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Abstract

Determining the germination speed is essential in experiments in the field of seed technology,
as it allows the performance evaluation of a seed lot and the creation of predictive models.
To this end, the literature addresses several methods and indexes. The objective of this
study was to compare the main methods of emergence speed analysis in seeds, namely the
non-linear regression models and the Emergence Speed Index (ESI), with the time-to-event
models. The research was conducted with peach palm seeds (Bactris gasipaes) that were
measured for viability and vigour through daily evaluations for 4 months. Vigour was evalu-
ated by the quantification of the seed emergence speed, which was performed in three ways:
ESI, non-linear regression and non-linear regression considering germination as a time-to-
event event. From the results obtained, we conclude that the ESI is not a good indicator to
evaluate the emergence speed; the non-linear regression model underestimates the errors
and, thus, increases the probability of misclassifying treatments; the time-to-event model is
more reliable in classifying treatments according to the emergence speed.

Introduction

The germination period for a seed lot means the time it takes for each seed to complete each
stage of the germination process, from imbibition to radicle protrusion. However, germination
is a complex physiological process, and each stage has different occurrence periods. Thus, the
process as a whole presents a temporal pattern that comprises initial [latent period (lag
phase)], limit fixed on total germination, and non-constant germination speed (Brown and
Mayer, 1988a; McNair et al., 2012).

Determining the germination speed is essential in seed technology experiments, as it allows
to evaluate the performance of a seed lot and create prediction models (Shafii and Price, 2001;
Onofri et al., 2018). To this end, the literature addresses several methods and indexes. Among
them, the most used is the Germination/Emergence Speed Index (ESI), proposed by Maguire
(1962). Although it has been proposed as a seed vigour measure based on germination/emer-
gence speed, criticism about its use claims that it confuses speed characteristics with viability,
also they are strongly affected by the sample size (Brown and Mayer, 1986; McNair et al., 2012;
Ribeiro-Oliveira and Ranal, 2016). For those inconsistencies, Pire and Varga-Simón (2019)
pointed out that of the 124 papers that used this index, approximately 55% was considerably
objectionable by misleading index application.

Other more recurrent methods to measure germination speed are through the fitting of
non-linear regression curves. However, in addition to disregarding censored data (germination
that occurs in the interval of the evaluations or seeds likely to germinate at the end of the
experiment), they require normal data, which does not occur in the temporal pattern
(Onofri et al., 2010; Ritz et al., 2013; Romano and Stevanato, 2020).

In this context, time-to-event analysis could be a more reliable alternative to describe the
germination process and make inferences in seed analysis experiments (Onofri et al., 2011;
Ritz et al., 2013), as it considers the presence of censored data and circumvents the need
for normality. Thus, this study aimed to compare the main methods of emergence speed ana-
lysis in seeds, that is, the non-linear regression models and the ESI with time-to-event models.

Material and methods

We conducted the research with a peach palm (Bactris gasipaes) seed lot, which was collected
in Nova California, Rondônia, Brazil (geographic coordinates: 09°51′06.00′ S and 64°35′52.41′

W) (Fig. 1). The seeds were treated with the systemic fungicide Carbendazim (benzimidazole)
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at a concentration of 100 ml/100 kg of seeds. They were then
packed in polyethylene plastic bags and sent by air transport to
the Universidade Federal do Paraná (UFPR) Seed Analysis
Laboratory in Curitiba (Paraná, Brazil).

We manually homogenized the seeds and divided them into four
subsamples with similar mass (230 seeds/package). They were stored
in sealed polyethylene plastic bags (22 × 32 cm) with thicknesses of
0.10 and 0.20 mm at 15–17°C and relative air humidity of 58–66%
(Merrow, 1991). We evaluated the viability and vigour of the seeds
for 4 months, through the following tests.

Germination test (viability)

We conducted eight repetitions with 25 seeds each. They were
sown at a depth equivalent to their diameter, with the fertile
germ pore in contact with the substrate bed, in order to leave
the other two sterile germ pores facing upwards. We used previ-
ously sterilized fine-grade vermiculite as substrate, which we
placed inside plastic boxes (17.5 × 13.2 × 11.5 cm) perforated at
the bottom and moistened with the equivalent volume of water
to its retention capacity.

Lastly, we placed the plastic boxes in a Mangelsdorf-type ger-
minator, at 25°C, under a light source. After 120 days, to evaluate
the germination test, we removed the seedlings from the substrate
and verified the presence of well-developed primary and adventi-
tious roots, as well as an aerial part with a well-formed sheath.

The results were expressed as a percentage of normal seedlings,
and the maximum allowed tolerance for variation between repeti-
tions was verified (Brasil, 2013).

Emergence speed (vigour)

The experimental scheme was a double factorial with additional
treatment (2 × 4 + 1), with the first factor being the type of
package (0.10 and 0.20 mm), the second being the storage periods
(1–4 months of storage) and the additional treatment as the control
(unstored/unpackaged seeds). The design was completely rando-
mized within each period and performed with eight replications.

We quantified the emergence speed in three ways: Maguire’s
ESI, non-linear regression and non-linear regression considering
germination in a time-to-event model. For the regression models,
the speed parameter was the estimated emergence rate (ER: rap-
idity of emergence in 1/days) for the emergence of the g percentile
from the total seeds sample (ERg). The g value was chosen based
on the treatment with the lower total emergence to make sure that
all treatments reach at least that percentile (e.g. ED50, ED40 or
ED30).

The ESI was performed along with the germination test from
daily evaluations, according to the equation:

ESI = E1
N1

+ E2
N2

+ · · · + Ei
Ni

Fig. 1. Location of the peach palm seeds production municipality – Nova California, Rondônia, Brazil.
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where Ei and Ni refer, respectively, to the percentage of emergent
seedlings (with a 3-mm sheath above the substrate) and the num-
ber of days elapsed from sowing until the ith count for i = 1,2,… ,n.

To analyse the ESI, we used generalized linear models (GLMs),
in which we tested three common distributions suitable for
continuous response (normal, gamma and inverse normal) and
different specifications for the linear predictor, based on experi-
mental factors, to obtain the best-fit model (Olsson, 2002). We
based the model selection on the Akaike Information Criterion
(AIC), which is a goodness of fit measure that penalizes the
model for its complexity (number of parameters). The AIC is
defined by the following equation:

AIC = −2 log L+ 2 p

where p is the number of model parameters, andlog L is the loga-
rithm value of the maximized likelihood under each model
(Akaike, 1974). For the normal distribution, the normality of
the residuals was verified through the Shapiro–Wilk test. Also,
we used Tukey’s range test to compare the mean ESI of the treat-
ments, considering the significance level of 0.05.

We based the non-linear and time-to-event regressions on the
following models: log-logistic, log-normal and Weibull, which are,
respectively, given by the following equations:

F(t) = d
1+ exp [b{log (t)− log (e)}]

= d

1+ ((t/e))b

F(t) =dF(b( log (x)− log (e)))

F(t) = d exp (− exp (b( log (x)− e)))

where F(t) is the probability of emergence at the time of
evaluation tj (non-linear regression model) or at the time interval

(tj−1, tj) between evaluations (time-to-event model), F is the nor-
mal distribution function, d is the parameter referring to the total
emergence; b is the slope of the curve; e is the time (in days)
elapsed to reach the 50% of the total emergence (Onofri et al.,
2010; Ritz et al., 2013). For these, we tested the simplifications
both in the effect of the covariates (simple effect, interaction
among the factors and additional treatment) and in the para-
meters (one inflection point, asymptote or common slope
between the curves) by the F-test. We used AIC to choose
between the models fitted to each of the three distributions.

We compared each treatment’s ERg estimated within the mod-
els by multiple pairwise comparisons, considering a significance
level of 0.05 and adjusted P-value by the false discovery rate
(Benjamini and Yekutieli, 2001).

Since the experiment was conducted by seeds clustered within
germination boxes, the standard error was calculated using the
cluster robust sandwich standard error method to guarantee the
independence of the data for all analyses in both models (Carroll
et al., 1998; Yu and Peng, 2008; Ritz et al., 2013; Onofri et al., 2018).

The goodness of fit of the non-linear and time-to-event regres-
sion models were evaluated graphically by the observed versus
predicted values (Onofri et al., 2018). All the analyses were per-
formed in the R software, version 3.5.2.

Results and discussion

Figure 2 shows the cumulative proportions of emerged peach
palm seedlings according to storage periods and packaging
types. The treatments’ temporal patterns varied in terms of peri-
ods for the beginning of emergence, average variation rate and
stabilization period. According to Brown and Meyer (1988a),
the description of the germination process must be accurate,

Fig. 2. Cumulative proportion of emergence in peach palm seeds
without storing (control) and stored for 1–4 months, in packages
of 0.10 and 0.20 mm, in relation to time.
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complete, unambiguous, easy to understand and amenable to stat-
istical analysis; thus, it is considered that expressing it through
cumulative proportion meets all these requirements. In addition,
the germination time course provides the capability of describing
germination speed, capability and uniformity at the same time,
being this, the most common way found in the literature
(Bradford, 2002; O’Neill et al., 2004; McNair et al., 2012).

It is worth noting that each point in Fig. 2 represents the per-
iod of observation of the emergence and not necessarily its
occurrence, which happened at some point between observations
(tj−1, tj). This type of uncertainty as to the exact moment of the
event’s occurrence is known as interval censoring in the field of
survival analysis. In turn, seedlings that did not emerge at the
end of the experiment but could have emerged at some point
past the experimental period are characterized as right censored
(O’Neill et al., 2004; Onofri et al., 2019).

According to O’Neill et al. (2004), to understand the germin-
ation pattern it is necessary to treat the germination time as a ran-
dom event that can be explained by a probability distribution. The
most recurrent in growth analysis are logistics, Weibull and log-
normal, and they are used according to the cumulative distribu-
tion density to fit the sigmoidal pattern of cumulative germin-
ation (Brown and Mayer, 1988b; Romano and Stevanato, 2020).

For both non-linear regression and time-to-event models, the
three-parameters log-normal distribution provides lower AIC
(−8616.7 and 18,808.6, respectively) in contrast to the Weibull
(−8580.6 and 18,890.3) and log-logistic distribution (−8609.7 and
18,832.3). By the F-test test, there was a difference between the add-
itional treatment corresponding to seeds without storage and the
other treatments (P < 0.001), as well as a significant effect of the
interaction between storage period and type of package (P < 0.001).
Therefore, a specific model fit is necessary for each of the nine treat-
ments examined in this study (Table 1). For the time-to-event, the
saturated model (with three parameters for all the nine curves) did
not differ from the model with parameter b (relative to the slope)
in common to all the nine curves (P = 0.4063) by the F-test as
well; hence, the reduced model was employed.

The estimated parameters were similar in both models, but
there was a higher difference when it came to standard errors,
with the time-to-event model presenting errors up to six times lar-
ger, even by considering the robust standard error in both models.

The difference is caused by conceptual discrepancies between
non-linear regression and time-to-event models. In non-linear
regression, independent errors and homogeneous variance are
assumed; however, the cumulative proportion of the emergence
over time violates these assumptions. Since the emergence on tj
day is a sum of the emergence up to that particular moment,
the errors become dependent; in the time-to-event model, on
the other hand, this problem is solved once it considers only
the seedlings that emerged between evaluation periods. Variance
is not constant throughout the experimental period, since there
is a lower increase in the proportion of emerged seedlings at
the beginning and end of the experiment, resulting in a lower
variance when compared to the intermediate period (Shafii and
Price, 2001; Crane et al., 2002; McNair et al., 2012).

In addition to the conceptual divergences in the development
of the non-linear regression and time-to-event models, the
method of parameter estimation through least squares (Bates
and Watts, 1988) considers that the emergence occurred at the
moment of evaluation, which does not happen in practice. In
the time-to-event model, the parameters are estimated by the
maximum likelihood method (McCullagh and Nelder, 1989);

thus, the presence of censored information is considered
(Onofri et al., 2011; Ritz et al., 2015).

Comparing both methods of parameter estimation, Ritz et al.
(2013) demonstrated that, in seed analysis experiments, estimation
by the maximum likelihood method will always produce higher
standard errors, and the discrepancy will be higher according to
the distribution of events through evaluation intervals. Thus,
although non-linear regression models provide a good parameter
estimation, they also provide underestimated standard errors that
do not match experimental reality (O’Neill et al., 2004).

Due to the violation of assumptions, the underestimation of
standard errors leads to problems in covering confidence inter-
vals, as well as in the risk of type I error for hypothesis testing.
This may result in erroneous inferences when comparing treat-
ments. Moreover, in experiments with longer intervals between
analyses, the standard error underestimation can be substantial
(Onofri et al., 2011; Ritz et al., 2013; Onofri et al., 2018).

Table 1. Estimated parameters and robust standard errors for the non-linear
and time-to-event regression model, both with three-parameter log-normal
distribution, of peach palm seeds without storage (control) and stored for
1–4 months, in 0.10- and 0.20-mm packages

Treatment Parameter

NLM Time-to-event

estimate

Without storing B 5.028 (0.326) 4.426 (0.002)

D 0.653 (0.008) 0.655 (0.009)

E 48.322 (0.451) 48.638 (1.027)

1 month
0.10 mm

B 4.331 (0.212) 4.426 (0.002)

D 0.575 (0.005) 0.575 (0.123)

e 40.497 (0.370) 40.730 (2.966)

1 month
0.20 mm

b 4.016 (0.164) 4.426 (0.002)

d 0.708 (0.004) 0.710 (0.009)

e 40.09 (0.300) 40.625 (3.847)

2 months
0.10 mm

b 3.754 (0.262) 4.426 (0.002)

d 0.595 (0.009) 0.595 (0.108)

e 46.478 (0.704) 46.783 (1.243)

2 months
0.20 mm

b 4.469 (0.171) 4.426 (0.002)

d 0.566 (0.005) 0.565 (0.114)

e 48.044 (0.316) 48.096 (0.964)

3 months
0.10 mm

b 3.882 (0.249) 4.426 (0.002)

d 0.493 (0.009) 0.490 (0.137)

e 49.148 (0.685) 49.014 (1.131)

3 months
0.20 mm

b 4.893 (0.222) 4.426 (0.002)

d 0.623 (0.006) 0.625 (0.097)

e 47.823 (0.319) 48.162 (1.064)

4 months
0.10 mm

b 4.858 (0.357) 4.426 (0.002)

d 0.448 (0.009) 0.445 (0.148)

e 55.285 (0.587) 54.352 (1.403)

4 months
0.20 mm

b 4.140 (0.161) 4.426 (0.002)

d 0.542 (0.004) 0.54 (0.122)

e 45.571 (0.335) 45.306 (1.465)
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In Fig. 3, it is possible to observe that the log-normal distribu-
tion was well fitted to the data, both in non-linear regression and
time-to-event analysis, by comparison to the observed versus
adjusted data (Bradburn et al., 2003; Dey and Kundu, 2010).
The similarity between estimated parameters with different stand-
ard errors for non-linear regression and time-to-event models is
graphically reflected in close-fitting curves, but with discrepant
confidence bands.

For each curve, the respective x-axis value for inflection point
(i.e. middle of the curve and the parameter e from the equation)
which can be interpreted as the time to reach 50% of the total
emergence (T50) does not necessarily coincide with the 50th

percentile of the total number of seeds and the T50 based on
the total number of seeds is the common parameter for germin-
ation/emergence speed in seed science (Soltani et al., 2015).

The emergence of a seed lot can be deemed faster when the
latent period and/or the variation rate is lower; such characteris-
tics can be observed in the temporal patterns with the period for
the beginning of emergence and sigmoid slope, respectively. A
challenge in conveying the germination/emergence speed is
breaking down this single characteristic and conveying it in a
measure that is not influenced by the others from the temporal
pattern, so that it may be possible to compare two seed lots
with completely different patterns and for this T50 can be an

Fig. 3. Cumulative proportion of peach palm seedlings emergence in relation to time adjusted to non-linear regression (dotted line) and time-to-event (continuous
line) models, both with three-parameter log-normal distribution, for seeds without storing (control) and stored for 1–4 months in 0.10- and 0.20-mm packages. The
95% confidence interval of NLR, TTT models are displayed in grey and blue, respectively. The circles represent the observed values.
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easily used, as well its inverse – emergence rate (ER50), to directly
measure the speed. (Shafii et al., 1991; Gardarin et al., 2011; Soltani
et al., 2015). As it is based on the total number of seeds, for treat-
ments that do not reach at least 50% of emergence, other percen-
tiles can be used (e.g. T20 and T40) (Soltani et al., 2015).

The estimative velocity to emerge 40% (ER40) of total seeds
both in non-linear regression and time-event (Table 2) was simi-
lar; nevertheless, while the seeds stored for 1 month in 0.20-mm
package displayed the fastest emergence according to the non-
linear regression, for the time-event model, they did not show a
significant difference from those stored in 0.10-mm packaging
for 1 and 2 months, 0.20 mm for 2, 3 and 4 months as well the
non-stored ones. Which corroborates the fact that non-linear
regression produces smaller standard so tends to the alternative
hypothesis; for example, for this model the treatments were clas-
sified in six classes, while for the time-event there were just three.

As in the regression analysis, the ESI values were significant for
the interaction between storage period and packaging type
(P-value = 0.036); however, they were not significant for the add-
itional treatment (P-value = 0.290). It is worth highlighting that
the non-significance occurs only between the additional treatment
and the average of the interaction, which does not imply equality
between the additional treatment and each level of interaction.

For the ESI contrasts (Table 2), the seeds stored for 1 month
and the non-stored ones showed the highest emergence speed,

similar to the time-event model, but while the seeds stored in
0.20-mm packaging for 4 months did not present a significant dif-
ference for the fastest treatment (i.e. 0.10 mm for 1 month)
according to time-event model, for the ESI they did not differ
from the seeds stored in 0.10-mm packaging for 4 months, this
treatment being considered as the slower by the time model.
Despite the differences in slope and latent period in the treat-
ments’ temporal patterns between the packages of seeds stored
for 4 months, Maguire’s index shows similar values for those.
Such behaviour was characterized by Brown and Mayer (1986)
as an anomalous behaviour of the Maguire index, in which differ-
ent temporal patterns can present similar speed indexes.

A criticism regarding the ESI is related to the correlation with
the final emergence; that is, the index combines questions of via-
bility and emergence speed. This was also observed in our study
where the ESI and the emergence presented a linear correlation
coefficient of 0.93 (P < 0.001), thus ratifying the criticism regard-
ing the ambiguity of the measure. It is worth noting that the cor-
relation between the ESI and the total emergence is not always
present in the same proportion in experiments with seeds, so
care should be taken in their application (Throneberry and
Smith, 1955; Brown and Meyer, 1986; Shafii and Price, 2001;
Kader, 2005; Ranal and Santana, 2006; McNair et al., 2012).

The ESI was proposed as a measure of seed vigour based on
the seed lot emergence speed. Given that vigour is the sum of
the properties of a seed that determine its level of activity and per-
formance during germination/emergence (ISTA, 2020), the ambi-
guity between the computation of the properties of speed and the
total germination may justify its popularization. For McNair et al.
(2012), computing the speed and germination range in conjunc-
tion is not a problem in seed technology, as it helps to discrimin-
ate between more and less vigorous lots.

By this, it is worth to emphasize that there are several methods
to discriminate seed lot speed (e.g. germination/emergence
indexes), the literature is vast about them and by the power of
simplicity, one is encouraged to use them. But when considering
to evaluate the emergence speed by estimating the curve para-
meters, which are important for prediction models, and which
the hydrothermal theory is based on, the approach by the classical
non-linear regression may lead to substantial inferential errors,
and by that, the choice of time-to-event can be justified
(Bradford, 2002).

Conclusion

It is important to be aware that the choice of evaluation method
may drastically influence the results; thus, the experimental design
must critically evaluate the choice of the data analysis method.
Therefore, it is possible to conclude that the ESI is not a good
method to evaluate emergence speed, because it mixes character-
istics of the temporal pattern such as emergence speed and total
emergence. On the other hand, the adjustment of the accumu-
lated emergence by non-linear regression models underestimates
the errors and increases the probability of misclassifying treat-
ments, while the time-to-event models are more reliable in classi-
fying treatments according to the emergence speed.
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