 R

′
0 +RT

0 Ṙ
′
0 = −ΦA+AΦ + Φ′.

Hence

∂εE0(yε, dε
2, d

ε
3)
∣∣
ε=0

=
∂K0

(h)

∂B
(A)[AΦ − ΦA+ Φ′] −

∫ L

0

ĝ · (RΦe1).

If (y, d2, d3) is a stationary point, the left-hand side vanishes and we obtain as
claimed

∂K0
(h)

∂B
(A)[AΦ − ΦA+ Φ′] =

∫ L

0

ĝ · (RΦe1). (2.27)

Moreover, if (2.27) holds for every Φ ∈W 1,2((0, L), R
3×3) with Φ(0), then by the

characterization of T(y,d2,d3)A0 we obtain for any C1-curve γ with γ(0) = (y, d2, d3)
that (

∂εE0(γ(ε))
) ∣∣

ε=0
= 0.

This concludes the proof. �

3. Proof of the main theorem

We dedicate the whole section to the proof of theorem 1.1. From now on let
Wh, yh, g, (hk) be as stated in the hypotheses of theorem 1.1. To simplify notation,
we will simply write h and h↘ 0, instead of hk and k → ∞.
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From the energy bound (1.5) together with the non-degeneracy hypothesis (M2)
on Wh we obtain the inequality

lim sup
h↘0

1
h2

‖dist(∇hy
h,SO(3))‖2

L2 <∞,

and furthermore, by assumption on (yh) we have that yh(0, x2, x3) = hx2e2 +
hx3e3 for all x′ ∈ ω. Thus we may apply proposition 2.2 and deduce that there
exists a sequence of rotations (Rh) ⊂ C∞([0, L], SO(3)) with properties (2.4), (2.5)
and (2.6).

We introduced once more the linearized strain Gh by

Gh =
(Rh)T∇hy

h − id3×3

h
.

Then (2.4) implies that (Gh) is uniformly bounded in L2(Ω). Hence, there exist
a subsequence (not relabeled) and G ∈ L2(Ω, R

3×3) such that Gh ⇀ G in L2(Ω).
Moreover, the frame indifference of Wh implies that

DWh(x, F ) = RDWh(x,RTF ) for all F ∈ R
3×3, R ∈ SO(3), almost every x ∈ Ω.

Thus

DWh(x,∇hy
h) = RhDWh(x, id3×3 +hGh) = hRhEh, (3.1)

where Eh := h−1DWh(·, id3×3 +hGh) is the nonlinear stress. On the other hand,
a Taylor expansion around the identity yields

DWh(·, id3×3 +hGh) = hD2Wh(·, id3×3)Gh + ζh(·, hGh),

where (S3) implies the estimate

|ζh(·, F )| � r̂(|F |)|F |,
for some monotone r̂ : [0, ∞) → [0, ∞) with r̂(ε) ↘ 0 if ε↘ 0. Together with
D2Wh(·, id3×3) = D2Qh(·, 0) = A

h we get that

Eh = A
hsymGh +

1
h
ζh(·, hGh). (3.2)

The error term h−1ζh(·, hGh) does not necessarily converge strongly to 0 in L2(Ω),
since Gh might concentrate in L2(Ω). We will now show that the error term does
not oscillates, and that it weakly converges to zero:

Lemma 3.1. Let (ηh) ⊂ L2(Ω) be such that (|ηh|2) is equi-integrable. Then

lim
h↘0

∫
Ω

ηh ·
(

1
h
ζh(·, hGh)

)
dx = 0.

This immediately implies h−1ζh(·, hGh) ⇀ 0 in L2(Ω, R
3×3), and, in particular,

that (h−1ζh(·, hGh)) is uniformly bounded in L2(Ω).
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Proof. Let 0 < α < 1. We define the sets Sα
h = {x ∈ Ω : h|Gh(x)| � hα}, and the

truncated function Ĝh := Ghχ
Sα

h
. Obviously hĜh → 0 in L∞, Gh = Ĝh on Sα

h , and
by Chebyshev inequality we have that L2(Ω \ Sα

h ) → 0 for h↘ 0. We can now
compute∥∥∥∥ 1

h
ζh(·, hĜh)

∥∥∥∥2

L2

=
1
h2

∫
Ω

|ζh(x, hĜh)|2 dx

� 1
h2

∫
Ω

r̂2(‖hĜh‖∞)|hĜh|2 dx

� r̂2(‖hĜh‖∞)‖Ĝh‖2
L2 � r̂(‖hĜh‖∞)2‖Gh‖2

L2 → 0,

by the uniform bound of Gh in the L2-norm. Finally, applying Hölder’s inequality
yields ∣∣∣∣∣

∫
Ω

ηh ·
(

1
h

(
ζh(x, hGh) − ζh(x, hĜh)

))
dx

∣∣∣∣∣ � C

∫
Sh

|ηh|2 dx→ 0,

which implies the claim. �

With this result, we can deduce the limit PDE in terms of the stress. The part
follows closely the corresponding proof in [16], and thus we skip some details.

Compactness
From the properties (2.4)–(2.6) for the sequence (Rh), we deduce that there exist

a subsequence (not relabelled) and limit R ⊂W 1,2((0, L), SO(3)) such that R(0) =
id3×3 and Rh ⇀ R in W 1,2((0, L), SO(3)). Defining y(x1) =

∫ x1

0
R(s)e1 ds, dk =

Rek for k = 2, 3 we obtain y ∈W 2,2
bdy([0, L], R

3), yh → y strongly in W 1,2(Ω, R
3),

∇hy
h → (y′ | d2 | d3) strongly in L2(Ω, R

3×3), dk(0) = ek for k = 2, 3. Hence
(y, d2, d3) ∈ A0.

Properties of Eh

We start by using only the uniform energy bound of the deformations (yh), that
is, stationarity is not yet needed. Recall the decomposition (3.2), that is,

Eh = A
h(x)symGh +

1
h
ζh(x, hGh).

The uniform bound on |Ah| � Cβ given by (2.2), the uniform L2 bound on Gh

and the uniform L2 bound on the sequence (h−1ζh(·, hGh))h>0, following from
lemma 3.1, imply a uniform L2 bound on the sequence Eh. Thus (Eh) weakly
subconverges to some E ∈ L2(Ω, R

3×3). The frame indifference (M1) implies that
DWh(·, F )FT is symmetric for every F ∈ R

3×3 almost everywhere on Ω. For F =
id3×3 +hGh the statement skew (DWh(·, F )FT) = 0 can be rewritten as

skew (Eh) = hskew (Gh(Eh)T). (3.3)

From the uniform L2(Ω) bound on both (Eh) and (Gh), we deduce that
(h−1skew (Eh)) is uniformly bounded in L1(Ω).
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Deriving Euler-Lagrange equations
As (yh) are stationary points of Eh, for any ψ ∈ C∞

bdy(Ω, R
3) we have that∫

Ω

(
DWh(x,∇hy

h(x)) : ∇hψ(x) − h2g(x1) · ψ(x)
)

dx = 0.

By density, the equation also holds for arbitrary ψ ∈W 1,2
bdy(Ω, R

3). Using relation-
ship (3.1) we rewrite this equation as∫

Ω

(
RhEh : ∇hψ − hg · ψ) dx = 0. (3.4)

For ψ(x) = ϕ(x1) with ϕ ∈ C∞
bdy([0, L], R

3) the equation (3.4) reduces to∫ L

0

∫
ω

(
RhEhe1 · ϕ′ − hg · ϕ) dx′ dx1 =

∫ L

0

(
RhE

h
e1 · ϕ′ − hg · ϕ

)
dx1 = 0,

(3.5)
where E

h
is the zero-th moment of Eh, that is,

E
h
: (0, L) → R

3×3, E
h
(x1) =

∫
ω

Eh(x1, x
′) dx′.

Furthermore, we denote the first moments with respect to x2 and x3 of Eh by
Ẽh, Êh ∈ L2((0, L), R

3×3) respectively; more precisely let

Ẽh(x1) =
∫

ω

x2E
h(x1, x

′) dx′; Êh(x1) =
∫

ω

x3E
h(x1, x

′) dx′.

Let φ ∈ C∞
bdy([0, L]) and define ψh(x) = x2φ(x1)Rh(x1)e1. Then ψh ∈

W 1,2
bdy(Ω, R

3) and

∇hψ
h(x) =

(
x2φ

′(x1)Rh(x1)e1 + x2φ(x1)(Rh)′(x1)e1
∣∣∣ 1

hφ(x1)Rh(x1)e1
∣∣∣ 0) .

Plugging ψh into (3.4) yields

0 =
∫

Ω

(
RhEh : ∇hψ

h − hg · ψh
)

dx

=
∫ L

0

(
RhẼhe1 · φ′Rhe1 +RhẼhe1 · φ(Rh)′e1 +

1
h
RhE

h
e2 · φRhe1

)
dx1.

Introducing Ah := (Rh)T(Rh)′ this simplifies to∫ L

0

(
Ẽh

11 · φ′ + φẼhe1 ·Ahe1 + φ
1
h
E

h

12

)
dx1 = 0. (3.6)

Analogously, for ψ(x) = x3φ(x1)Rh(x1)e1 we get∫ L

0

(
Êh

11 · φ′ + φÊhe1 ·Ahe1 + φ
1
h
E

h

13

)
dx1 = 0, (3.7)
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and finally, ψ(x) = x3φ(x1)Rh(x1)e2 − x2φ(x1)Rh(x1)e3 yields∫ L

0

(
φ′(Êh

21 − Ẽh
31) + φ(Êhe1 ·Ahe2 − Ẽhe1 ·Ahe3) + φ

1
h

(E
h

23 − E
h

32)
)

dx1 = 0.

(3.8)

Consequences of the Euler-Lagrange equations
Now, by stationarity of (yh), the equation (3.5) holds for arbitrary ϕ ∈

C∞
c ((0, L), R

3), and thus

E
h
e1 = −h(Rh)

T
ĝ almost everywhere in (0, L). (3.9)

Passing to the limit we also obtain

Ee1 = 0 almost everywhere in (0, L). (3.10)

Furthermore, the equations (3.6), (3.7) and (3.8) imply that Ẽh
11, Ê

h
11 and (Êh

21 −
Ẽh

31) are weakly differentiable. The respective derivatives are in L1, as seen by
combining (3.3), (3.9) together with the uniform L2 bound on Ah, which was just
(Rh)T(Rh)′. By Sobolev’s Embedding Theorem we thus obtain that

(Ẽh
11), (Ê

h
11), (Ê

h
21 − Ẽh

31) converge strongly in L2(0, L). (3.11)

From this we immediately obtain the following:
Let (Mh) ⊂ L2((0, L), R

3×3
skew ) with Mh ⇀M ∈ L2((0, L), R

3×3
skew ). Then by

direct calculation we obtain∫
Ω

Eh : ι(Mhp) dx =
∫ L

0

(Ẽh
31 − Êh

21, Ê
h
11, Ẽ

h
11) · axlMh dx1

and thus by applying (3.11) we get

lim
h↘0

∫
Ω

Eh : ι(Mhp) dx = lim
h↘0

∫
Ω

Eh : ι(Mp) dx. (3.12)

The limit of the PDE in terms of the stress
Fix some Φ ∈ C∞

bdy([0, L], R
3×3
skew ) and let φ1, φ2, φ3 be given by axl(Φ) =

(φ1, φ2, φ3). We then define the test functions

ψh(x1, x2, x3) = Rh(x1)Φ(x1)p(x).

Then ψh ∈W 1,2
bdy(Ω, R

3) and

∇hψ
h =

(
RhΦ′p + (Rh)′Φp

∣∣∣ 1
hR

hΦe2
∣∣∣ 1

hR
hΦe3

)
.

Plugging ψh into (3.4) yields that∫
Ω

(
RhEh : ∇hψ

h − hg · ψh
)

dx

=
∫

Ω

(
Ehe1 · Φ′p + Ehe1 ·AhΦp +

1
h
Ehe2 · Φe2 +

1
h
Ehe3 · Φe3

)
dx.

(3.13)
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Using the skew-symmetry of Φ we obtain that

Ehe2 · Φe2 + Ehe3 · Φe3 = Eh : Φ − Ehe1 · Φe1
= (Φ : skewEh) − Ehe1 · Φe1.

The preceding calculations imply that∫
Ω

(
RhEh : ∇hψ

h − hg · ψh
)

dx = Ih + IIh + IIIh, (3.14)

where

Ih :=
∫

Ω

(
Ehe1 · Φ′p

)
dx =

∫
Ω

Eh : ι(Φ′p) dx, (3.15)

IIh :=
∫

Ω

(
1
h
Ehe1 · Φe1

)
dx,

IIIh :=
∫

Ω

(
Ehe1 ·AhΦp +

1
h

Φ : skewEh

)
dx. (3.16)

The third one will be the most difficult to handle.

Regarding IIh, from (3.9) we obtain E
h
e1 = −h(Rh)Tĝ and thus

IIh =
∫ L

0

(
1
h
E

h
e1 · Φe1

)
dx1 = −

∫ L

0

ĝ · (RhΦe1) dx1. (3.17)

Regarding IIIh, we claim that we have that

lim
h↘0

IIIh = lim
h↘0

∫
Ω

(
Ehe1 · (AΦ − ΦA)p

)
dx. (3.18)

Indeed, recall that from (2.7) we have that

Gh = Ahp ⊗ e1 + (Rh)T∇hz
h,

where zh was defined by (2.8). By making use of (3.3) we obtain

1
h

skew (Eh) = skew (Gh(Eh)T)

= skew
((

(Rh)T∇hz
h +Ahp ⊗ e1

)
(Eh)T

)
= skew

(
(Rh)T∇hz

h(Eh)T
)

+ skew
(
(Ahp ⊗ e1)(Eh)T

)
.

Furthermore, by the skew-symmetry of Φ we thus obtain

1
h

Φ : skew (Eh) = Φ :
(
(Rh)T∇hz

h(Eh)T
)

+ Φ :
(
Ahp ⊗ Ehe1

)
. (3.19)

For any M ∈ R
n×n and v, w ∈ R

n we have the algebraic identity

M : (v ⊗ w) = tr(MT(v ⊗ w)) = tr((MTv) ⊗ w) = (MTv) · w,
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which applied to M = Φ, v = Ahp, w = Ehe1 yields for the second term in (3.19)
the equality

Φ : (Ahp ⊗ Ehe1) = −Ehe1 · (ΦAhp).

With this, we can simplify IIIh, given by (3.16), to

IIIh =
∫

Ω

(
Ehe1 ·AhΦp +

1
h

Φ : skewEh

)
dx

=
∫

Ω

(
Ehe1 · (AhΦ − ΦAh)p + Φ : ((Rh)T∇hz

h(Eh)T)
)

dx.
(3.20)

We start by proving that,

lim
h↘0

∫
Ω

(
Ehe1 · (AhΦ − ΦAh)p

)
dx = lim

h↘0

∫
Ω

(
Ehe1 · (AΦ − ΦA)p

)
dx.

This, however, follows immediately from (3.12) by setting Mh := AhΦ − ΦAh and
M := AΦ − ΦA. We now show that the second term on the right-hand side of (3.20)
converges to 0, thus proving the claim (3.18).

The skew-symmetry of Φ implies that almost everywhere on Ω we have that

Φ :
(
(Rh)T∇hz

h(Eh)T
)

= (ΦEh) :
(
(Rh)T∇hz

h
)

= −Eh :
(
Φ(Rh)T∇hz

h
)

= −RhEh :
(
RhΦ(Rh)T(∇hz

h)
)
.

Integrating over Ω then yields∫
Ω

Φ :
(
(Rh)T∇hz

h(Eh)T
)
dx = −

∫
Ω

RhEh :
(
RhΦ(Rh)T(∇hz

h)
)

dx. (3.21)

Let h0 > 0 and h ∈ (0, h0). Then

RhΦ(Rh)T = Rh0Φ(Rh)T + (Rh −Rh0)Φ(Rh)T

= Rh0Φ(Rh0)T + (Rh −Rh0)Φ(Rh)T +Rh0Φ(Rh −Rh0)T,

and hence∫
Ω
RhEh :

(
RhΦ(Rh)T(∇hz

h)
)

dx =

∫
Ω
RhEh :

(
Rh0Φ(Rh0)T(∇hz

h)
)

dx

+

∫
Ω
RhEh :

(
(Rh −Rh0)Φ(Rh)T(∇hz

h)
)

dx

+

∫
Ω
RhEh :

(
Rh0Φ(Rh −Rh0)T(∇hz

h)
)

dx.

(3.22)
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We estimate the last two terms in (3.22) by∣∣∣∣∣
∫

Ω

RhEh :
(
(Rh −Rh0)Φ(Rh)T(∇hz

h)
)

dx

+
∫

Ω

RhEh :
(
Rh0Φ(Rh −Rh0)T(∇hz

h)
)

dx

∣∣∣∣∣
� 6 sup

h>0

(
‖Eh‖L2(Ω)‖Φ‖L∞(0,L)‖∇hz

h‖L2(Ω)

)
· ‖Rh −Rh0‖L∞(0,L).

(3.23)

As Rh → R strongly in L∞(0, L), passing first with h to the limit 0, and then with
h0 to 0, the right-hand side of (3.23) converges to 0. It remains to show that the
first term on the right-hand side of (3.22) converges to 0. We rewrite this term as∫

Ω

RhEh :
(
Rh0Φ(Rh0)T(∇hz

h)
)

dx =
∫

Ω

RhEh :
[
∇h

(
Rh0Φ(Rh0)Tzh

)]
dx

−
∫

Ω

RhEhe1 ·
[(
Rh0Φ(Rh0)T

)′
zh
]
dx.

(3.24)
As Rh0 is a smooth function on the compact set [0, L], we have that Rh0 ∈
W 1,∞(0, L). Together with Φ ∈ C∞

bdy([0, L], R
3×3
skew ) and zh ∈W 1,2(Ω, R

3) this
implies that Rh0Φ(Rh0)Tzh ∈W 1,2

bdy(Ω, R
3). Plugging Rh0Φ(Rh0)Tzh into (3.4)

yields∫
Ω

RhEh : ∇h

(
Rh0Φ(Rh0)Tzh

)
dx = h

∫
Ω

f ·
(
Rh0Φ(Rh0)Tzh

)
dx

� 3h‖f‖L2(0,L)‖Φ‖L∞(0,L)‖zh‖L2(Ω).

(3.25)

By the uniform L2 bound on (zh), the right-hand side of (3.25) converges to 0
as h↘ 0, independently of h0. Moreover, the weak convergence of (Eh) in L2(Ω),
the strong convergence of (zh) in L2(Ω) and the strong convergence of (Rh) in
L∞(0, L) allows us to pass to the limit h↘ 0 in the second term on the right-hand
side of (3.24). We obtain that

lim
h↘0

∫
Ω

RhEhe1 ·
[(
Rh0Φ(Rh0)T

)′
zh
]
dx =

∫
Ω

REe1 ·
[(
Rh0Φ(Rh0)T

)′
z
]
dx.

As R, Rh0 , Φ and z are independent of x2, x3, we obtain that∫
Ω

REe1 ·
[(
Rh0Φ(Rh0)T

)′
z
]
dx =

∫ L

0

(
REe1 ·

[(
Rh0Φ(Rh0)T

)′
z
])

dx1. (3.26)

By (3.10), we have Ee1 = 0 almost everywhere on (0, L) and thus (3.26) is
identically 0 for all h0. Combining (3.21)–(3.26) yields

lim
h↘0

∫
Ω

Φ :
(∇hz

h(RhEh)T
)
dx = 0.

This concludes the proof of the claim (3.18).
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Inserting (3.15), (3.17) and (3.18) into (3.14) we obtain

lim
h↘0

∫
Ω

(
RhEh : ∇hψ − hg · ψ) dx = lim

h↘0

∫
Ω

Eh : ι((AΦ − ΦA)p + Φ′p) dx

+ lim
h↘0

∫ L

0

ĝ · (RhΦe1) dx1.

(3.27)

From the strong convergence Rh → R in L∞ we obtain for the second term

lim
h↘0

∫ L

0

ĝ · (RhΦe1) dx1 =
∫ L

0

ĝ · (RΦe1) dx1, (3.28)

while for the first term we will show that

lim
h↘0

∫
Ω

Eh : ι((AΦ − ΦA)p + Φ′p) dx =
∂K(h)

∂m
(md)[(AΦ − ΦA+ Φ′)p]. (3.29)

Identification of the limit
To show (3.29) we will first prove the analogue to [5, lemma 3.1], whose approach

we will follow from now on.

Lemma 3.2. Let (uh) ⊂W 1,2(Ω, R
3) be such that t(uh

2 , u
h
3 ) → 0 strongly in

L2(0, L),
(|sym∇hu

h|2) is equi-integrable and (uh
1 , hu

h
2 , hu

h
3 ) → 0 strongly in

L2(Ω). Then for all φ ∈ C∞
bdy([0, L]) we have that

lim
h↘0

∫
Ω

(
φA

hGh : ∇hu
h
)

dx = 0. (3.30)

Proof. Let (uh) be as in the hypothesis, and fix some φ ∈ C∞
bdy([0, L]). By propo-

sition A.1 there exists a constant Cω > 0, depending only on ω, and sequences
(Bh) ⊂W 1,2((0, L), R

3×3
skew ), (ϑh) ⊂W 1,2(Ω, R

3) and (oh) ⊂ L2(Ω, R
3×3) with

sym∇hu
h = sym ι((Bh)′p) + sym∇hϑ

h + oh, (3.31)

that, in addition, satisfy the bounds

‖Bh‖W 1,2(0,L) + ‖ϑh‖L2(Ω) + ‖∇hϑ
h‖L2(Ω) � Cω‖sym∇hu

h‖L2(Ω).

Furthermore, Bh, ϑh, oh → 0 strongly in L2(Ω), and (|(Bh)′|2), (|∇hϑ
h|2) are both

equi-integrable. Using (3.2) we can write (3.30) as∫
Ω

(
φA

hsymGh : sym (∇hu
h)
)

dx =
∫

Ω

(
φEh : sym (∇hu

h)
)

dx

− 1
h

∫
Ω

(
φζh(x, hGh) : sym (∇hu

h)
)

dx.

(3.32)
The first term on the right-hand side can be decomposed with (3.31) to∫

Ω

(
φEh : sym (∇hu

h)
)

dx =
∫

Ω

(
φEh : sym

(
ι((Bh)′p) + ∇hϑ

h + oh
))

dx.

(3.33)
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Clearly, the term containing oh converges to 0 as h↘ 0. By symmetry of A
h we

have that skewEh = 1
h skew ζh(·, hGh) and thus

∫
Ω

(
φEh : sym

(
ι((Bh)′p) + ∇hϑ

h
))

dx

=
∫

Ω

(
φEh :

(
ι((Bh)′p) + ∇hϑ

h
))

dx

−
∫

Ω

(
φ

1
h
ζh(x, hGh) : skew

(
ι((Bh)′p) + ∇hϑ

h
))

dx.

(3.34)

Combining (3.33) with (3.34) yields

lim
h↘0

∫
Ω

(
φA

hGh : sym (∇hu
h)
)

dx = lim
h↘0

∫
Ω

(
φEh :

(
ι((Bh)′p) + ∇hϑ

h)) dx

− lim
h↘0

∫
Ω
φ

1

h
ζh(x, hGh) :

(
ι((Bh)′p) + ∇hϑ

h
)

dx.

(3.35)

By applying (3.12) with Mh = (Bh)′ and M = 0, the first term on the right-hand
side of (3.35) is 0. For the second term on the right-hand side of (3.35) we write∫

Ω

(
φEh : ∇hϑ

h
)

dx =

∫
Ω

(
φRhEh : Rh∇hϑ

h
)

dx

=

∫
Ω

(
RhEh : ∇h(Rhφϑh)

)
dx−

∫
Ω

(
RhEh : ι((Rhφ)′ϑh)

)
dx.

(3.36)
For the first term on the right-hand side of (3.36) we use the Euler-Lagrange
equation and obtain

∫
Ω

Eh : ∇h(Rhφϑh) dx = h

∫
Ω

g · (Rhφϑh) → 0,

while we split once more the second term on the right-hand side of (3.36) into

∫
Ω

(
RhEh : ι((Rhφ)′ϑh)

)
dx =

∫
Ω

(
RhEhe1 · (Rhφ)′(ϑh − ϑ

h
)
)

dx

+
∫

Ω

(
RhEhe1 · (Rhφ)′ϑ

h
)

dx,
(3.37)

where ϑ
h
(x1) =

∫
ω
ϑ(x1, x

′) dx. By the uniform bound of h(Rh)′′ in L2(0, L), stated
in (2.5), we obtain the uniform bound of h(Rh)′ in W 1,2(0, L). From the compact
Sobolev embedding we obtain that (h(Rh)′) is strongly compact in L∞(0, L). Since
(Rh)′ is bounded in L2(0, L), we have that h(Rh)′ → 0 strongly in L2(0, L). By
uniqueness of the limit, we have that h(Rh)′ → 0 strongly in L∞(0, L). We apply
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Poincaré’s inequality and obtain

‖ϑh − ϑ
h‖L2(Ω) � C‖∂2ϑ

h‖L2(Ω) � Ch‖∇hϑ
h‖L2(Ω) � Ch.

This bound, together with h(Rh)′ → 0 strongly in L∞(0, L), implies that

h(Rhφ)′
(ϑh − ϑ

h
)

h
→ 0 strongly in L2(Ω).

For the second term in (3.37) we use Sobolev embedding to obtain ϑ
h → 0 strongly

in L∞(0, L). Combining both we conclude the vanishing of (3.37). Finally, for the
last remaining term in (3.32), namely

lim
h↘0

∫
Ω

φ(x1)
1
h
ζh(x, hGh) :

(
ι((Bh)′p) + ∇hϑ

h
)

dx,

we use that (|(Bh)′|2) and (|∇hϑ
h|2) are equi-integrable. Hence lemma 3.1 implies

that this term vanishes as well. This finishes the proof of the lemma. �

We finally prove (3.29). For this, we decompose Eh into Eh = A
hGh + (1/h)ζh

(·, hGh) and apply lemma 3.1 to obtain

lim
h↘0

∫
Ω

Eh : ι((AΦ − ΦA)p + Φ′p) dx

= lim
h↘0

∫
Ω

A
hGh : ι((AΦ − ΦA)p + Φ′p) dx.

(3.38)

From the decomposition (2.13) we get that

symGh = sym ι(md) + sym∇hψ
h + oh,

where the fixed partmd ∈ L2(Ω, R
3) and the corrector sequence ψh were introduced

in (2.10) and (2.11) respectively, and oh converges strongly to zero in L2(Ω).
We show that sym∇hψ

h and sym∇hψ
h
md

are, up to L2-concentration, close in
L2(Ω), where (ψh

md
) is the relaxation sequence given by lemma 2.3. Indeed, we first

use identity (2.12) to obtain

sym∇hψ
h = sym ι((Ψh)′p) + sym∇hv

h,

where Ψh, vh are defined prior to (2.12). By applying [14, lemma 2.17] to (Ψh)
and (vh), we obtain a subsequence (h) (not relabelled), a sequence of measur-
able sets Oh with limh↘0 L3(Ω \Oh) = 0 and a sequences (Ψ̃h), (ṽh) such that
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(|(Ψ̃h)′|2, |(∇hṽ
h)|2 are equi-integrable and such that

‖(Ψh − Ψ̃h)′‖L2(Oh) + ‖∇h(vh − ṽh)‖L2(Oh) → 0.

By proposition A.2 there exists (ψ̃h) ⊂W 1,2(Ω, R
3) such that

sym∇hψ̃
h = sym ι((Ψ̃h)′p) + sym∇hṽ

h.

By construction, we have that

(|sym∇hψ̃
h|2) is equi-integrable, and lim

h↘0
‖sym (∇hψ

h −∇hψ̃
h)‖L2(Oh) = 0.

(3.39)
Let a ∈ (0, L). Then

‖sym∇h(ψ̃h − ψh
md

)‖2
L2(Ω)

= ‖sym∇h(ψ̃h − ψh
md

)‖2
L2((0,a)×ω) + ‖sym∇h(ψ̃h − ψh

md
)‖2

L2((a,L)×ω).
(3.40)

For the second term on the right-hand side we use the coercivity of Qh to obtain

α‖sym∇h(ψ̃h − ψh
md

)‖2
L2((a,L)×ω) � 1

2

∫
(a,L)×ω

A
h∇h(ψ̃h − ψh

md
) : ∇h(ψ̃h − ψh

md
).

Let ρ ∈ C∞([0, L]) be a cut-off function such that ρ � 0, ρ = 0 on [0, a/2] and
ρ = 1 on [a, L]. With this we calculate

α‖sym∇h(ψ̃h − ψh
md

)‖2
L2((a,L)×ω) � 1

2

∫
Ω

ρAh∇h(ψ̃h − ψh
md

) : ∇h(ψ̃h − ψh
md

)

=
1
2

∫
Ω

ρAh(ι(md) + ∇hψ̃
h) : ∇h(ψ̃h − ψh

md
)

− 1
2

∫
Ω

ρAh(ι(md) + ∇hψ
h
md

) : ∇h(ψ̃h − ψh
md

).

The second term vanishes by virtue of lemma 2.3, while for the second one we use
the decomposition (2.13), i.e.,

symGh = sym ι(md) + sym∇hψ
h + oh,

to write∫
Ω
ρAh(ι(md) + ∇hψ̃

h) : ∇h(ψ̃h − ψh
md

) =

∫
Ω
ρAh(Gh + oh) : ∇h(ψ̃h − ψh

md
)

+

∫
Ω
ρAh(∇h(ψ̃h − ψh)) : ∇h(ψ̃h − ψh

md
).

(3.41)
The sequence (oh) converges to 0 strongly in L2(Ω), and thus the term containing
it vanishes in the limit. By lemma 2.3 the sequence |sym (∇hψ

h
md

)|2, and by con-
struction the sequence |sym (∇hψ̃

h)|2, are both equi-integrable. Thus by applying
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lemma 3.2 the first term on the right-hand side of (3.41) vanishes. For the second
term we decompose Ω = Oh ∪ (Ω \Oh) and estimate with Hölder’s inequality∣∣∣∣∫

Ω

ρAh∇h(ψ̃h − ψh) : ∇h(ψ̃h − ψh
md

)
∣∣∣∣

� β

∣∣∣∣∫
Ω

sym∇h(ψ̃h − ψh) : sym∇h(ψ̃h − ψh
md

)
∣∣∣∣

� β‖sym∇h(ψ̃h − ψh)‖L2(Oh)‖sym∇h(ψ̃h − ψh
md

)‖L2(Ω)

+ β‖sym∇h(ψ̃h − ψh)‖L2(Ω)‖sym∇h(ψ̃h − ψh
md

)‖L2(Ω\Oh).

(3.42)

First note that

‖sym∇h(ψ̃h − ψh
md

)‖L2(Ω), ‖sym∇h(ψ̃h − ψh)‖L2(Ω)

are uniformly bounded in h. Furthermore, utilizing (3.39) we obtain that

lim
h↘0

‖sym∇h(ψ̃h − ψh)‖L2(Oh) = 0,

and thus the first term on the right-hand side of (3.42) converges to 0. For the
second term on the right-hand side of (3.42) we use the equi-integrability of
(|sym∇h(ψ̃h − ψh

md
)|2) together with L3(Ω \Oh) → 0 as h↘ 0, and obtain that

the sequence converges to 0 as well.
Returning to (3.40), we take a sequence a = a(h) with a(h) ↘ 0 as h↘ 0 such

that

lim
h↘0

‖sym∇h(ψ̃h − ψh
md

)‖L2((a(h),L)×ω) = 0.

By equi-integrability we also obtain

lim
h↘0

‖sym∇h(ψ̃h − ψh
md

)‖L2((0,a(h))×ω) = 0,

and thus

lim
h↘0

‖sym∇h(ψ̃h − ψh
md

)‖L2(Ω) = 0.

Returning to (3.38), we first approximate sym∇hψ
h by sym∇hψ̃

h, and then the
latter by sym∇hψ

h
md

, thus obtaining

lim
h↘0

∫
Ω

Eh : ι((AΦ − ΦA)p + Φ′p) dx

= lim
h↘0

∫
Ω

A
hGh : ι((AΦ − ΦA)p + Φ′p) dx

= lim
h↘0

∫
Ω

A
h(ι(md) + ∇hψ

h
md

) : ι((AΦ − ΦA)p + Φ′p) dx

=
∂K(h)

∂m
(md)[(AΦ − ΦA+ Φ′)p].

(3.43)
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We combine (3.27), (3.28) and (3.43), obtaining

0 = lim
h↘0

∫
Ω

(
RhEh : ∇hψ − hĝ · ∂1ψ

)
dx =

∂K(h)

∂m
(md)[(AΦ − ΦA+ Φ′)p]

−
∫ L

0

ĝ · (RΦe1) dx1. (3.44)

If

∂K(h)

∂m
(md)[(AΦ − ΦA+ Φ′)p] =

(
∂

∂B
K0

(h)

)
(A)[AΦ − ΦA+ Φ′] (3.45)

holds, then (3.44) reads(
∂

∂B
K0

(h)

)
(A)[AΦ − ΦA+ Φ′] =

∫ L

0

ĝ · (RΦe1) dx1,

and by lemma 2.5 this is equivalent to (y, d2, d3) being a stationary point of E0.
After replacing both sides in (3.45) by the more explicit representations (2.17)

and (2.24), we see that it suffices to show that the fixed part md is given by
m(A, b(h),min(A)). By definition of md in (2.10) we have that md = m(A, p1)
where p1 is some L2 function. By the characterization given in (2.20) the equality
p1 = b(h),min(A) follows, if

∂K(h)(m(A, ·))
∂b

(p1)[μ] = 0 for all μ ∈ L2(0, L).

Using (2.19) we see that this is equivalent to

lim
h↘0

∫
Ω

A
h(ι(md)) + sym∇hψ

h
md

) : ι(μe1) dx = 0 for all μ ∈ L2(0, L). (3.46)

Similar to before we can replace sym∇hψ
h
md

by sym∇hψ
h. Then we can approx-

imate A
hGh by Eh with lemma 3.1, and the statement (3.46) is then seen to be

equivalent to

lim
h↘0

∫ L

0

E
h

11μdx = 0 for all μ ∈ L2(0, L),

which now easily follows from (3.10).
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many valuable discussions, encouragement and general support. The author was
supported by DFG under Grant agreement No. HO4697/1-1.

The result stated in theorem 1.1 is part of author’s Ph.D. thesis [19].

https://doi.org/10.1017/prm.2018.109 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.109


Convergence of equilibria for bending-torsion models of rods 259

Appendix A.

For convenience of the reader we recall a type of decomposition introduced in [10,
11]. More precisely the variant proved in [14, corollary 2.3, lemma 2.4]

Proposition A.1. Let L > 0 and Ω = (0, L) × ω, where ω is an open, connected
bounded Lipschitz-domain, which is centered at the origin in the sense of (2.1). Let
(uh) ⊂W 1,2(Ω, R

3) with t(uh
2 , u

h
3 ) → 0 in L2(0, L),

sup
h>0

∥∥sym∇hu
h
∥∥

L2 <∞ and (uh
1 , hu

h
2 , hu

h
3 ) → 0 strongly in L2(Ω,R3).

Then there exists a constant Cω > 0, depending only on ω, and sequences (Bh) ⊂
W 1,2((0, L), R

3×3
skew ), (ϑh) ⊂W 1,2(Ω, R

3) and (oh) ⊂ L2(Ω, R
3×3) with

sym∇hu
h = sym ι((Bh)′p) + sym∇hϑ

h + oh,

and satisfying the bounds

‖Bh‖W 1,2 + ‖ϑh‖L2 + ‖∇hϑ
h‖L2 � Cω‖sym∇hu

h‖L2 .

Furthermore, Bh, oh, ϑh → 0 strongly in L2. If, in addition, (|sym∇hu
h|2) is equi-

integrable, then so are (|(Bh)′|2) and (|∇hϑ
h|2).

The reverse holds true as well:

Proposition A.2. Let L > 0 and Ω = (0, L) × ω, where ω is an open, connected
bounded Lipschitz-domain, which is centered at the origin in the sense of (2.1).
Let (Bh) ⊂W 1,2((0, L), R

3×3
skew ), (ϑh) ⊂W 1,2(Ω, R

3) be sequences with Bh → 0
strongly in L2((0, L), R

3×3) and ϑh → 0 strongly in L2(Ω, R
3). Then there exists

(uh) ⊂W 1,2(Ω, R
3) with t(uh

2 , u
h
3 ) → 0 in L2(0, L) and

(uh
1 , hu

h
2 , hu

h
3 ) → 0 strongly in L2(Ω,R3)

such that

sym∇hu
h = sym ι((Bh)′p) + sym∇hϑ

h.
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