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Free-surface gravity flow due to a submerged
body in uniform current
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The hydrodynamic problem of a body submerged beneath a free surface in a current
is considered. The mathematical model used is based on the velocity potential
theory with fully nonlinear boundary conditions. The integral hodograph method
used previously in a simply connected domain is extended for the present problem
to a doubly connected domain. Analytical expressions for the complex velocity and
for the complex potential are derived in a rectangular region in a parameter plane,
involving the theta functions. The boundary-value problem is transformed into a
system of two integral equations for the velocity modulus on the free surface and for
the slope of the submerged body surface in the parameter plane, which are solved
through the successive approximation method. Case studies are undertaken both for
a smooth body and for a hydrofoil with a sharp edge. Results for the free surface
shape, pressure distribution as well as resistance and lift are presented for a wide
range of Froude numbers and depths of submergence. It further confirms that at each
submergence below a critical value there is a range of Froude numbers within which
steady solution may not exist. This range increases as the submergence decreases.
This applies to both a smooth body and a hydrofoil. At the same time it is found that
at any Froude number beyond a critical value the wave amplitude and the resistance
decrease as the body approaches the free surface. In these cases nonlinear effects
become more pronounced.

Key words: surface gravity waves

1. Introduction

The problem of free-surface gravity flow past a submerged body has received
extensive attention for more than one century due to its important relevance to the
wave resistance of a ship. Among the earliest work is that by Lamb, summarized
in his book (Lamb 1932), in which uniform flow past a submerged circular cylinder
was modelled by a dipole at the centre of the cylinder, whose strength was the same
as that without the free surface. The linearized free-surface boundary condition was
then satisfied exactly, while the impermeable boundary condition on the body surface
was satisfied approximately. The approach was later known as the first approximation.
Havelock (1927) introduced a correction to the first approximation by taking images
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alternately regarding the body surface and the free surface. Then, Havelock (1936)
obtained a solution for the circular cylinder in the form of infinite series, in which
each term satisfied the linearized free-surface boundary condition. The unknown
coefficients in the series were obtained through the body surface boundary condition.
In such a way, both the linearized free surface and body surface boundary conditions
were satisfied exactly. The latter would be an approximation only in the sense that the
infinite series was truncated for practical calculation. From the solution, the results
for both the wave resistance and the vertical force, or the lift were obtained.

Wehausen & Liatone (1960) solved the problem for a circular cylinder by using
the formulae of Kochin (1937) and Milne-Thomson (1968), alternatively, and also
provided an outstanding and extended review of earlier work on this problem. Later,
Wehausen (1973) further gave a comprehensive review specifically on the wave
resistance of a ship. The analytical solutions for three-dimensional problems include
those for a sphere in infinite water depth (Wu & Eatock Taylor 1988), in finite water
depth (Wu 1995) and in a channel (Wu 1998).

The earlier studies mentioned above assumed that disturbances on the free surface
were small. This might be justified when the body was deeply submerged or the body
was elongated in the incoming stream direction. In order to account for nonlinear
effects on the free surface, Tuck (1965) developed a consistent second-order wave
theory, in which the nonlinear free-surface boundary condition on the unknown
position was expanded to the mean level of the water surface and terms of up to
second order were kept. He demonstrated through the second-order correction that the
nonlinearity of the free-surface condition is important for the wave resistance, even
when the ratio of the body submergence to its radius is relatively large, for example
at 4.

The nonlinear free-surface effects were also investigated by Salvesen (1969) using
higher-order perturbation theory. He derived a consistent second-order solution and
attempted to include the third order effect for the free-surface elevation in the far field.
The solution procedure was not limited to a circular cylinder and results were obtained
for hydrofoils of finite thickness. Based on the results from the calculations, as well
as comparisons with experiments, he confirmed the conclusion of Tuck (1965), that
the linearized theory was inadequate, especially when the submergence was small.

Dagan (1971) employed the method of matched asymptotic expansions to analyse
the flow past a circular cylinder close to a free surface at high Froude number. The
inner solution was based on the nonlinear gravity-free flow past a doublet, while
the outer solution was that from the linearized free-surface boundary condition. His
solution became close to the solution with the linearized free-surface condition, as
the submergence of the cylinder became large.

Free-surface flow with an obstruction on the bottom of the fluid was studied by
Forbes & Schwartz (1982). Vanden-Broeck (1987) considered a semi-circular obstacle
while Dias & Vanden-Broeck (1989) considered a triangular shape using the conformal
mapping method coupled with the boundary integral method. By using the Cauchy
integral equation formula, Dias & Vanden-Broeck (2004) derived a system of integral
equations for an arbitrarily shaped bottom.

Chapman & Vanden-Broeck (2006) investigated nonlinear gravity waves over a
rough bottom or submerged object at small Froude number using the technique of
exponential asymptotics. At the limit of zero Froude number, the dominance of
gravity means that the free surface tends to a rigid flat surface.

An approximate solution for a submerged cylinder was also obtained by Kiselev
& Troepol’skaya (1996) assuming that the velocity magnitude at the free surface was
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Free-surface gravity flow due to a submerged body 883 A60-3

approximately constant, which was exact when the Froude number was infinite or the
gravity effect was ignored. A related problem is that free-surface flow past a source or
sink. King & Bloor (1989) considered the fully nonlinear flow problem. They used a
conformal mapping technique and derived, in particular, a nonlinear integro-differential
equation in terms of the velocity angle on the free surface. However, they did not
present detailed numerical results.

The problem of the flow past a submerged hydrofoil with a cavity effect in the wake
was studied by Faltinsen & Semenov (2008) with a fully nonlinear boundary condition
on the free surface. Because the flow region is a doubly connected domain, they
introduced a cut along the streamline starting at the closure point of the cavity of the
hydrofoil and included boundary conditions on both sides of the streamline into the
formulation of the problem. When the cavity effect was ignored, the streamline used
for the cut started from the trailing edge. The integral hodograph method (Semenov &
Iafrati 2006) could then be used, in which the complex velocity potential of the flow
could be written in terms of integrals in a parameter plan. The solution of the integral
equations was obtained by a numerical method. For a smooth body, the streamline
used for the cut in the method of Faltinsen & Semenov (2008) would have to start
from the stagnation point of the body. However, the position of the stagnation point
is not known in advance and it would have to be determined as a part of the solution
procedure.

In the linearized free-surface problem, it is commonly assumed that, for a body in
a steady current, the free-surface flow will eventually become steady. Therefore, the
steady solution is usually obtained directly. However, for the nonlinear free-surface
problem, it was noticed that the steady solution could not always be achieved when
the time domain method was used (Haussling & Coleman 1979). Scullen & Tuck
(1995) then assumed that the flow was already steady and attempted to find its
solution using the iteration method for the nonlinear steady free-surface boundary
condition. They found that, at given a submergence of a circular cylinder, they were
not able obtain the steady solution within certain range of the Froude number. This
range reduced as the submergence increased and disappeared when the submergence
was sufficiently large. This was consistent with what was observed by Haussling &
Coleman (1979) using the time domain method. One should note that wave blocking
might occur when the local wave upstream meets the current and the total velocity
at the crest becomes zero. What has been observed and discussed by Haussling &
Coleman (1979) and Scullen & Tuck (1995) suggests that no steady solution can be
found near the blocking condition.

Scullen & Tuck (1995) also introduced a vortex located at the centre of the circular
cylinder. Through adjusting the circulation, they confirmed numerically that the wave
at the far downstream could virtually disappear and the wave resistance on the cylinder
became zero, which had been easily predicted by the linear theory.

Here, we present a fully nonlinear solution to the problem of an arbitrarily shaped
body which may be a cylinder or a hydrofoil, moving beneath the free surface, or
equivalently a fixed body in a uniform incoming current, in the presence of gravity.
In contrast to the method used by Faltinsen & Semenov (2008) for the doubly
connected domain, the cut used in the present formulation does not have to be a
streamline which has to intersect the smooth body at the stagnation point. We can
use an arbitrary line linking the body and the free surface for the cut. This greatly
simplifies the solution and the numerical procedure, and enables features of the flow
to be investigated more easily. A further development of this work is that we use the
apparatus of elliptic theta functions, which enables the problem in a doubly connected
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domain in the physical plane to be converted into a simply connected domain in the
parameter plane. In particular, a rectangle can be used in the latter, instead of the first
quadrant commonly adopted previously for simply connected domains (e.g. Semenov
& Wu 2013). Two of its parallel sides correspond two sides of the cut, on which a
periodic condition can be adopted.

Specifically, our solution method follows that proposed by Michell (1890),
Joukovskii (1890) for steady jet flows of an ideal fluid. The key step of the method
is to find the two governing functions: the complex velocity and the derivative of the
complex potential, both defined in an auxiliary parameter region. For the case of a
doubly connected flow domain these functions can be effectively obtained using the
mathematical apparatus of elliptic theta functions.

The problem is formulated in § 2, where the governing functions are derived. For
determination of the complex velocity, we have derived an integral formula for a
mixed boundary-value problem for an analytical function defined in the rectangular
auxiliary parameter region. This formula makes it possible to determine the analytical
function from values of its modulus and argument given on the horizontal sides of
the rectangle. The complex velocity obtained using this formula explicitly includes
the variation of the velocity modulus along the free boundary and the variation of the
velocity angle along the body as functions of the parameter variable. The system of
integral equations for the velocity angle along the body and the velocity magnitude
along the free surface are derived by imposing the kinematic and dynamic boundary
conditions.

In § 3, a method of successive approximations adopted to solve the integral
equations is outlined. The problem without gravity is first considered in § 3.1. As a
validation step for the problem with gravity, in § 3.2 comparisons are made between
the obtained results and those by Scullen & Tuck (1995). The results are presented
for the circular cylinder in terms of the free-surface elevation, streamline patterns and
force coefficients in a wide range of Froude numbers and depths of submergence.
Particular attention is given to small depths of submergence for which nonlinear
effects are most pronounced. In § 3.3 the solution procedure is adopted to predict
flow past a submerged hydrofoil. Conclusions are given in § 4.

2. Theoretical analysis

We consider a two-dimensional problem of the steady free-surface flow of infinite
depth past a submerged cylindrical body with characteristic length L. A definition
sketch is shown in figure 1(a). A Cartesian coordinate system XY is defined with the
origin at a point inside the body and the X-axis along the velocity direction of the
incoming flow with a constant speed U. The Y-axis points vertically upwards. The
fluid is assumed to be inviscid and incompressible, and the flow is irrotational. The
velocity potential theory can then be used in such a case. The body is assumed to
have an arbitrary shape which can be defined by the slope of the body as a function of
the arc length coordinate S, or βb= βb(S). The free surface is defined by the function
Y(X). In general, the free surface in the far upstream remains flat, while there will
be waves far downstream. The solution which we are seeking therefore has the limit
Y(X)X→−∞ = H, where H is submergence of the body, measured from the origin of
the coordinate system. The condition at far downstream, or X→∞ will be discussed
when the solution method is presented.

We will solve the problem through determining the complex potential of the flow,
W(Z) with Z = X + iY . For the steady flow, the kinematic conditions on the body
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FIGURE 1. (a) Physical plane and (b) parameter ζ -plane.

surface and the free surface mean that the streamfunction is constant, or Im[W(Z)] =
const., as they are both streamlines. However, the constant on the body surface may
be different from that on the free surface. The dynamic boundary condition on the
free surface is obtained from the Bernoulli equation

ρ
V2

2
+ ρgY = ρ

U2

2
+ ρgH, (2.1)

where U is the speed of the incoming stream, ρ is the liquid density, V = |dW/dZ|
is the magnitude of the velocity, g is the gravitational acceleration. Two different
Froude numbers can be defined based on the characteristic length L or the depth of
submergence H, respectively

F=
U
√

gL
, Fh =

U
√

gH
. (2.2a,b)

Using non-dimensionalization based on U, L, ρ, we have v = V/U, x = X/L, y =
Y/L, h=H/L and W(Z)=ULw(z). Equation (2.1) takes the form

v2
= 1−

2(y− h)
F2

. (2.3)

Equation (2.3) gives the velocity magnitude along the free surface as a function of
wave elevation y which is a function of x. When the gravity effect is ignored, or F→
∞, the velocity magnitude on the free surface is a constant.

2.1. General approach based on the hodograph method
Usually, finding the function w = w(z) directly is a complicated problem. Instead,
Michell (1890) and Joukovskii (1890) proposed the introduction of an auxiliary
parameter plane, or ζ -plane, which was typically chosen as the upper half-plane.
Then, they considered two functions, which were the complex potential w and the
function ω =−ln(dw/dz) in the parameter plane. When w(ζ ) and ω(ζ ) are obtained
as functions of ζ , the velocity field and the function mapping the parameter plane
onto the physical plane can be determined as follows:

dw
dz
= exp[−ω(ζ )], z(ζ )= z0 +

∫ ζ

0

dw
dz

/
dw
dζ

dζ , (2.4a,b)
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where z0 = z(0) in the physical plane corresponds to the origin in the ζ -plane.
The flow region beneath the free surface and outside the body is a doubly connected

domain. A canonical region of a doubly connected domain is an annulus. By making
a cut connecting the external and the internal circles of the annulus, the double
connected region becomes simply connected. As shown in figure 1(a), O−D+ and
O+D− are the two sides of the cut which could have an arbitrary shape, but form a
right angle with the flow boundary at both the body surface and the free surface. The
simply connected flow region including O−D+ and O+D− is then transformed into the
domain bounded by a rectangle O−O+D−D+ in the parameter plane. We choose the
rectangle as the parameter domain to provide conformal mapping at points O−, O+,
D−, D+. Indeed, the rectangle has the right angle at these points, the same as that
at the corresponding points in the physical plane. For other forms of the parameter
region, for which angles at points O−, O+, D−, D+ are different from a right angle,
a singularity will appear, which makes it more difficult to find the solution. We may
choose the coordinates of the rectangle vertices O−, O+, D−, D+ as (0, 0), (π, 0),
(π, πτ/4) and (0, πτ/4), respectively, in the parameter plane shown in figure 1(b).
Here, τ is an imaginary number. The horizontal length of the rectangle is then equal
to π and its vertical length is equal to π|τ |/4.

In the flow region, there are two stagnation points marked A, where two streamlines
merge into one, and B, where a streamline splits into two branches. Positions of these
points in parameter plane ζ , ζ = a, ζ = b as well as the position of point C, ζ =
c+πτ/4, corresponding to infinity in the physical plane, should be determined from
additional conditions. The interval 06 ξ 6π on the real axis corresponds to the body
boundary. The interval c < ξ 6 π, η = πτ/4 corresponds to part of the free surface
D−C−, and the interval 06 ξ < c, η=πτ/4, corresponds to the other part of the free
surface D+C+.

It should be noticed that points C− as x→−∞ and C+ as x→+∞ have been
transformed to the same point C in the parameter plane. As discussed in the first
paragraph of this section, y→ h at C− while it is a wavy function at C+. Thus some
treatments are needed to ensure they can become the same point in the parameter
plane. For this reason, in the region between points T1 and T2 in figure 1(a), an
artificial curved plate is placed on the free surface, which applies a pressure on the
surface. The logic of this method is that, for steady free-surface flow past a body in
infinite water depth, the body does not create a wave far upstream but it does far
downstream. If the artificial body is put sufficiently behind the physical body, it does
not affect the flow near the physical body significantly, as it does not generate a wave
there. On the other hand, when its shape is adjusted properly, the wave generated
by its presence can cancel the wave generated by the physical body far downstream,
leading to a flat surface as x→∞. This is similar to what is used by Faltinsen &
Semenov (2008). In Vanden-Broeck (2010) the fact that the free surface is infinite is
reflected in an integral derived, where the integration limit tends to infinity. The limit
is then truncated, which is equivalent to treating the free surface far downstream as
a flat surface. To adopt this technique here, we can also choose the artificial body to
be a flat plate. However, the plate has to be placed farther away than a curved body,
which changes the free surface gradually rather than abruptly.

The flux of wave energy downstream is related to the force applied to the fluid
(Wehausen & Liatone 1960; Newman 1977). If the total force due to the submerged
body and the artificial plate is zero, then there will be no wave at x→∞. As a
result, C+ and C− in the physical plane can be transformed to the same point C in
the parameter plane. The shape of the curved plate will be part of the solution. When
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Free-surface gravity flow due to a submerged body 883 A60-7

it is applied, the velocity magnitude v along T1T2 gradually tends to 1 towards x→ xT2,
and remains 1 beyond this, or xT2 6 x <∞. We should notice that the effect of the
artificial plate on the flow near the real body will diminish as xT1 increases. This is
because the plate will not generate waves at its far upstream.

When solving free boundary problems, the shape of the auxiliary parameter region
is usually chosen with the aim of obtaining the solution to the problem in the simplest
form with the minimal number of singular points at which the transformation of the
parameter region onto the complex potential w and the function dw/dz regions is not
conformal. In the case of a simply connected domain, the fluid region is commonly
converted to the first quadrant of the parameter plane or half-plane (e.g. Gurevich
1965). In the case of the doubly connected flow region here, the additional corner
points appear at the intersections of the two sides of the cut and the flow boundary.
To correspond to these corner points, it is more convenient to choose the parameter
plane in the form of a rectangle. On the other hand, when the integral equation is
constructed in the half-plane or the first quadrant, polynomial functions are usually
used. Here, for the rectangular domain, the polynomial functions will be replaced
by Jacobi’s theta functions (Abramowitz & Stegun 1964), which are quasi-doubly
periodic functions. Jacobi’s functions have been used to solve free-surface problems
involving doubly connected flow regions, for example by Birkhoff & Zarantonello
(1957), Gurevich (1965) and Terentiev, Kirschner & Uhlman (2011).

2.2. Expression for complex velocity, dw/dz, defined in the ζ -plane
At this stage, we denote the angle of the velocity direction along the body as βb(ξ)
and the velocity magnitude on the free surface as v(ξ). With these notations, we have
the following boundary-value problem for the function of complex velocity, dw/dz:∣∣∣∣dw

dz

∣∣∣∣= v(ξ), 0 6 ξ 6π, η=πτ/4, (2.5)

χ(ξ)= arg
(

dw
dz

)
=


−βb(ξ), 0 6 ξ < a, η= 0,
−βb(ξ)−π, a< ξ < b, η= 0,
−βb(ξ)− 2π, b< ξ 6π, η= 0,

(2.6)

dw
dz
(ξ = 0, iη)=

dw
dz
(ξ =π, iη), 0 6 iη6πτ/4. (2.7)

In (2.6), the argument of the complex velocity has jumps equal to −π at stagnation
points A (ζ = a) and B (ζ = b) due to the jump in the velocity direction when passing
through the stagnation point. The two vertical sides of the rectangle in the parameter
plane correspond to the two sides of the cut in the physical plane. The velocities on
both sides of the cut are the same and therefore the condition of periodicity can be
applied on the vertical sides of the rectangle.

The problem is to find the function dw/dz in the parameter domain, which satisfies
the given boundary conditions (2.5)–(2.7). Based on the Cauchy integral, it is possible
to derive an expression for dw/dz based on an integral along the boundary involving
only the given condition. Here, we may follow a different approach. With the aim of
applying the special points method (Gurevich 1965), we decompose the body surface
O−ABO+ in the parameter plane into N intervals Ej−1, Ej, with j = 1, . . . , N, and
assume that the argument of the velocity is piecewise constant, or χ(ξ) ≡ χj−1 for
ξ ∈ (ξj−1ξj), so that the velocity argument changes stepwise from χj−1 to χj at vertex Ej.
Here, ξ0=0 and ξN=π are defined. The order of the singularity of the function dw/dz
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883 A60-8 Y. A. Semenov and G. X. Wu

at point Ej can be determined by analysing the behaviour of its argument when we are
moving along an infinitesimal semi-circle centred at ξ = ξj in the counter-clockwise
direction, as shown in figure 1(b). In such a way, the argument of (ζ − ξj) changes
by π, while the corresponding change in the argument of dw/dz is −(χj − χj−1) =
−1χj. The theta function ϑ1(ζ ) (see appendix A) to be used to derive dw/dz has
only one simple zero at point ζ =0 in the rectangle O−O+D−D+ (Whittaker & Watson
1927), or ϑ1(ζ )∼ ζ near ζ = 0. The argument of function ϑ1(ζ − ξj) near point ζ = ξj,
arg[ϑ1(ζ − ζj)], behaves in the same way as arg(ζ − ξj). Therefore, near ζ = ξj, if we
write

dw
dz
∼ [ϑ1(ζ − ξj)]

−1χj/π, j= 1, . . . ,N, (2.8)

then the change of the argument of dw/dz is −1χj. Here (2.8) can be either zero or
singular, depending on the sign of the exponent. To take into account the change of
dw/dz over each ξj, we may write

dw
dz
∼

N∏
j=1

[ϑ1(ζ − ξj)]
−1χj/π, 1χ = χj − χj−1, j= 1, . . . .N, (2.9)

when z(ζ ) moves along the body surface. We also decompose the free surface
C−D−D+C+ into M intervals Fi−1Fi, with i= 1, . . . ,M, and assume that the velocity
modulus within each interval (ξ̃j−1, ξ̃j) is constant, v(ξ̃ ) ≡ vi. Similarly, the velocity
modulus changes stepwise from vi−1 to vi at point Fi. Here ξ̃0 = π and ξ̃M = 0
are defined. On the basis of the above consideration, we consider the properties
of the function (dw/dz)i = exp[−iω(ζ )] = exp(θ + i ln v), where θ = −arg(dw/dz),
and ω(ζ ) is defined in (2.4). The argument of this function is the logarithm of the
velocity modulus, and its magnitude is the exponent of the velocity argument. Thus,
moving along an infinitesimal semi-circle in the ζ -plane centred at ζi = ξ̃i + πτ/4
in the counter-clockwise direction, arg[ζ − (ξ̃i + πτ/4)] changes by π, while the
corresponding change in the argument of the function (dw/dz)i is −(ln vi − ln vi−1).
Therefore, the function behaves near point ζi = ξi +πτ/4 as(

dw
dz

)i

∼ [ϑ1(ζ − ξi −πτ/4)]−(1/π) ln (vi/vi−1), i= 1, . . . ,M. (2.10)

Similarly to (2.9), we may then write

dw
dz
∼

M∏
i=1

[ϑ1(ζ − ξi −πτ/4)](i/π) ln (vi/vi−1), i= 1, . . . ,M. (2.11)

We now construct the expression for the complex velocity based on (2.9) and (2.11).
Taking into account the requirement in (2.5) to (2.7), we may consider the following
function

f (ζ )=
N∏

j=1

(
ϑ1(ζ − ξj)

ϑ1(ζ − ξj −πτ/2)

)−1χj/π M∏
i=1

(
ϑ1(ζ − ξ̃i −πτ/4)

ϑ1(ζ − ξ̃i +πτ/4)

)(i/π)(vi/vi−1)

. (2.12)

The denominator has no zeros or singularities in the rectangle O−O+D−D+ and its
boundary, and therefore the zeros and singularities are those on the numerator, at ζ =
ξj, j= 1, . . . ,N and ζ = ξ̃i +πτ/4, i= 1, . . . ,M, respectively.
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Free-surface gravity flow due to a submerged body 883 A60-9

As ϑ1(ζ + π) = −ϑ1(ζ ) (see appendix A), equation (2.7) is satisfied. We let ζ =
ξ̃ + πτ/4 on the free surface. Noticing that the nominator and denominator of the
first product in (2.12) are complex conjugates as τ is an imaginary number, we have∣∣∣∣∣ϑ1(ξ̃ − ξj +πτ/4)

ϑ1(ξ̃ − ξj −πτ/4)

∣∣∣∣∣= 1. (2.13)

Similarly, for point ζ = ξ̃ +πτ/4 on the line D−D+, which is the mirror image of
the point ζ = ξ̃ −πτ/4 about O−O+ (see figure 1b), the second product in (2.12) can
be evaluated as

v0

M∏
i=1

∣∣∣∣∣∣
(

ϑ1(ξ̃ − ξ̃i)

ϑ1(ξ̃ − ξ̃i +πτ/2)

)(i/π) ln (vi/vi−1)
∣∣∣∣∣∣ = v0 exp

{
M∑
1

ln
vi

vi−1
H(ξ̃i − ξ̃ )

}

= v0 exp

{
k∑
1

ln
vi

vi−1

}
= vk, (2.14)

where H(ξ̃i − ξ̃ ) is the Heaviside step function. We can then verify that boundary
conditions in (2.5) and (2.6) are satisfied by f (ζ ) apart from a constant. Thus, the
complex velocity may be written as

dw
dz
=C

N∏
j=1

(
ϑ1(ζ − ξj)

ϑ1(ζ − ξj −πτ/2)

)−1χj/π M∏
i=1

(
ϑ1(ζ − ξ̃i −πτ/4)

ϑ1(ζ − ξ̃i +πτ/4)

)(i/π)(vi/vi−1)

, (2.15)

in which C is a complex constant.
The products in (2.15) can be recast in the exponential form. We have

dw
dz
= C exp

[
−

1
π

N∑
1

1χj ln
ϑ1(ζ − ξj)

ϑ1(ζ − ξj −πτ/2)

+
i
π

M∑
1

1 ln vi ln
ϑ1(ζ − ξ̃ −πτ/4)

ϑ1(ζ − ξ̃ +πτ/4)
+ iχ(π)

]
. (2.16)

By letting 1χj = (dχ/dξ)/1ξj and 1 ln vi = ln(vi/vi−1)= (d ln v/dξ)1ξi, and taking
the limit as the step 1ξ in the argument and modulus of the velocity tends to zero
and, correspondingly, N→∞ and M→∞, we obtain the integral formula

dw
dz
= v(π) exp

[
−

1
π

∫ π

0

dχ
dξ

ln
(

ϑ1(ζ − ξ)

ϑ1(ζ − ξ −πτ/2)

)
dξ

+
i
π

∫ 0

π

d ln v
dξ

ln
(
ϑ1(ζ − ξ −πτ/4)
ϑ1(ζ − ξ +πτ/4)

)
dξ + iχ(π)

]
, (2.17)

which gives an expression for the mixed boundary-value problem (2.5)–(2.7) in the
rectangle O−O+D−D+ based on the argument, arg[dw/dz]ζ=ξ,η=0 = χ(ξ), 0 6 ξ 6 π,
η= 0 and the modulus, |dw/dz|ζ=ξ,η=πτ/4= v(ξ). The important thing to notice here is
that the right-hand side involves only those boundary values prescribed, either modulus
or argument, and not the unknown part. Therefore, dw/dz can be obtained directly
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883 A60-10 Y. A. Semenov and G. X. Wu

once these prescribed values are known. The complex constant C in (2.17) can be
determined using the value of the argument of the function dw/dz at point O+ (ζ =π)
and its modulus at point D− (ζ =π+πτ/4). We note, that the integral formula (2.17)
derived for the complex velocity, dw/dz, can be used to solve boundary-value problem
(2.5)–(2.7) for an arbitrary complex function. By substituting the boundary conditions
(2.5) and (2.6) into (2.17) and evaluating the first integral over the step change in the
function χ(ξ) at points ξ = a and ξ = b, we obtain the expression for the complex
velocity in the rectangle O−O+D−D+

dw
dz
= vD

ϑ1(ζ − a)ϑ1(ζ − b)
ϑ4(ζ − a)ϑ4(ζ − b)

exp
[

1
π

∫ π

0

dβb

dξ
ln
ϑ1(ζ − ξ)

ϑ4(ζ − ξ)
dξ

+
i
π

∫ 0

π

d ln v
dξ

ln
ϑ1(ζ − ξ −πτ/4)
ϑ4(ζ − ξ −πτ/4)

dξ − iβO

]
, (2.18)

where βO− is the angle at point O− which is zero if point O− is the highest point of
the body. Here, the relations between the theta functions ϑ1(ξ) and ϑ4(ξ) have been
used (see appendix A). The constant vD or the velocity magnitude at point D+, is
determined by satisfying the velocity at infinity, ζ = c+ πτ/4, which is 1, as it has
been chosen as the reference velocity, or∣∣∣∣dw

dz

∣∣∣∣
ζ=c+πτ/4

= 1. (2.19)

2.3. Expression for derivative of the complex potential, dw/dζ
For steady flows, the streamfunction ψ = Im(w) takes constant values along the body
and the free surface. According to Chaplygin’s special point method (see Gurevich
(1965), chapter 1(5)), to determine the function w = w(ζ ), it is sufficient to analyse
all special points where the mapping is not conformal. These are stagnation points
A (ζ = a) and B (ζ = b) and point C (ζ = c+ πτ/4) corresponding to infinity in w-
plane. The order of w(ζ ) at these points can be determined by analysing the behaviour
of the argument of w(ζ ) in the vicinity of these points.

Moving in the counter-clockwise direction around an infinitesimal semi-circle
centred at the point ζ = a, arg(ζ − a) changes by π while the corresponding change
of arg(w−wA) in the w-plane is 2π. This means that the function w(ζ ) behaves as

w−wA ∼ θ
2
1 (ζ − a) (2.20)

near point A. Similarly, at the stagnation point B (ζ = b), the function w(ζ ) behaves
as

w−wB ∼ θ
2
1 (ζ − b). (2.21)

Moving in the counter-clockwise direction around an infinitesimal semi-circle
centred at the point ζ = c + πτ/4, arg(ζ − c − πτ/4) increases by π, while
arg(w − wC) of the semi-circle of an infinite radius linking points C+ and C− in
the w-plane decreases by π. Therefore, the function w(ζ ) behaves as

w−wC ∼ θ
−1
1 (ζ − c−πτ/4). (2.22)

According to the symmetry principle, to satisfy the boundary condition Im(w) =
const. on the flow boundary, it is necessary to put special points of the same order
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Free-surface gravity flow due to a submerged body 883 A60-11

at points A′ (ζ = a+πτ/2) and B′ (ζ = b+πτ/2), which are respectively symmetry
points of A and B with respect to the side D−D+, and at point C′ (ζ = c − πτ/4)
which is the symmetry point of C with respect to side O−O+.

By differentiating the function w(ζ ), we obtain the derivative dw/dζ which has the
following zeros and poles:

θ1(ζ − a), θ1(ζ − b), θ−2
1 (ζ − c−πτ/4),

θ1(ζ − a−πτ/2), θ1(ζ − b−πτ/2), θ−2
1 (ζ − c+πτ/4)

}
(2.23)

on boundaries of the rectangle and their symmetry lines. Similar to dw/dz, we may
construct dw/dζ in the following form:

dw
dζ
=K ′e−i2(ζ−c)ϑ1(ζ − a)ϑ1(ζ − a−πτ/2)ϑ1(ζ − b)ϑ1(ζ − b−πτ/2)

ϑ2
1 (ζ − c−πτ/4)ϑ2

1 (ζ − c+πτ/4)
, (2.24)

where K ′ is a real scale factor. The term e−i2(ζ−c) is introduced into the above equation
to satisfy kinematic boundary condition on the body and the free surface. In fact, on
the free surface, ζ = ξ̃ +πτ/4, equation (2.24) takes the form

dw
dζ
= K ′q−1/2e−i2(ξ̃−c)

×
ϑ1(ξ̃ − a+πτ/4)ϑ1(ξ̃ − a−πτ/4)ϑ1(ξ̃ − b+πτ/4)ϑ1(ξ̃ − b−πτ/4)

ϑ2
1 (ξ̃ − c)ϑ2

1 (ξ̃ − c+πτ/2)
.

(2.25)

We notice that ϑ1(ξ̃ − ξ̃
′
+ πτ/4) and ϑ1(ξ̃ − ξ̃

′
− πτ/4) are complex conjugates to

each other and
ϑ1(ξ̃ − c+πτ/2)= iq−1/4e−i(ξ̃−c)ϑ4(ξ̃ − c). (2.26)

Thus,
Im(dw)= Im[(dw/dζ )ζ=ξ̃+πτ/4 dξ̃ ] = 0. (2.27)

On the body surface, ζ = ξ , we may use

ϑ1(ζ −πτ/2)=−iq1/4eiζϑ4(ζ ) (2.28)

to write (2.24) as

dw
dζ
=Kei(2c−a−b)ϑ1(ξ − a)ϑ4(ξ − a)ϑ1(ξ − b)ϑ4(ξ − b)

ϑ2
1 (ξ − c−πτ/4)ϑ2

1 (ξ − c+πτ/4)
, (2.29)

where K = K ′q−1. The numerator is real following the definitions of the functions
ϑ1(ζ ) and ϑ4(ζ ). The denominator is also real since ϑ2

1 (ξ − c − πτ/4) and ϑ2
1 (ξ −

c+πτ/4) are complex conjugate quantities. Thus,

Im(dw)= Im[(dw/dζ )ζ=ξ dξ ] = 0, (2.30)

if 2c− a− b= 0 which will be shown later. Using this, equation (2.29) becomes

dw
dζ
=K

ϑ1(ζ − a)ϑ4(ζ − a)ϑ1(ζ − b)ϑ4(ζ − b)
ϑ2

1 (ζ − c−πτ/4)ϑ2
1 (ζ − c+πτ/4)

. (2.31)
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883 A60-12 Y. A. Semenov and G. X. Wu

Dividing (2.31) by (2.18), we obtain the derivative of the mapping function as

dz
dζ
=

K
vD

θ 2
4 (ζ − a)θ 2

4 (ζ − b)
θ 2

1 (ζ − c−πτ/4)θ 2
1 (ζ − c+πτ/4)

× exp
[
−

1
π

∫ π

0

dβb

dξ
ln
θ1(ζ − ξ)

θ4(ζ − ξ)
dξ

−
i
π

∫ 0

π

d ln v
dξ

ln
θ1(ζ − ξ −πτ/4)
θ4(ζ − ξ −πτ/4)

dξ + iβO

]
(2.32)

whose integration along the intervals 0 6 ξ < c and c < ξ 6 π at η = πτ/4 in the
ζ -plane provides the parts D+C+ and D−C− of the free surface C−C+ in the ζ -plane,
respectively. The parameters a, b, c, τ and K, and the functions βb(ξ) and d(ln v)/dξ
have to be determined from physical considerations and the kinematic boundary
condition on the body surface and the dynamic boundary conditions on the free
surface.

2.4. System of equations for parameters a, b, c, τ and K
At infinity, point C−C+ (ζC = c + πτ/4), the velocity approaches unity (since this
velocity is chosen as the reference velocity) and its direction is along the x-axis.
Therefore, the argument of the complex velocity (2.18) at point ζC should be equal
to zero

arg
(

dw
dz

)
ζ=ζC

= 1. (2.33)

The scale factor K is determined by the length Sb which is the perimeter of the body
cross-section ∫ π

0

dsb

dξ
dξ = Sb, (2.34)

where
dsb

dξ
=

∣∣∣∣ dz
dζ

∣∣∣∣
ζ=ξ

. (2.35)

The free surface on the left- and right-hand sides at infinity has the same value of
y-coordinate. This is also equivalent to the fact that the streamfunction ψ = Im(w)
is continuous across the cut, or Im(wD−) − Im(wD+) = 0. By integrating Im(dw/dζ )
along D−D+ passing the point ζC along a semi-circle C′ of an infinitesimal radius ε,
at which dw/dζ in (2.31) has the second-order singularity, we have

Im
(∫ c+ε

π

dw
dζ

dζ +
∮

C′

dw
dζ

dζ +
∫ 0

c−ε

dw
dζ

dζ
)

= Im
(∮

C′

dw
dζ

dζ
)
= Im

(
iπ Res

ζ=ζC

dw
dζ

)
= Im

{
iπ

d
dζ

[
dw
dζ
(ζ − ζC)

2

]
ζ=ζC

}
. (2.36)

Here, the first and third terms on the left-hand side are zero because Im(w)= const.
on the free surface. From this equation it follows that

a+ b= 2c. (2.37)
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Free-surface gravity flow due to a submerged body 883 A60-13

The depth of submergence, h, and the flow rate, Q, between the body and the free
surface are related. Therefore, instead of a condition for the depth h, we can use the
following condition for the given flow rate Q, which is the integral of the derivative
of the complex potential along the side O−D+

Im
(∫ πτ/4

0

dw
dζ

dζ
)
=Q. (2.38)

We may place a vortex with circulation Γ at the centre of the cylinder, which can
be non-dimensionalized as γ =Γ /(2πUL). For a circular cylinder, this does not affect
the impermeable body surface boundary condition, but does change the positions of
the stagnation points and also affects the free-surface boundary. For a hydrofoil, γ
should be determined through the Kutta condition at the trailing edge.

Integrating dw/dζ along the body surface in the parameter plane, we have

Re
(∫ π

0

dw
dζ

dζ
)
= 2πγ . (2.39)

In the case γ 6= 0, the real part of the potential, φ = Re(w), has a jump on the
sides O−D− and O+D+ of the cut, while the complex velocity, dw/dz and the stream
function ψ = Im(w) are still continuous across the cut.

Equations (2.33)–(2.39) allow us to determine the unknown parameters a, b, c, τ
and K, which appear in the governing equations (2.18), (2.31) and (2.32), once the
functions v(ξ) and βb(ξ) are specified.

2.5. Integro-differential equations for functions βb(ξ) and v(ξ)
2.5.1. Kinematic boundary condition on the body surface

By integrating the modulus of the mapping function (2.32) along the side O−O+ in
the parameter plane, we can obtain the spatial coordinate along the body as a function
of the parameter variable

sb(ξ)=

∫ ξ

0

dsb

dξ ′
dξ ′, (2.40)

where dsb/dξ = |dz/dζ |ζ=ξ,η=0. Since the function βb(sb) is known, the function βb(ξ)

can be determined from the following integro-differential equation:

dβb

dξ
=

dβb

dsb

dsb

dξ
. (2.41)

By substituting dz/dζ from (2.32), this equation takes the form

dβb

dξ
= κ[sb(ξ)]

K
vD

∣∣∣∣ θ 2
4 (ξ − a)θ 2

4 (ξ − b)
θ 2

1 (ξ − c−πτ/4)θ 2
1 (ξ − c+πτ/4)

∣∣∣∣
× exp

[
−

1
π

∫ π

0

dβb

dξ ′
ln
θ1(ξ − ξ

′)

θ4(ξ − ξ ′)
dξ ′ −

i
π

∫ 0

π

d ln v
dξ ′

ln
θ1(ξ − ξ

′
−πτ/4)

θ4(ξ − ξ ′ −πτ/4)
dξ ′
]
,

(2.42)

where κ(sb)= dβb/dsb is the curvature of the body.
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883 A60-14 Y. A. Semenov and G. X. Wu

2.5.2. Nonlinear boundary condition on the free surface: integral equation for the
function d ln v/dξ

The velocity magnitude on the free surface can be obtained from the Bernoulli
equation (2.3) in an iterative manner using the initial guess y(ξ)= h and

v(ξ)=

√
1−

2(y(ξ)− h)
F2

. (2.43)

Then, at each branch of the free surface, C−D− (c < ξ 6 π) and C+D+ (0 6 ξ < c),
its elevation can be obtained from

y(ξ){c<ξ6π,06ξ<c} = yD + Im

(∫ ξ

{π,0}

dz
dζ

∣∣∣∣
ζ=ξ+πτ/4

dξ

)
, (2.44)

where the integrand can be obtained from (2.32), and yD is the vertical coordinate of
point D and can be obtained from

yD = Im

(
i
∫ π|τ |/4

0

dz
dζ

∣∣∣∣
ζ=iη

dη

)
. (2.45)

This iteration converges well for the part C−D− of the free surface for which y(ξ)
changes monotonically, if D is chosen appropriately. For the wavy part C+D+,
convergence of the iteration is more difficult to achieve, which requires us to apply
a more sophisticated approach.

Differentiating (2.3) with respect to the arc length coordinate along the free surface
and taking into account that the slope of the free surface δ = arcsin(dy/ds)= π+ β
is the angle between the unit tangential vector τ and the x-axis, we obtain

F2v2 d ln v
ds
− sin β = 0, (2.46)

where the velocity direction β can be determined from (2.18) by putting ζ = ξ +
πτ/4,

β(ξ) = βO − Im
{

ln
ϑ1(ξ − a+πτ/4)ϑ1(ξ − b+πτ/4)
ϑ4(ξ − a+πτ/4)ϑ4(ξ − b+πτ/4)

−
1
π

∫ π

0

dβb

dξ ′
Im
[

ln
ϑ1(ξ − ξ

′
+πτ/4)

ϑ4(ξ − ξ ′ +πτ/4)

]
dξ ′

−
1
π

∫ 0

π

d ln v
dξ ′

ln
∣∣∣∣ϑ1(ξ − ξ

′)

ϑ4(ξ − ξ ′)

∣∣∣∣ dξ ′
}
. (2.47)

Using the relationships
dv
ds
= v

d ln v
dξ

/
ds
dξ
, (2.48)

and

ds
dξ
=

∣∣∣∣ dz
dζ

∣∣∣∣
ζ=ξ+πτ/4

=
1
v(ξ)

∣∣∣∣dw
dζ

∣∣∣∣
ζ=ξ+πτ/4

=
K
v(ξ)

∣∣∣∣θ 2
4 (ξ − a+πτ/4)θ 2

4 (ξ − b+πτ/4)
θ 2

1 (ξ − c)θ 2
4 (ξ − c)

∣∣∣∣ .
(2.49)
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Free-surface gravity flow due to a submerged body 883 A60-15

We can rewrite (2.46) with the following integral equation in terms of the function
d ln v/dξ over the interval 0 6 ξ < c:

F2v3 d ln v
dξ
+ P1(ξ) sin

[
1
π

∫ 0

π

d ln v
dξ ′

ln
∣∣∣∣θ1(ξ − ξ

′)

θ4(ξ − ξ ′)

∣∣∣∣ dξ ′ + P2(ξ)

]
= 0, (2.50)

where

v(ξ)= vD exp
(∫ ξ

0

d ln v
dξ ′

dξ ′
)
, P1(ξ)=K

∣∣∣∣θ 2
4 (ξ − a+πτ/4)θ 2

4 (ξ − b+πτ/4)
θ 2

1 (ξ − c)θ 2
4 (ξ − c)

∣∣∣∣ ,
(2.51a,b)

P2(ξ) = Im
{

ln
θ1(ξ − a+πτ/4)θ1(ξ − b+πτ/4)
θ4(ξ − a+πτ/4)θ4(ξ − b+πτ/4)

}
+

1
π

∫ π

0

dβb

dξ ′
Im
{

ln
θ1(ξ − ξ

′
+πτ/4)

θ4(ξ − ξ ′ +πτ/4)

}
dξ ′ − βO. (2.52)

The velocity modulus function v(ξ) is determined by (2.43) for c < ξ 6 π and by
(2.50) for 0 6 ξ < c.

2.6. Numerical approach
Discretization of the body and the free surfaces in the ζ -plane. In the discrete form,
the solution is sought on a fixed set of points ξj, j= 1, . . . , N distributed along the
side O−O+, 06 ξj 6π, η= 0 and a fixed set of points ξ̃i distributed along the intervals
c+ ε6 ξ̃i 6π, i= 1, . . . ,M1 and 06 ξ̃i 6 c− ε, i=M1+ 1, . . . ,M on the side D−D+,
η = πτ/4. These intervals correspond to parts D−C− and D+C+ of the free surface
C−C+.

The value of ε is chosen to provide the length of the free surface C+D+ such that
xT1 > 5λ, where λ= 2πF2 is the wavelength predicted by a linear theory. The number
of nodes on the body and the free surface are chosen in the range N = 100–300 and
M = 500–1000, respectively, based on the requirement of convergence and accuracy
of the solution. For all calculated examples, the difference between the results from
the above ranges of N and M starts from the fourth figure only. The points ξj are
distributed in a way to provide a higher density of points sj = sb(ξj) near stagnation
points A (ζ = a) and B (ζ = b). We have ξj = a[1 − cos(π( j − 1)/(NA − 1))]/2, j =
1, . . . , NA, ξj = a+ (b− a)[1− cos(π( j− NA)/(NB − NA))]/2, j= NA + 1, . . . , NB and
ξj = b+ (π− b)[1− cos(π( j−NB)/(N −NB))]/2, j=NB + 1, . . . ,N, where NA =N/4
and NB = 3N/4.

The distribution of the points ξ̃i is chosen similarly to provide a higher density of
points si = s(ξ̃i) on the free boundary closer to the body.

Discrete form of the integro-differential equation for the function βb(ξ). The
integrals in the equations are evaluated using the linear interpolation of the functions
βb(ξ) and ln v(ξ̃ ) on the segments (ξj−1, ξj) and (ξ̃i−1, ξ̃i), respectively. Then, the
integrals in (2.18) are evaluated numerically over each segment using trapezoidal
rule.

The method of successive approximations is adopted for solving integro-differential
equation (2.42) and integral equation (2.50). In the discrete form, equation (2.42)
becomes

(1βb)
(k+1)
j

1ξj
=
βb[s

(k)
b (ξj)] − βb[s

(k)
b (ξj−1)]

1ξj
, j= 1, . . . ,N, (2.53)
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where the arc length along the body, s(k)b (ξ), is evaluated using (2.40) with
(1βbj/1ξj)

(k) known at the (k)th iteration. The iteration process converges very
fast. After 5 to 10 iterations the error is below a prescribed tolerance of 10−6.

Distribution of the velocity magnitude in the transition region xT1 6 x 6 xT2. In the
ζ -plane, interval (xT1, xT2) corresponds to the interval (ξ̃T1, ξ̃T2). The integral equation
(2.50) is solved over the interval 0 6 ξ̃ < ξ̃T1 and, due to the radiation condition
adopted in the present method, the velocity magnitude at point T2 should be v(xT2)=1.
Therefore, in the transition region, xT1 6 x 6 xT2 we use a one parameter family for
the velocity distribution

v(x)=
{
vT1 + (1− vT1)x+ Av sin(2πx) exp(−x), 0 6 x 6 1,
1, 1< x<∞,

(2.54)

where x = (x − xT1)/(xT2 − xT1) and Av is a parameter. The velocity distribution on
the interval (ξ̃T1, c) that is downstream of the point T1 does not significantly affect
the free surface near the body. This effect will diminish when xT1 is sufficiently large.
The parameter Av in (2.54) is chosen to further reduce this effect and obtain zero
slope of the free surface at point xM1+1, or β(ξ̃M1+1)= 0.

The discrete form of the integral equation for the function d ln v/dξ . In the discrete
form (2.46) can be written as follows:

F2(v3
i )
(k)1(ln v)

(k+1)
i

1φi
− β

(k+1)
i = sin β(k)i − β

(k)
i . (2.55)

Due to nonlinearity of (2.55), it is solved through an iteration procedure. The system
of linear equations to determine the unknown 1 ln vj at the (k+ 1)th iteration can be
written as follows:

aij1 ln vj = bj, i, j= 1, . . . , n, (2.56)

where n=M −MT is the number of nodes ξ̃i between points D+ and T1, ξ̃MT = ξ̃T1,

aij = Aij + δijF2(v3
i )
(k) 1
1φi

, v
(k)
i =

v
(k)
i−1 + v

(k)
i

2
, ξ i =

ξ̃i−1 + ξ̃i

2
, δij =

{
1, i= j,
0, i 6= j.

(2.57a−d)

Aij =
1

π1ξ̃j

∫ ξ̃j

ξ̃j−1

ln

∣∣∣∣∣ϑ1(ξ i − ξ̃
′)

ϑ4(ξ i − ξ̃
′)

∣∣∣∣∣ dξ̃ ′, 1φi =Re
(

dw
dζ

)
ζ=ξ i

1ξ̃i, (2.58)

bi = sin β(k)i +

MT∑
1

Aij1 ln v(k)j , β
(k)
i =−

M∑
1

Aij1 ln v(k)j + Bi, (2.59)

Bi = βO− − Im
{

ln
ϑ1(ξ i − a+πτ/4)ϑ1(ξ i − b+πτ/4)
ϑ4(ξ i − a+πτ/4)ϑ4(ξ i − b+πτ/4)

}
−

N∑
1

1βjIm

{
1

π1ξ̃j

∫ ξ̃j

ξ̃j−1

ln

∣∣∣∣∣ϑ1(ξ i − ξ̃
′
+πτ/4)

ϑ4(ξ i − ξ̃
′ +πτ/4)

∣∣∣∣∣
}
. (2.60)

The iteration procedure is constructed as follows.

(i) Functions βb(ξ) and v(ξ) are initialized as βb(ξ)= 2ξ , 0 6 ξ 6 π and v(ξ)≡ 1,
together with parameter Av = 0.
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Free-surface gravity flow due to a submerged body 883 A60-17

(ii) Equation (2.53) is solved by iteration for a given function v(ξ). For each iteration,
equations (2.33)–(2.39) are solved to update a, b, c, K and τ , respectively.

(iii) Apply external iteration to update v(ξ) by solving the system of (2.56).
(iv) Return to (ii) and continue until the free-surface shape downstream has

converged.
(v) Update the velocity distribution upstream using (2.43) and (2.44) and return to

(ii) until the velocity magnitude along the whole free surface has converged.

3. Results and discussion

The formulation of the problem and its solution procedure developed in § 2 makes
it possible to consider a smooth body of an arbitrary shape as well as a body with a
sharp corner, such as a hydrofoil with a sharp trailing edge. For the former we shall
use a circular cylinder for our case study. Its radius R is chosen as the characteristic
length in the definition of the Froude number. We shall discuss below the features of
the flow for different Froude numbers and depths of submergence.

3.1. Flow past a submerged circular cylinder without gravity
The solution procedure is applied to solve the free-surface flow past a circular cylinder
beneath the free surface without the effect of gravity. In such a case F=∞ and (2.3)
can be simplified as v(ξ) ≡ 1. As the magnitude of the velocity is known on the
free surface, only integro-differential equation (2.42), together with nonlinear equations
(2.33)–(2.39) has to be solved to determine the function βb(ξ). Figure 2 shows the
streamline patterns at different circulations γ due to a vortex located at the centre of
the cylinder. Due to the symmetry of the cylinder, these lines are symmetric about
x= 0.

The zero streamline is the line that passes through the stagnation point. It therefore
splits into two lines at point B, which merge into one at point A. These two stagnation
points are clearly shown in the figure. We may investigate the behaviour of the free
surface at infinity using (2.44) in which Im(dz/dζ )ζ=ξ+πτ/4 = ds/dξ sin β

y(ξ)= yD +

∫ ξ

0
sin β

ds
dξ

dξ, ξ→ c, (3.1)

where sin β = dy/ds, and s is the arc length along the free surface. The behaviour of
β(ξ) on the free surface can be determined evaluating the leading order as ξ→ c. By
taking into account (2.33), β(ξ)ξ=c= 0, from (2.47) for ξ→ c we can obtain from the
Taylor expansion

β(ξ)∼ B1(ξ − c), ξ→ c, (3.2)

where

B1 = −Im
{
ϑ ′1(c− a+πτ/4)
ϑ1(c− a+πτ/4)

+
ϑ ′1(c− b+πτ/4)
ϑ1(c− b+πτ/4)

−
ϑ ′4(c− a+πτ/4)
ϑ4(c− a+πτ/4)

−
ϑ ′4(c− b+πτ/4)
ϑ4(c− b+πτ/4)

}
− Im

{
1
π

∫ π

0

dβb

dξ ′
[ϑ ′1(c− ξ

′
+πτ/4)− ϑ ′4(c− ξ

′
+πτ/4)] dξ ′

}
(3.3)
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FIGURE 2. Streamline patterns for a submerged circular cylinder at the flow rate Q=1 for
different circulations: (a) 2πγ = 0; (b) 2πγ = 3; (c) 2πγ =−3; (d) 2πγ = 7.5; (e) 2πγ =
−7.5.

and the dash on the theta function means the derivative. The leading order of the
derivative ds/dξ is obtained from (2.49) taking into account that the function ϑ1(ξ − c)
along the free surface has a simple zero at ξ = c

ds
dξ
=

1
v(ξ)

∣∣∣∣Kϑ2
4 (ξ − a+πτ/4)ϑ2

4 (ξ − b+πτ/4)
ϑ2

1 (ξ − c)ϑ2
4 (ξ − c)

∣∣∣∣
∼

K1

v(c)ϑ2
1 (ξ − c)

∼
K1

(ξ − c)2
, ξ→ c, (3.4)

where

K1 =

∣∣∣∣Kϑ2
4 (c− a+πτ/4)ϑ2

4 (c− b+πτ/4)
θ 2

4 (0)

∣∣∣∣ . (3.5)

By using (3.2) and (3.4), from (3.1) can be obtained

y(ξ)∼C1 ln |ξ − c|, ξ→ c, (3.6)

where C1 = B1/K1, and from (3.4)

s(ξ)∼−K1/(ξ − c), ξ→ c. (3.7)
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FIGURE 3. The streamline patterns for submerged circular cylinder at the flow rate Q=
10 for different circulations: (a) 2πγ = 0; (b) 2πγ = 3; (c) 2πγ = −3; (d) 2πγ = 7.5;
(e) 2πγ =−7.5.

By eliminating the parameter ξ from (3.6) and (3.7), we obtain

y(s)∼−C1 ln |s|, |s|→∞. (3.8)

If the constant C1 = B1/K1 6= 0, the y-coordinate of the free surface tends to infinity
for |s|→∞. However, the value of coefficient B1 in (3.3) very much depends on the
combination of the parameters a, b, c determined from the system of (2.33), (2.37)
and (2.39).

Streamline patterns for a submerged circular cylinder at the flow rate Q = 1 for
different circulations are shown in figure 2. The free-surface elevation in figure 2(a)
varies slowly in both directions away from the body, although it may not be obviously
graphically visible. Figures 2(b) and 2(d) show streamlines for γ = 3/(2π) and γ =
7.5/(2π), respectively. Both stagnation points move towards the lower part of the
cylinder, and the free-surface elevation at infinity tends to −∞. For the circulation
γ = −3/(2π) and γ = −7.5/(2π), the stagnation points move towards each other
on the upper part of the cylinder, and the y-coordinate of the free surface tends to
+∞ at infinity. The flow patterns for larger flow rate Q are shown in figure 3, which
corresponds to large y(x)x=0, or the distance between the free surface right above the
body and its centre. As expected, the effects of the body and circulation on the local
free-surface elevation become smaller than for the case shown in figure 2.
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FIGURE 4. Lift force versus circulation for different flow rates between the body and
the free surface: Q= 0.5 (dash-dotted line), Q= 1.0 (dotted line), Q= 2.0 (dashed line),
Q= 20 (solid line).

The force acting on the body can be obtained from the Blasius–Chaplygin theorem

Rf = Xf − iYf =
iρU2R

2

∮
Cb

(
dw
dz

)2

dz=−
iρU2R

2

∫ π

0

dw
dz

dw
dζ

dζ , (3.9)

where Cb is a closed contour enclosing the body and the integration follows the
positive (anti-clockwise) direction. The sign ‘−’ in the last term appears due to the
fact that integration route in the parameter plane from point O− to O+ is in the
opposite direction. Drag and lift coefficients are defined as follows:

CD =
2Xf

ρU2R
, CL =

2Yf

ρU2R
. (3.10a,b)

The dependences of the lift coefficient on circulation 2πγ at different Q are shown
in figure 4. For the large Q corresponding to large y(0), the lift coefficient CL/2→
−2πγ , which corresponds to the Kutta–Joukovskii theorem in the case without a free
surface. For smaller Q, corresponding to smaller y(0), the lift coefficient is smaller.
Note, that the drag force is zero due to the symmetry of the flow about the y-axis.

3.2. Flow past a submerged circular cylinder with gravity
For the case with gravity, we first reconsider those cases in Scullen & Tuck (1995),
and their results obtained from the numerical method will be used for comparison.

The complete solution procedure presented in § 2.6 is used to predict the flow
with gravity. For verification purposes we compare the obtained solution with the
Scullen & Tuck (1995) results based on their numerical method. They represented
the flow potential as a superposition of the potentials corresponding to the uniform
flow, sources/sink and vortices placed on the surfaces external to the fluid domain.
The singularities due to the sources were distributed at some distance over the free
surface and within the circular cylinder close to its boundary. By using the dynamic
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FIGURE 5. Free-surface profiles for Froude number F = 2.75 and depth of submergence
h= 7.55, or Fh= 1, at different circulations: (a) γ = 0, (solid line), (b) γ = 0.5γ0 (dashed
line), (c) γ = γ0 (dotted line). Symbols correspond to the Scullen & Tuck (1995) results
and the lines to the present ones.

and kinematic boundary conditions, the problem was reduced to a system of nonlinear
equations solved by the Newton method. Scullen & Tuck (1995) presented results for
various Froude numbers at depths of submergence h > 4.

In figure 5 we show the free-surface profiles for the Froude number F = 2.75 and
depth of submergence h = 7.55, which gives Fh = 1. They are compared with those
of Scullen & Tuck (1995), shown by the symbols. The circulation γ0=Γ0/(2πUR)=
1/F2 is the one at which the solution from the first approximation theory is waveless
far downstream or x→∞, and it predicts zero drag force (Tuck & Tulin 1992). As
can be seen from figure 5, the present results are in an excellent agreement with those
of Scullen & Tuck (1995).

Further calculations are made for different submergences and Froude numbers. The
free-surface profiles are shown in figure 6, in which the x-coordinate is scaled by
λ= 2πF2, the wavelength from the linear theory. The centre of the cylinder is shown
by the solid circle. For Froude numbers F = 5 and F = 3, shown in figures 6(a)
and 6(b), respectively, the wave amplitude initially increases when h decreases, reaches
a maximum value at a submergence h= hm and then decreases as the cylinder further
approaches the free surface. For h< hm the free-surface elevation above the cylinder
is higher than the wave peak downstream. At very small depth, the downstream wave
almost disappears. Note that, for h< 1, the top of the cylinder is above the still water
level. Due to inertia of the incoming liquid, the free surface rises near the cylinder,
and the liquid between the zero streamline and the free surface passes the top of the
cylinder. Then it moves down along the cylinder and merges with the main stream.
Such flow may occur for those Froude numbers and submergences h< 1, for which
the free-surface elevation y− h<F2/2, equivalent to the condition v > 0 on the whole
free surface.

For Froude number F= 2 in figure 6(c), the free surface is less disturbed than that
in the case of larger Froude number when h> 15. However, at smaller submergence,
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FIGURE 6. Free-surface profiles for different depths of submergence and Froude numbers:
(a) F= 5, (b) F= 3, (c) F= 2, (d) F= 1.

or h< 6.2, the wave height becomes larger. The curve for h= 3.93 corresponds to the
smallest depth of submergence for which the converged solution could be obtained
from the iteration process. For the velocity magnitude equal to 0.5 at the wave crest,
the wave elevation therefore is 75 % of the maximal possible elevation corresponding
to v=0. As can be seen, for the case of h=3.93, the wave crest becomes sharper than
the wave trough, and wave elevation departs from the sinusoidal curve, showing the
important nonlinear effect. As the wave height increases, and the wavelength becomes
smaller, which is consistent with nonlinear dispersion relationship (e.g. Lamb (1932),
art. 250). As the submergence further decreases, the wave steepness becomes larger.
However, the results shown are for the cases within limit for which non-breaking
waves can exist. Near or beyond the limit, the steady solution was not found, which
was also observed and discussed by Scullen & Tuck (1995) and Faltinsen & Semenov
(2008).

In our numerical method, when h is nearer the critical value it becomes more
difficult to obtain the solution, which is usually reflected by non-convergence during
the iteration process. Convergence is obviously affected by the tolerance chosen for
iteration. However, when the tolerance is sufficiently small, it no longer affects the
limiting h in the calculation. This was also observed and discussed by Haussling &
Coleman (1979), Scullen & Tuck (1995) and by Faltinsen & Semenov (2008). In
these cases, the wavelength and velocity continue to oscillate during the iterations,
and the result does not converge.

For Froude F=1 in figure 6(d), the free surface is weakly disturbed for h>6.2. For
4.34< h< 6.2, the wave slope grows rapidly and for h< 4.34 steady wave patterns
were not obtained.

The downstream wave height, hw= ycr− ytr versus submergence is shown in figure 7
for Froude numbers F= 5, 3, 2 and 1. Here, ycr and ytr are the vertical coordinates of
the wave crest and wave trough, respectively. For F = 5 the maximal wave height is
smaller than that for F= 3. In the figure, at smaller Froude numbers F= 2 and F= 1,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

93
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.930


Free-surface gravity flow due to a submerged body 883 A60-23

0 5 10 15 20
0

0.5

1.0

1.5

2A

h

2.0

2.5

FIGURE 7. Wave height versus the depth of submergence for various Froude numbers:
F= 5 (solid line), F= 3 (dashed line), F= 2 (dotted line), F= 1 (dot-dashed line).

the wave height keeps increasing when the submergence decreases. Then, when the
submergence further decreases, no converged solution could be obtained, as discussed
above. This is principally owing to a larger value of hw/λn, where λn is the actual
length of the nonlinear wave. In the cases of F = 5 and 3, the wave height hw first
increases and then reaches a peak when submergence decreases. Beyond the peak hw

decreases with h. The solution can still be obtained even for h < 0, for which the
centre of the cylinder is already above the still water.

The pressure coefficient along the cylinder

cp =
2(P− P∞)
ρU2

= cpd −
2y
F2

(3.11)

in which cpd is the dynamic pressure and the second term is the hydrostatic pressure.
The dynamic pressure coefficient as a function of the arc length coordinate s= S/R
is shown in figure 8 for Froude number F = 5. The values s/π = 0 and s/π = 2
correspond to the same top point of the cylinder, and s/π = 1 corresponds to the
bottom point. For the case without free surface, the pressure coefficients at the top
and bottom points are the same, and they are the troughs of the curve. As the cylinder
approaches the free surface, or h decreases, the trough corresponding to the bottom
point goes up slightly, and the one corresponding to the top point moves up much
more. Therefore, on excluding the buoyancy we can expect a downward vertical force
whose magnitude increases as the cylinder approaches the free surface. For h < 1,
the top point of the cylinder is above the undisturbed free surface. The free surface
upstream will rise near the cylinder and the pass over the top of the body, similar to
that shown in figure 2(a). The peaks of the pressure coefficient cpd without the free
surface in figure 8 correspond to the stagnation points, and the position is affected
only slightly by the free surface.
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FIGURE 8. Pressure distribution along the cylinder for F=5 at different submergences: no
free surface (solid line), h=2.87 (dashed line), h=1.48 (dotted line), h=0.86 (dash-dotted
line) and h= 0.47 (dash-dot-dot line).

Through the first approximation solution (Lamb 1932; Kochin, Kibel & Roze 1964)
the explicit equations for the resistance and lift force coefficients are obtained as

C′Dh2
=

Xf

πρgR2
h2
=CD

h2F2

2π
= 4π

(
1

F2
h
− γ h

)
exp−2/F2

h , (3.12)

C′Lh2
=

Yf

πρgR2
h2
=CL

h2F2

2π
=−γF2

hh(2h2
+ γ h− 1)+ 4γ h−

1
2

F2
h − 1−

2
F2

h

+ 4
(

1
F2

h
− γ h

)2

exp−2/F2
h Ei1

(
2

F2
h

)
, (3.13)

where Ei1(z) is the exponential integral function. The coefficients C′D and C′L represent
the force coefficients non-dimensionalized by the buoyancy of the cylinder, πρgR2.
Results for the force at γ = 0 are obtained from the present fully nonlinear theory
and are given in figure 9(a), in which C′h2 is plotted against submergence based on
the Froude number, Fh, at different radius based F. For the first approximation, at
γ = 0, C′h2 in (3.12) depends on Fh=F/

√
h only. This means that, provided Fh is the

same, C′h2 does not change with F. Thus results from the first approximation theory
at F = 5, 3 and 2, equation (3.12) are shown by the same solid line in figure 9(a).
However, based on the present nonlinear solution, the results are very much affected
by F even at the same Fh. The nonlinear solution can be found for all three F when
Fh < 1.2, and the results are in a fairly good agreement with the first approximation
solution. For Fh > 1.2, no solution is obtained for the case of F= 2. The results from
F = 3 and F = 5, which correspond to a body of smaller radius relative to h, show
some discrepancy with the first approximation solution. The difference is larger for the
former, as the body is larger relative to the depth and therefore has a larger nonlinear
effect.
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FIGURE 9. (a) Scaled drag and lift coefficients against Fh = F/
√

h at different Froude
numbers, F: the first approximation theory (solid line) and the nonlinear theory for F= 5
(dashed line), F= 3 (dotted line) and F= 2 (dash-dotted line, ends at Fh= 1.2); (b) scaled
drag (upper curves) and lift (lower curves) coefficients as functions of the depth of
submergence: nonlinear (solid lines and solid markers) and the first approximation theory
(dashed lines and opened markers) for Froude F = 5 (u, E), F = 3 (q, A) and F = 2
(p,@).

The peaks of C′Dh2 in figure 9(a) occur around the same Fh at different F. The
curves for C′Dh2 and C′Lh2 versus the depth of submergence are shown in figure 9(b).
The position is shifted to the left for large F according to the relation Fh=F/

√
h. The

normalized lift force coefficient, C′Lh2, becomes noticeable when h becomes relatively
small. The variation is faster for F= 5 and then for F= 3. For F= 2 the curve ends
at relatively larger submergence.
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3.3. Flow past a submerged hydrofoil
The solution procedure derived in § 2 is also applicable for a body with a sharp corner
point. In such a case, the Kutta–Joukovskii condition is to be imposed at the corner
to ensure the velocity and the pressure are finite there. As a result, the circulation
γ should be obtained from such a condition, rather than being chosen randomly. Its
chord length is chosen as the characteristic length L in the following computation.

We consider the hydrofoil NACA0012 which has a thickness of the trailing edge
2.5 % of the hydrofoil thickness. In the present computations, we neglected the
thickness of the trailing edge by taking it to be zero. The inner angle at the trailing
edge is assumed as µ. In order to satisfy the Kutta condition, the stagnation point A
and the trailing edge of the foil should coincide. With this assumption, the slope of
the hydrofoil can be written as follows:

βb(ξ)=

{
β∗b (ξ), 0 6 ξ < a, η= 0,
β∗b (ξ)−π+µ, a< ξ 6π, η= 0,

(3.14)

where β∗b (ξ) is a continuous function changed from 0 to 2π−µ. By substituting (3.14)
into (2.18) and evaluating the first integral over the step change in the function βb(ξ)

at point ξ = a, we obtain the expression for the complex velocity for the hydrofoil

dw
dz
= vD

[
ϑ1(ζ − a)
ϑ4(ζ − a)

]µ/π
ϑ1(ζ − b)
ϑ4(ζ − b)

exp
[

1
π

∫ π

0

dβ∗b
dξ

ln
ϑ1(ζ − ξ)

ϑ4(ζ − ξ)
dξ

+
i
π

∫ 0

π

d ln v
dξ

ln
ϑ1(ζ − ξ −πτ/4)
ϑ4(ζ − ξ −πτ/4)

dξ − iβO

]
. (3.15)

It is seen from the above equation that the complex velocity at the trailing edge has
a zero of order µ/π. For the case µ= 0 which is assumed below, the first product in
(3.15) disappears and the velocity at the trailing edge becomes finite. Point A will still
be chosen at the trailing edge. However, this may not be a stagnation point anymore.
The circulation γ is obtained from (2.39). The parameters a,b, c,K and τ are obtained
from the system of (2.33)–(2.38) and the equation

sOA =

∫ a

0

ds
dξ

dξ, (3.16)

where ds/dξ = |dz/dζ |ζ=ξ , and ξ = 0 corresponds to the point where the slope of the
upper part of the foil is equal to zero. The system of integral equations from (2.42) to
(2.50) has to be slightly modified by replacing the expression for the complex velocity
(2.18) with (3.15).

The free-surface elevations for the flow past the NACA0012 hydrofoil at the angle
of attack α = 5◦ and Froude number based on the chord length of the foil F =
0.567 are shown in figure 10 and compared with the experimental data of Duncan
(1983) and with the results obtained through the fully nonlinear numerical approach
by Landrini et al. (1999) and the nonlinear solution by Faltinsen & Semenov (2008).
Agreement between the present nonlinear solution and that by Faltinsen & Semenov
(2008), as well as with that from the numerical simulation of Landrini et al. (1999),
is quite good. The agreement with the experimental data at larger submergence is also
quite good. However, there is some discrepancy between the experimental data and all
of the calculated data for the smaller depth of submergence (figure 10b).
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FIGURE 10. Free-surface profiles past a NACA0012 hydrofoil at angle of attack α = 5◦,
Froude number F = 0.567 and depth of submergence (a) h/L = 1.256 and (b) h/L =
1.0345 measured from the mid-chord point. Solid lines, present solution; dashed lines,
Faltinsen & Semenov (2008) analytical/numerical approach; dotted lines, Landrini et al.
(1999) nonlinear numerical approach; symbolE, measurements from Duncan (1983).

The dynamic pressure coefficient on the hydrofoil is plotted against x for the Froude
number F = 2 and angle of attack α = 5◦ in figure 11. The origin is located in
the middle point of the foil between the leading and trailing edges. The pressure
coefficient with peak cpd = 1 at the stagnation point near the leading edge, x = xB
gradually decreases along the lower side of the hydrofoil. On the upper side, the
pressure coefficient rapidly drops to its minimal value and then gradually increases
with x. The effect of submergence is most pronounced on the upper side. It increases
as the depth decreases, and even becomes larger than that on the lower side at the
same x on some parts of the hydrofoil.

The effect of the submergence on the lift coefficient is shown in figure 12. The solid
lines and symbols correspond to the lift coefficients obtained through the integration
of the pressure around the hydrofoil, while the dashed lines and unfilled symbols are
based on the Kutta–Joukowskii theorem (Yf =−ρUΓ ) for the unbounded flow domain,
which in the present notation is CL= 2πγ , where γ is obtained from (2.39). From the
figure, it is seen that the lift decreases as the hydrofoil approaches the free surface,
which is consistent with the increase of the pressure on the upper side of the hydrofoil
in figure 11. At small depths of submergence, the smaller the Froude number is, the
smaller the lift coefficient becomes, which may also become negative.

The wave resistance of a submerged body can also be determined by the wave
energy flux generated downstream (Wehausen & Liatone 1960). For linear sinusoidal
waves with height hw, this may be simplified as (Newman 1977)

CD =
h2

w

16F2
, (3.17)
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FIGURE 11. Effect of submergence on the pressure distribution along the lower and upper
sides of the hydrofoil NACA0012 for Froude number F = 2 and angle of attack α = 5◦:
no free surface (solid line), h = 0.74 (dashed line), h = 0.33 (dotted line) and h = 0.10
(dash-dotted line).
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FIGURE 12. Effect of submergence on the lift coefficient for the hydrofoil NACA0012 at
the angle of attack α = 5◦ for Froude numbers F = 10, 5, 3, 2 and 1 (lines marked by
square, circle, triangle, reversed triangle and diamond, respectively). The solid lines and
symbols correspond to integration of the pressure around the hydrofoil, and the dashed
lines and open symbols correspond to the Kutta–Joukowskii theorem relating the lift force
and circulation around the hydrofoil.

which does not depend on the body shape. In figure 13, the coefficients versus depth h
obtained using (3.9) and (3.17) are shown by the solid and dashed lines, respectively.
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FIGURE 13. Effect of submergence on the wave resistance of the hydrofoil NACA0012
at the angle of attack α= 5◦ for Froude numbers F= 10, 5, 3, 2, 1 and 0.567. The solid
and dashed lines correspond to (3.10) and (3.17), respectively.

As the depth decreases, the wave height becomes larger and CD reaches its maximal
value CD max at submergence hm. For a further decrease of the depth, h< hm, the wave
amplitude and the resistance, correspondingly, become smaller. For smaller Froude
number the coefficient CD max becomes larger. However, at very small Froude number
(F< 1 in the presented calculations), the maximal wave resistance cannot be reached
due to wave breaking, as can be seen in figure 13 for F = 0.567. Thus, similar to a
smooth body, the steady solution is not always possible for a hydrofoil either.

4. Conclusions

A fully nonlinear solution for the problem of steady free-surface gravity flow past
a submerged body is presented in the form of analytical expressions for the complex
velocity and the derivative of the complex potential in a parameter plane. To deal
with flow in the doubly connected domain, a cut is introduced, which does not have
to be a streamline, as required in the previous work. Correspondingly, a rectangular
region in the parameter plane is used for the fluid domain, instead of the first quadrant,
which has been commonly adopted previously. Accordingly, the theta functions are
used in the derived integral formulae for the complex velocity and the derivative of the
complex potential. They are in explicit form involving the magnitude of the velocity
on the free surface and the velocity direction on the body surface, which are functions
of the parameter variable varying along the horizontal sides of the rectangle. These
functions are determined from a system of integral equations which are derived by
enforcing the dynamic and kinematic boundary conditions. These integral equations
are solved numerically using an iteration procedure.
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The flows past a submerged circular cylinder without and with gravity are
investigated by the presented formulation. In the former, the free-surface elevation
away from the body may tend to infinity logarithmically under some conditions. In
the latter, at each given submergence h below a critical value, the steady solution
may not be obtained when the Froude number F is within a certain range. This
range increases when the submergence decreases. At a given Froude number, the
steady solution may not exist when the submergence is below a critical value. When
the solution always exists at any h at certain F, there is value h = hm at which
the free-surface wave height reaches its maximal value. As h further decreases, the
wave height will decrease. At very small h, the free surface becomes almost flat.
The calculated drag and lift force coefficients are compared with those from the
first approximation theory. For Froude number F< 2, the force coefficients predicted
by the first approximation theory and the fully nonlinear theory agree well for
all submergences when the nonlinear steady solution exists. For F > 3 and small
submergence, the force coefficients predicted by the nonlinear theory may be several
times smaller than those predicted by the first approximation theory.

The formulation is extended to a body with a sharp corner, in which circulation
is obtained from the Kutta condition at the corner. The NACA0012 hydrofoil is used
for the case study. The results obtained agree with experimental data, and those from
other computational methods. It is shown that, similar to the smooth body, the steady
solution may not exist within a range of F at a given h.
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Appendix A. Theta functions

Four types of theta function and their properties (Whittaker & Watson 1927) are as
follows:

ϑ1(ζ )= 2
∞∑

n=1

(−1)n−1q(1/4)(2n−1)2 sin(2n− 1)ζ , (A 1)

ϑ2(ζ )= 2
∞∑

n=1

q(1/4)(2n−1)2 cos(2n− 1)ζ , (A 2)

ϑ3(ζ )= 1+ 2
∞∑

n=1

qn2
cos 2nζ , (A 3)

ϑ4(ζ )= 1+ 2
∞∑

n=1

(−1)nq2n cos 2nζ , (A 4)
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where q= eπiτ .

ϑ1(ζ +π)=−ϑ1(ζ ), ϑ1(ζ +πτ)=−q−1e−2iζϑ1(ζ ),

ϑ2(ζ +π)=−ϑ2(ζ ), ϑ2(ζ +πτ)= q−1e−2iζϑ2(ζ ),

ϑ3(ζ +π)= ϑ3(ζ ), ϑ3(ζ +πτ)= q−1e−2iζϑ3(ζ ),

ϑ4(ζ +π)= ϑ4(ζ ), ϑ4(ζ +πτ)=−q−1e−2iζϑ4(ζ ).

 (A 5)

Theta functions can be expressed one through another as follows:

ϑ1(ζ )=−ϑ2

(
ζ +

π

2

)
=−iPϑ3

(
ζ +

π

2
+

πτ

2

)
=−iPϑ4

(
ζ +

πτ

2

)
ϑ2(ζ )= ϑ1

(
ζ +

π

2

)
= Pϑ3

(
ζ +

πτ

2

)
= Pϑ4

(
ζ +

π

2
+

πτ

2

)
ϑ3(ζ )= Pϑ2

(
ζ +

πτ

2

)
= Pϑ1

(
ζ +

π

2
+

πτ

2

)
= ϑ4

(
ζ +

π

2

)
ϑ4(ζ )= iPϑ2

(
ζ +

π

2
+

πτ

2

)
= ϑ3

(
ζ +

π

2

)
=−iPϑ1

(
ζ +

πτ

2

)
.


(A 6)

Here, P= q−1/4eiζ .
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