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Turbulent axisymmetric wakes under pressure gradient have received little attention
in the literature, in spite of their fundamental and practical importance, for example,
in the case of wind turbine wakes over topography. In this paper, we develop an
analytical framework to analyse turbulent axisymmetric wakes under different pressure
gradient conditions. Specifically, we develop a model to predict how an arbitrary
imposed pressure gradient perturbs the evolution of the zero-pressure-gradient wake.
The starting point of the model is the basic mean conservation of the streamwise
momentum equation. We take advantage of the self-similarity of the wake velocity
deficit and the assumption that the ratio of the maximum velocity deficit to the
wake width is independent of the pressure gradient; such an assumption is supported
experimentally for planar wakes, and numerically for axisymmetric wakes in this
study. Furthermore, an asymptotic solution for the problem is also derived. The
problem is considered for both an axisymmetric strain and a planar strain. The
inputs to the model are the imposed pressure gradient and the wake width in
the zero-pressure-gradient case. To validate the model results, a set of large-eddy
simulations (LES) are performed. Comparing the evolution of the maximum velocity
deficit and the wake width, the model results and the LES data show good agreement.
Similarly to planar wakes, it is observed that the axisymmetric wake recovers faster
in the favourable pressure gradient compared with the adverse one.

Key words: general fluid mechanics, turbulent flows, wakes

1. Introduction

The problem of turbulent axisymmetric wakes under pressure gradient is interesting,
and its study is useful; first, because it can be regarded as a classical fundamental fluid
mechanics problem, and, second, because such a phenomenon can have engineering
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implications. One example that is worthy of attention is the design of wind farms
sited on topography. The axisymmetric wind turbine wakes are subjected to non-zero
pressure gradients, which are caused by variations in the underlying terrain elevation.
This changes the wake recovery characteristics of the wind turbines with respect to
the flat terrain case, and, in turn, can affect the design of the optimum layout of the
wind farm.

In spite of its importance, few studies have been carried out on this subject. In
their analytical study on wakes in complex flows, Hunt & Eames (2002), among other
things, derived the solution for the mean velocity for a laminar axisymmetric wake
under a specific strain caused by an external flow. Magnaudet, Rivero & Fabre (1995)
and Bagchi & Balachandar (2002) performed numerical simulations of flow past a
sphere (rigid and bubble-like) that was subjected to strain (planar and axisymmetric).
The focus of their studies was more on the direct impact of the flow on the sphere
(e.g. forces, separation, etc.) rather than the evolution of the wake itself. In contrast to
turbulent axisymmetric wakes, some interesting research has already been performed
for the planar case using numerical (Rogers 2002) and experimental (Liu, Thomas
& Nelson 2002; Thomas & Liu 2004) approaches, supported also by concurrent
analytical (Shamsoddin & Porté-Agel 2017b) developments. Based on these studies, it
is known that favourable pressure gradients (accelerating base flows) lead to a faster
recovery of the wake.

As mentioned in the conclusion of Shamsoddin & Porté-Agel (2017b), turbulent
axisymmetric wakes ought to be studied under the influence of imposed pressure
gradients, especially because of the arising of such scenarios in the case of wind
turbine wakes over topography. In the present paper, we aim to accomplish this
objective by proposing an analytical framework to analyse such wakes and eventually
by developing a model to predict how an arbitrary imposed non-zero pressure gradient
alters the evolution of a turbulent axisymmetric wake under zero pressure gradient.
In addition, we provide large-eddy simulation (LES) results related to such wakes,
against which we can test our model. To the best knowledge of the authors, no study
(experimental, numerical or analytical) on this topic (turbulent axisymmetric wakes
under different imposed pressure gradients) is available in the literature. Therefore,
this paper can provide useful insight (by presenting both a theoretical framework and
an LES dataset) related to this subject.

This article is ordered in the following manner. In § 2, the problem is defined and
the model is derived with all of its variants. In § 3, the numerical experiments, which
are performed for the purpose of validation of the model, are described and their
results are compared with the predictions of the model. Finally, § 4 concludes the
paper.

2. Analytical model for axisymmetric wakes under pressure gradient

2.1. Problem formulation
The mean velocity deficit profiles of turbulent axisymmetric wakes are known to be
self-similar and to have a Gaussian shape function (Pope 2000),

Ub(x)− u(x, r)
Ub(x)

≡C(x)e−(r
2/2δ2), (2.1)

where x is the streamwise direction, r is the radial direction from the wake centre,
u(x, r) is the velocity (hereafter, by velocity, we imply the mean streamwise velocity,
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unless otherwise stated) of the wake flow, Ub(x) is the velocity of the base flow, C(x)
is a function determining the maximum velocity deficit at each x-position and δ(x) is
the wake width.

Here, we assume that the axisymmetric wake retains its Gaussian shape under non-
zero pressure gradients. This assumption will be verified later in this paper (§ 3). It
is noteworthy to mention that it has already been shown that for a turbulent planar
wake, this assumption is valid (Liu et al. 2002; Rogers 2002; Shamsoddin & Porté-
Agel 2017b).

The imposed pressure gradient is manifested in the above formulation in the
function Ub(x). For an accelerating base flow (dUb/dx > 0), we have the so-called
favourable pressure gradient (FPG), and for a decelerating base flow (dUb/dx < 0),
we have the so-called adverse pressure gradient (APG). Obviously, for the zero-
pressure-gradient (ZPG) case, Ub(x)=Ub0 = const.

Our objective in this section is to solve the following problem: for a given ZPG
wake (for which we know the wake width evolution), how is the mean velocity field
of the wake (i.e. C(x) and δ(x)) changed after imposing an arbitrary pressure gradient?

2.2. Model derivation
The mean conservation of momentum equation in the x-direction for a turbulent
axisymmetric wake can be written as

∂u(Ub − u)
∂x

+
∂v̄(Ub − u)

∂y
+
∂w̄(Ub − u)

∂z
=−

dUb

dx
(Ub − u)+

∂u′v′

∂y
+
∂u′w′

∂z
, (2.2)

where u, v and w are the streamwise (x), lateral (y) and vertical (z) components of
the velocity, the overbar indicates a mean quantity and the prime shows the fluctuation
quantities (e.g. u′ = u− u). In deriving this equation, the continuity equation is used,
the viscous and ∂u′2/∂x terms are neglected, and the mean pressure gradient term,
−(1/ρ)∂p/∂x, is replaced by Ub(dUb/dx). For intermediate steps, through which this
equation is obtained, the interested reader is referred to Shamsoddin & Porté-Agel
(2017b).

After integrating in the x-normal plane, we obtain the integral form of the
x-momentum equation,

d
dx

∫
∞

0
u(Ub − u)(2πr dr)+

∫
∞

0

dUb

dx
(Ub − u)(2πr dr)= 0. (2.3)

It should be noted that, as (Ub − u), u′v′ and u′w′ all vanish far from the wake
centre (in a given x-normal plane), the integrals of the last two terms on both sides
of (2.2) are zero. Here, we assume that the strain that causes the pressure gradient
is also axisymmetric, and therefore the wake retains its axisymmetry after imposing
the pressure gradient (for the case of a planar strain, see § 2.4). Thus, we can directly
substitute (2.1) into (2.3) and use

∫
∞

0 exp[−r2/(2δ2)](2πr dr)= 2πδ2 to obtain

d
dx

[
2πU2

b(x)δ
2(x)

(
C(x)−

C2(x)
2

)]
+π

dU2
b

dx
δ2(x)C(x)= 0. (2.4)

As can be seen, we are left with a nonlinear ordinary differential equation (ODE).
We first show the solution of the equation for the ZPG case, because it proves to

837 R3-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

86
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.864


S. Shamsoddin and F. Porté-Agel

be helpful later. In fact, in the ZPG case, (2.4) reduces to an algebraic equation (the
second term vanishes), whose solution has already been obtained by Bastankhah &
Porté-Agel (2014),

C0(x)= 1−

√√√√√1−
CD

8
(
δ0(x)

D

)2 (x > xi), (2.5)

where the subscript 0 indicates a quantity in the ZPG case, D is the diameter of the
wake-generating object and CD is the drag coefficient of the object (or in the case
of a power-generating device, the thrust coefficient). The condition (x> xi) is only to
make sure that the expression under the square root always remains non-negative.

Now, we focus on the ODE of (2.4). In this ODE, we have one equation and two
unknowns (C and δ). Therefore, we need another equation to close the problem. For
this purpose, following Shamsoddin & Porté-Agel (2017b), we use the invariance of
the ratio λ(x)≡Ud(x)/δ(x) under pressure gradient changes, where Ud(x)≡C(x)Ub(x)
is the maximum velocity deficit at a given streamwise position. This invariance has
been shown experimentally (Liu et al. 2002; Thomas & Liu 2004) and has been used
to develop a model for the case of planar wakes by Shamsoddin & Porté-Agel (2017b).
For the case of axisymmetric wakes, we will reaffirm the validity of this assumption
based on LES data in § 3. Hence, because λ is insensitive to pressure gradient and
thus Ub, we have

λ(x)= λ0(x)=
Ub0C0(x)
δ0(x)

. (2.6)

Consequently, δ can be expressed as

δ(x)=
Ub(x)
λ0(x)

C(x). (2.7)

Now, substituting (2.7) into (2.4), the final ODE for C(x) is obtained,

dC(x)
dx
=

−1(
U4

b

λ2
0

) (
3C2 − 2C3

)
[

1
4

dU4
b

dx
C3

λ2
0
+

(
C3
−

C4

2

)
d
dx

(
U4

b

λ2
0

)]
, (2.8)

with the boundary condition

C(xi)=C0(xi). (2.9)

Equation (2.8) is a nonlinear ODE in the explicit form of dC(x)/dx= f (Ub,λ0,C(x)).
This ODE can be solved easily and rapidly with common commercial ODE solvers.
Thus, with (2.8) and (2.9), our objective, which was the solution of the problem
defined in § 2.1, is accomplished.
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2.3. Asymptotic solution of the problem

Since u→Ub far downstream of the wake-generating object, we have C2(x)�C(x) for
sufficiently large x (at least for the FPG and ZPG cases) (Shamsoddin & Porté-Agel
2017b). Therefore, neglect of the term involving C2(x) in (2.4) leads to the following
linear ODE:

d
dx

[
2πU2

b(x)δ
2(x)C̃(x)

]
+π

dU2
b

dx
δ2(x)C̃(x)= 0, (2.10)

where C̃ is the asymptotic solution of C. The above equation is exactly equivalent to
the following:

2π
1

Ub

d
dx

[
δ2(x)C̃(x)U3

b

]
= 0. (2.11)

Using the readily obtainable asymptotic ZPG solution for C̃0 from (2.4) (i.e. C̃0 =

D2CD/(16δ2
0)) to find the correct constant of integration, the solution to (2.11) can be

found as

C̃(x)=
1
16

CD(
δ(x)
D

)2

(
Ub0

Ub(x)

)3

, (2.12)

which by employing (2.6)–(2.7) can be further simplified to

C̃(x)= C̃0

(
Ub0

Ub(x)

)5/3

. (2.13)

It is noteworthy that for the planar case the exponent of (Ub0/Ub) was found to be 2
(Shamsoddin & Porté-Agel 2017b), whereas for the axisymmetric case this exponent
is 5/3. Furthermore, C̃0(x) can be shown to be the second-order Taylor expansion of
the full solution of C0(x), i.e. (2.5), in terms of δ−1

0 .

2.4. Axisymmetric wakes and planar strain
In the above derivations, we had assumed an axisymmetric strain and, consequently,
that the wake retains its axisymmetry (e.g. when a wake passes through a circular
nozzle/diffuser). This assumption provides a perfect analogy to the case of a planar
wake under a planar strain (e.g. Liu et al. 2002; Thomas & Liu 2004; Shamsoddin
& Porté-Agel 2017b). In this subsection, we are interested in studying the case of
an axisymmetric wake that undergoes an imposed pressure gradient that is a result
of a planar strain (e.g. when passing through a planar nozzle/diffuser). This case is
interesting because of its practical use, in particular, for the case of wind turbine
wakes flowing over topography: in this case the topography generates a planar strain
on the axisymmetric wake of a wind turbine rotor.

Without losing generality, we consider the planar strain to be in the z-direction.
In this case (unlike the axisymmetric strain case), the wake widths in the y- and
z-directions are not necessarily equal. Therefore, following Bastankhah & Porté-Agel
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(2016), we assume that the velocity deficit profile of the wake has the following
general shape:

Ub(x)− u(x, y, z)
Ub(x)

≡C(x) exp

[
−

(
y2

2δ2
y

+
z2

2δ2
z

)]
, (2.14)

where δy and δz are the wake widths in the y- and z-directions. In the case of δy =

δz, the above equation reduces to (2.1) (as in Vermeulen, Builtjes & Dekker 1979;
Jensen 1983; Bastankhah & Porté-Agel 2014). We have

∫
∞

−∞

∫
∞

−∞
exp[−(y2/(2δ2

y ) +

z2/(2δ2
z ))] dy dz= 2πδyδz, and this paves the way to define an equivalent wake width

δeq as the geometric mean of δy and δz,

δeq =
√
δyδz. (2.15)

Now, if we substitute (2.14) into (2.3), and follow the same procedure as in §§ 2.2
and 2.3, we obtain exactly the same equations, with the only difference being that δeq

replaces δ in all of those equations.
In fact, in the case of planar strain, we solve our problem for C(x) and δeq(x).

In order to further obtain δy and δz individually, we require more information about
the geometry and history of the flow and strain, which is beyond the scope of the
framework of the current model. However, being able to predict C(x) and δeq still
enables us to obtain a great deal of information about the flow which can be useful
in many practical applications.

3. Validation of the model

3.1. The numerical experiment
To validate the model, we compare its results with results from the LES of
axisymmetric wakes in three specific FPG, ZPG and APG cases. The numerical
experiments are performed in an ideal spanwise-periodic channel with rectangular
cross-section. To create the desired non-zero pressure gradient, the walls of the
channel are curved so that its cross-sectional area varies in the streamwise direction.
The wake itself is generated with an actuator disk of diameter D and drag (or thrust)
coefficient CD = 0.8. As can be seen in figure 1, three different geometries of the
channel wall are used respectively for the FPG, ZPG and APG cases: (i) convex
walls, which create a contraction and consequently flow acceleration (dUb/dx > 0)
up to the channel throat, (ii) straight walls, which create neither acceleration nor
deceleration (dUb/dx= 0) along the channel, and (iii) concave walls, which create an
expansion and consequently flow deceleration (dUb/dx< 0) up to the channel throat.
The upper and lower walls are symmetric with respect to the centre plane of the
channel, and the surface equation of the lower wall has the following general cosine
form:

Zs(x)=



1
2

h
[

1+ cos
[

π

2L1
(x− xth)

]]
, −2L1 6 x− xth < 0,

1
2

h
[

1+ cos
[

π

2L2
(x− xth)

]]
, 0 6 x− xth < 2L2,

0, otherwise,

(3.1)
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FIGURE 1. The domain of the simulations.

where Zs is the height of the wall with respect to the straight wall of the ZPG case, the
origin of x (as shown in figure 1) is the position of the wake-generating disk, xth=17D
is the position of the channel throat, h is the maximum height of the wall (occurring
at the throat), which has values of 1.25D, 0 and −1.25D for the FPG, ZPG and
APG cases respectively, and L1 = 6D and L2 = 5D are the half-lengths of the cosine
functions for the sections upstream and downstream of the throat respectively. In each
case, the region in which we are interested for our study is the region downstream of
the disk up until the throat of the channel. This region is shown by the shaded area
in figure 1.

For the sake of conciseness and without affecting the purpose of the paper, we
do not include the details of the LES framework here, to avoid repetition of what
is already available in the literature. The governing equations (the momentum and
continuity equations), general numerics and subgrid-scale model (the Lagrangian
scale-dependent dynamic model) are described in Porté-Agel, Meneveau & Parlange
(2000) and Stoll & Porté-Agel (2006). To model the wake-generating disk, we use
the standard actuator disk model (Wu & Porté-Agel 2011). To resolve the curved
wall of the channel, a coordinate transformation technique is employed, whose details
can be found in Shamsoddin & Porté-Agel (2017a) (with the slight difference that in
that study the domain comprised the half-channel). The boundary conditions in the
horizontal directions are mathematically periodic. For the upper and lower channel
walls, the instantaneous surface shear stress is calculated using the Monin–Obukhov
similarity theory (which for the neutral case of this study simply reduces to the log
law). To overcome the streamwise periodicity and to have a prescribed inflow to the
domain, a buffer zone technique is used to feed an inflow field that is generated offline
by performing a precursory simulation in a periodic straight channel (Shamsoddin &
Porté-Agel 2017a). It should be noted that the turbulence intensity of the incoming
flow at the centre of the channel (defined as the standard deviation of the streamwise
velocity divided by Ub0) is 0.03 for all cases.

The streamwise (x), spanwise (y) and vertical (z) lengths of the computational
domain are 52.5D, 8.75D and 10D respectively. The numbers of grid points in the
x-, y- and z-directions are 210, 60 and 122. Regarding the accuracy and validations
of the framework, it should be noted that the validation of the actuator disk model
was carried out in Wu & Porté-Agel (2011) and the validation of the coordinate
transformation technique was carried out in Wan, Porté-Agel & Stoll (2007). On top
of these, the combined application of the actuator disk and coordinate transformation
methods was validated in Shamsoddin & Porté-Agel (2017a). The chosen resolution
of the grid is well within the range that has been previously shown to result in
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FIGURE 2. Contours of the normalized velocity deficit in the FPG, ZPG and APG cases.
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FIGURE 3. (a) Evolution of λ(x) as a function of streamwise distance and (b) base flow
velocity Ub(x) for the FPG (red), ZPG (black) and APG (green) cases.

grid-independent results for the cases of application of the coordinate transformation
(see Wan et al. 2007, § 3) and flow through actuator disks (see Wu & Porté-Agel
2011, § 4; Wu & Porté-Agel 2013, § 4.1), and the case of the combined application of
the coordinate transformation and actuator disks (Shamsoddin & Porté-Agel 2017a).

3.2. Results and comparison
For each case, we perform two simulations: one without the presence of the disk,
which serves as the base flow field, and one with the presence of the disk. To isolate
the turbine wake, and in accordance with § 2.1, we define the velocity deficit as
follows:

udef (x, y, z)= unw(x, y, z)− uw(x, y, z), (3.2)

where the subscripts w and nw indicate wake and no-wake cases respectively. In other
words, to obtain the velocity deficit at a given point, we subtract the velocity of that
point in the wake case from the velocity of the same point in the no-wake case.
Figure 2 shows the contours of udef in all three cases. The larger width and slower
recovery of the APG wake compared with the FPG one is clear in this figure. Before
applying the developed model of § 2, we need to extract Ub(x)= unw(x, 0, 0), which is
an input to the model, and also to verify the assumption of (2.6). Figure 3 shows these
two pieces of information. As can be seen, λ(x)= Ud(x)/δ(x) is almost independent
of pressure gradient for these three cases. It is also noteworthy that the blockage ratio
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FIGURE 4. Normalized maximum velocity deficit (a) and wake width (b) as a function
of the streamwise distance for the ZPG (black), FPG (red) and APG (green) cases. The
circles indicate LES results, the solid lines are the full solution obtained from (2.8) and
the dashed lines are the asymptotic solution of (2.13).

of the turbine in the channel is 0.009, which can safely be considered as negligible
(Segalini & Inghels 2014).

Now we are ready to implement our proposed model in the aforementioned cases,
to see how it predicts the effect of pressure gradient on the wake. Figure 4 shows
the comparison of the results of the LES and the model for the streamwise evolution
of C(x) and δeq. It can be observed that the model predictions agree well with the
LES results. In the figure, in addition to the full solution of the ODE (2.8), the
asymptotic solutions, resulting from (2.13), are also shown. It should be noted that
all ODEs in this paper are solved with the ‘ode45’ routine of MATLAB, which
uses an explicit Runge–Kutta (4,5) algorithm, namely the Dormand–Prince method.
The black curve in figure 4(b), i.e. δ0(x), is the input of the model, together with
the Ub(x), which is shown in figure 3(b). Thus, the model results shown here are
independently reproducible by the interested reader simply by using the information
provided in this paper. Moreover, figure 5 shows a comparison of the normalized
velocity deficit profiles in the z- and y-directions obtained from the LES and the
model for both the FPG and the APG cases. It can be observed that the model can
reproduce the profiles with a good accuracy.

4. Concluding remarks

We have developed an analytical model that enables us to predict the effect of
an imposed pressure gradient on the evolution of turbulent axisymmetric wakes. In
particular, the model predicts how the evolution of the maximum velocity deficit and
width of the wake is altered with respect to the ZPG case by the imposed pressure
gradient. The model uses cross-stream integration of the basic mean momentum
conservation equation, the self-similarity of the wake and the assumption that the
ratio of the maximum velocity deficit to the wake width is invariant under pressure
gradient changes. The validity of this assumption has been shown experimentally
for planar wakes (Liu et al. 2002) and we have reaffirmed it here for axisymmetric
wakes with our LES. An asymptotic solution of the problem is also provided. The
problem is considered for both an axisymmetric strain and a planar one. The inputs
to the model are the imposed pressure gradient and the wake width in the ZPG case.
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FIGURE 5. Normalized velocity deficit profiles at different streamwise positions. The
circles show LES results and the red lines show the model predictions.

For the purposes of validation of the model, a set of numerical experiments, using
LES, were performed. After comparing the maximum velocity deficit and wake width
predicted by the model with those of the LES, a good agreement was observed.

As mentioned in the introduction, one pertinent practical situation where turbulent
axisymmetric wakes under pressure gradient conditions emerge in the real world is
the case of wind turbine wakes over topography. However, it is important to note that
for such cases, in addition to the pressure gradient effects, there is also the effect
of streamline curvature. One particular value of the present work is that it isolates
the effect of pressure gradient, as it considers a wake whose centreline is straight
(no streamline curvature). In other words, we have decoupled the effect of pressure
gradient from that of streamline curvature. That being said, the effect of streamline
curvature also has to be taken into account for a proper understanding of the problem
of wakes over topography. This issue will be addressed in our future research.
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