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We model micro-architectures with non-pipelined instruction processing and pipelined

instruction processing using Maurer machines, basic thread algebra and program algebra.

We show that stored programs are executed as intended with these micro-architectures. We

believe that this work provides a new mathematical approach to the modelling of

micro-architectures and the verification of their correctness and the anticipated speed-up

results.

1. Introduction

Pipelined instruction processing is a basic technique that is used in the design of micro-

architectures (see, for example, Hennessy and Patterson (2003) or Sima (2004)). In this

paper, we investigate the issue of dealing with pipelined instruction processing when mod-

elling micro-architectures in a mathematically precise way. We model micro-architectures

with non-pipelined instruction processing and pipelined instruction processing using

Maurer machines, basic thread algebra and program algebra. Moreover, we show that

stored programs are executed as intended with these micro-architectures.

Maurer machines are based on a model for computers proposed in Maurer (1966).

Maurer’s model for computers is quite different from other, better-known, models such as

register machines, multi-stack machines and Turing machines (see, for example, Hopcroft

et al. (2001)). The strength of Maurer’s model is that it is close to real computers. The

operations that can be performed on the state of a computer play a prominent part in the

model. Basic thread algebra is a form of process algebra that was introduced in Bergstra

and Loots (2002) under the name of basic polarised process algebra. It is a form of process
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algebra that is tailored to the description of the behaviour of deterministic sequential

programs under execution. The behaviours concerned are called threads. Basic thread

algebra is used in this paper to direct a Maurer machine in performing operations on

its state. Program algebra was also introduced in Bergstra and Loots (2002). In program

algebra, rather than considering the behaviour of deterministic sequential programs under

execution, we consider the programs themselves. A program is viewed as an instruction

sequence. The behaviour of a program is taken for a thread of the kind considered in basic

thread algebra. With regard to the execution of stored programs on a Maurer machine,

we take the line that the programs concerned are programs of the kind considered in

program algebra.

To make it possible for threads to direct a Maurer machine in performing operations

on its state, basic thread algebra must be extended, for each Maurer machine, with an

operator for applying a thread to the Maurer machine from one of its states. Applying a

thread to a Maurer machine amounts to generating a sequence of state changes according

to the operations that the Maurer machine associates with the basic actions performed

by the thread. Because a program is viewed as an instruction sequence in the setting of

program algebra, the representation of programs in the memory of a Maurer machine

becomes trivial.

Why did we choose to use Maurer machines, basic thread algebra and program algebra

to model micro-architectures? First, other, better-known, models for computers, such as

register machines, multi-stack machines and Turing machines, are too general for our

purposes. Unlike Maurer’s model for computers, those models have little in common

with real computers. For example, a real computer has a memory, and the contents of

all memory elements make up the state of the computer. Moreover, a real computer

processes instructions, and the processing of an instruction results in changes of the

contents of certain memory elements. The design of micro-architectures must deal with

these aspects of real computers. Second, general process algebras, such as ACP (Bergstra

and Klop 1984; Baeten and Weijland 1990), CCS (Milner 1980; Milner 1989) and CSP

(Brookes et al. 1984; Hoare 1985), are also too general for our purposes. Basic thread

algebra was designed as an algebra of deterministic sequential processes that interact with

a machine. In Bergstra and Middelburg (2006b), we show that the processes considered

in basic thread algebra can be viewed as processes that are definable over an extension

of ACP with conditions introduced in Bergstra and Middelburg (2006a). However, it is

quite awkward to describe and analyse processes of this kind using such a general process

algebra. Third, there are two reasons for using program algebra:

1 the view that programs are instruction sequences fits in well with real computers, and

2 program behaviours are taken to be threads as considered in basic thread algebra.

We demonstrated the feasibility of the micro-architecture modelling approach taken in

this paper in Bergstra and Middelburg (2007a). In the current paper, we make use of the

experience gained in that feasibility study to model more advanced micro-architectures. As

mentioned above, Maurer’s model for computers is quite different from Turing’s model.

The latter model is part of the foundations of theoretical computer science, whereas the

model used in our approach to model micro-architectures is relatively unknown. For that

https://doi.org/10.1017/S0960129507006548 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006548


Maurer computers for pipelined instruction processing 375

reason, we have investigated the connections between the two models in Bergstra and

Middelburg (2007b).

We treat the instruction set architecture for which the micro-architectures are modelled

as a parameter that must fulfil a simple assumption: each instruction from the instruction

set must be of a kind considered in program algebra. For example, program algebra

considers test instructions and unconditional jump instructions, but not conditional jump

instructions. Also, program algebra considers forward jump instructions, but not backward

jump instructions. The effect of a conditional jump instruction can be mimicked by a test

instruction and an unconditional jump instruction; and the effect of a backward jump

instruction can be mimicked by a forward jump instruction since programs may be infinite

instruction sequences in program algebra.

In pipelined instruction processing, conditional jump instructions have to be treated

differently from unconditional jump instructions; but backward and forward jump

instructions can be treated in the same way. In order to demonstrate the generality

of our approach, we also look in this paper at the effect of extending program algebra

with conditional jump instructions on non-pipelined and pipelined instruction processing.

We also pay some attention to backward jump instructions.

We do not make the instruction set architecture for which micro-architectures are

modelled explicit. In our modelling of a micro-architecture, we start from an arbitrary

Maurer machine and enhance it. That Maurer machine determines the instruction set

architecture for which a micro-architecture is modelled. However, there are some specific

Maurer machines, called strict load/store Maurer instruction set architectures, for which

the enhancement is primarily intended, and we will describe these Maurer machines in

this paper.

We regard the work presented in this paper as one of the preparatory steps in developing

a formal approach to design new micro-architectures, as part of a project investigating

micro-threading (Bolychevsky et al. 1996; Jesshope and Luo 2000). This approach should

allow for the verification of the correctness of new micro-architectures and their anticipated

speed-up results. The work presented in this paper, as well as the preceding work

presented in Bergstra and Middelburg (2007a), has convinced us that a special notation

for the description of micro-architectures is desirable. However, we found that fixing an

appropriate notation still requires some significant design decisions. We will return to this

issue in Section 13.

The structure of this paper is as follows. First, we review Maurer computers (Section 2)

and basic thread algebra (Section 3). Next, we extend basic thread algebra, for each Maurer

machine, with the operator for applying a thread to the Maurer machine from one of its

states (Section 4). Following this, we review program algebra (Section 5) and describe the

way in which programs are represented in the memory of Maurer machines (Section 6).

Then we model a micro-architecture with non-pipelined instruction processing (Section 7).

After that, we model a variant of that micro-architecture with pipelined instruction

processing (Sections 8 and 9). Following this, we look at the influence of the addition of

conditional jump instructions (Section 10), and briefly discuss the addition of backward

jump instructions (Section 11). Then, we describe strict load/store Maurer instruction set

architectures (Section 12). Finally, we give some concluding remarks (Section 13).
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2. Maurer computers

In this section, we briefly review Maurer computers, that is, computers as defined in

Maurer (1966).

A Maurer computer C consists of

— a non-empty set M

— a set B with card (B) � 2

— a set S of functions S : M → B

— a set O of functions O : S → S

satisfying the following conditions:

— if S1, S2 ∈ S, M ′ ⊆ M and S3 : M → B is such that S3(x) = S1(x) if x ∈ M ′ and

S3(x) = S2(x) if x �∈ M ′, then S3 ∈ S;

— if S1, S2 ∈ S, then the set {x ∈ M | S1(x) �= S2(x)} is finite.

M is called the memory, B is called the base set, the members of S are called the states,

and the members of O are called the operations. It is obvious that the first condition is

satisfied if C is complete, that is, if S is the set of all functions S : M → B, and that the

second condition is satisfied if C is finite, that is, if M and B are finite sets.

Operations are called instructions in Maurer (1966). In the current paper, the term

operation is used because of the confusion that would otherwise arise with the instructions

from which program algebra programs are made up.

The memory of a Maurer computer consists of memory elements that have as content

an element from the base set of the Maurer computer. The contents of all memory

elements together make up a state of the Maurer computer. The operations of the Maurer

computer transform states in certain ways and thus change the contents of certain memory

elements. Thus, a Maurer computer has much in common with a real computer. The first

condition on the states of a Maurer computer is a structural condition and the second one

is a finite variability condition. We will return to these conditions, which are met by any

real computer, after we have introduced the input and output regions of an operation.

Let (M,B,S,O) be a Maurer computer, and let O : S → S. Then the input region of

O, written IR(O), and the output region of O, written OR(O), are the subsets of M defined

as follows†:

IR(O) = {x ∈ M | ∃S1, S2 ∈ S • (∀z ∈ M \ {x} • S1(z) = S2(z) &

∃y ∈ OR(O) • O(S1)(y) �= O(S2)(y))},

OR(O) = {x ∈ M | ∃S ∈ S • S(x) �= O(S)(x)}.

OR(O) is the set of all memory elements that are possibly affected by O; and IR(O) is the

set of all memory elements that possibly affect elements of OR(O) under O.

† We use the following precedence conventions in logical formulas. Operators bind stronger than predicate

symbols, and predicate symbols bind stronger than logical connectives and quantifiers. Moreover, ¬ binds

stronger than & and ∨, and & and ∨ bind stronger than ⇒ and ⇔ . Quantifiers are given the smallest

possible scope.
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Let (M,B,S,O) be a Maurer computer, let S1, S2 ∈ S, and let O ∈ O. Then S1 �IR(O) =

S2 � IR(O) implies O(S1) � OR(O) = O(S2) � OR(O)†. In other words, every operation

transforms states that coincide on the input region of the operation to states that coincide

on the output region of the operation. The second condition on the states of a Maurer

computer is necessary for this fundamental property to hold. The first condition on the

states of a Maurer computer could be relaxed somewhat.

Let (M,B,S,O) be a Maurer computer, let O ∈ O, let M ′ ⊆ OR(O), and let M ′′ ⊆ IR(O).

Then the region affecting M ′ under O, written RA(M ′, O), and the region affected by M ′′

under O, written AR(M ′′, O), are the subsets of M defined as follows:

RA(M ′, O) = {x ∈ IR(O) | AR({x}, O) ∩ M ′ �= �}

AR(M ′′, O) = {x ∈ OR(O) | ∃S1, S2 ∈ S •

(∀z ∈ IR(O) \ M ′′ • S1(z) = S2(z) & O(S1)(x) �= O(S2)(x))}.

AR(M ′′, O) is the set of all elements of OR(O) that are possibly affected by the elements

of M ′′ under O; and RA(M ′, O) is the set of all elements of IR(O) that possibly affect

elements of M ′ under O.

In Maurer (1966), Maurer gives many results about the relation between the input

region and output region of operations, the composition of operations, the decomposition

of operations and the existence of operations with specified input, output and affected

regions: we summarise the main results in Bergstra and Middelburg (2007a). Recently,

a revised and expanded version of Maurer (1966), which includes all the proofs, has

appeared as Maurer (2006).

3. Basic thread algebra

In this section, we review BTA (Basic Thread Algebra), which is a form of process algebra

that is tailored to describing the behaviour of deterministic sequential programs under

execution. The behaviours concerned are called threads.

In BTA, it is assumed that there is a fixed but arbitrary set of basic actions A with

tau �∈ A. We write Atau for A ∪ {tau}. BTA has the following constants and operators:

— the deadlock constant D;

— the termination constant S;

— for each a ∈ Atau, a binary postconditional composition operator � a� .

We use infix notation for postconditional composition. We introduce action prefixing as

an abbreviation: a ◦ p, where p is a term of BTA, abbreviates p � a� p.

The intuition is that each basic action performed by a thread is taken as a command to

be processed by the execution environment of the thread. The processing of a command

may involve a change of state of the execution environment. At completion of the

processing of the command, the execution environment produces a reply value. This reply

† We use the notation f � D, where f is a function and D ⊆ dom(f), for the function g with dom(g) = D such

that for all d ∈ dom(g), g(d) = f(d).
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Table 1. Axiom of BTA

x � tau � y = x � tau � x (T1)

Table 2. Axioms for guarded recursion

〈X|E〉 = 〈tX |E〉 if X= tX ∈ E (RDP)

E ⇒ X = 〈X|E〉 if X ∈ V(E) (RSP)

is either T or F, and is returned to the thread concerned. Let p and q be closed terms of

BTA. Then p � a� q will perform action a, and after that proceed as p if the processing

of a leads to the reply T (called a positive reply) and proceed as q if the processing of

a leads to the reply F (called a negative reply). The action tau plays a special role. Its

execution will never change any state and always produces a positive reply.

BTA has only one axiom. This axiom is given in Table 1. Using the abbreviation

introduced above, axiom T1 can be written as follows: x � tau � y = tau ◦ x.

A recursive specification over BTA is a set of equations E = {X = tX | X ∈ V }, where

V is a set of variables and each tX is a term of BTA that contains only variables from V .

We write V(E) for the set of all variables that occur on the left-hand side of an equation

in E. Let t be a term of BTA containing a variable X. Then an occurrence of X in t

is guarded if t has a subterm of the form t′ � a� t′′ containing this occurrence of X. A

recursive specification E is guarded if all occurrences of variables on the right-hand sides

of its equations are guarded or it can be rewritten as such a recursive specification using

the equations of E. We are only interested in models of BTA in which guarded recursive

specifications have unique solutions, such as the projective limit model of BTA presented

in Bergstra and Bethke (2003). A thread that is the solution of a finite guarded recursive

specification over BTA is called a finite-state thread.

We extend BTA with guarded recursion by adding constants for solutions of guarded

recursive specifications and axioms concerning these additional constants. For each

guarded recursive specification E and each X ∈ V(E), we add a constant standing

for the unique solution of E for X in the constants of BTA. The constant standing for the

unique solution of E for X is denoted 〈X|E〉. Moreover, we use the following notation.

Let t be a term of BTA and E be a guarded recursive specification. Then we write 〈t|E〉
for t with, for all X ∈ V(E), all occurrences of X in t replaced by 〈X|E〉. We now add the

axioms for guarded recursion given in Table 2 to the axioms of BTA. In this table, X, tX
and E stand for an arbitrary variable, an arbitrary term of BTA and an arbitrary guarded

recursive specification, respectively. Side conditions are added to restrict the variables,

terms and guarded recursive specifications for which X, tX and E stand. The additional

axioms for guarded recursion are known as the recursive definition principle (RDP) and
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Table 3. Approximation induction principle

∧

n�0

πn(x) = πn(y) ⇒ x = y (AIP)

Table 4. Axioms for projection operators

π0(x) = D (P0)

πn+1(S) = S (P1)

πn+1(D) = D (P2)

πn+1(x � a� y) = πn(x) � a� πn(y) (P3)

the recursive specification principle (RSP). The equations 〈X|E〉 = 〈tX |E〉 for a fixed

E express the fact that the constants 〈X|E〉 make up a solution of E. The conditional

equations E ⇒ X = 〈X|E〉 express the fact that this solution is the only one.

We often write X for 〈X|E〉 if E is clear from the context. It should be borne in mind

that, in such cases, we use X as a constant.

The projective limit characterisation of process equivalence on threads is based on the

notion of a finite approximation of depth n. When these approximations are identical for

two given threads for all n, the threads are considered to be identical. This is expressed

by the infinitary conditional equation AIP (Approximation Induction Principle) given

in Table 3. Here, following Bergstra and Bethke (2003), approximation of depth n is

expressed in terms of a unary projection operator πn( ). The projection operators are

defined inductively by means of the axioms given in Table 4. In this table, a stands for

an arbitrary member of Atau. It happens that RSP follows from AIP.

The structural operational semantics of BTA and its extensions with guarded recursion

and projection can be found in Bergstra and Middelburg (2005) and Bergstra and

Middelburg (2007a).

From now on, we write Tfinrec for the set of all closed terms of BTA with guarded

recursion in which no constants 〈X|E〉 for infinite E occur. We write Tfinrec(A), where

A ⊆ A, for the set of all closed terms from Tfinrec that contain only basic actions from A.

4. Applying threads to Maurer machines

In this section we introduce Maurer machines and add for each Maurer machine H a

binary apply operator •H to BTA.

A Maurer machine is a tuple H = (M,B,S,O, A, [[ ]]), where (M,B,S,O) is a Maurer

computer and:

— A ⊆ A;
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Table 5. Defining equations for apply operator

x •H ↑ = ↑
S •H S = S

D •H S = ↑
(tau ◦ x) •H S = x •H S

(x � a� y) •H S = x •H Oa(S) if Oa(S)(ma) = T

(x � a� y) •H S = y •H Oa(S) if Oa(S)(ma) = F

Table 6. Rule for divergence

∧

n�0

πn(x) •H S = ↑ ⇒ x •H S = ↑

— [[ ]] : A → (O × M) is such that for all S ∈ S and a ∈ A, S(p2([[a]])) ∈ {T, F}†.

The members of A are called the basic actions of H , and [[ ]] is called the basic action

interpretation function of H . A and [[ ]] constitute the interface between the Maurer

computer and its environment.

The apply operators associated with Maurer machines are related to the apply operators

introduced in Bergstra and Ponse (2002). They allow for threads to transform states of

the associated Maurer machine by means of its operations. Such state transformations

produce either a state of the associated Maurer machine or the undefined state ↑. It is

assumed that ↑ is not a state of any Maurer machine. We extend function restriction to ↑
by stipulating that ↑ �M = ↑ for any set M. The first operand of the apply operator •H
associated with Maurer machine H = (M,B,S,O, A, [[ ]]) must be a term from Tfinrec(A)

and its second argument must be a state from S ∪ {↑}.
Let H = (M,B,S,O, A, [[ ]]) be a Maurer machine, p ∈ Tfinrec(A) and S ∈ S. Then

p •H S is the state that results if all basic actions performed by thread p are processed by

the Maurer machine H from initial state S . Moreover, let (Oa, ma) = [[a]] for all a ∈ A.

Then the processing of a basic action a by H amounts to a state change according to

the operation Oa. In the resulting state, the reply produced by H is contained in memory

element ma. If p is S, there will be no state change. If p is D, the result is ↑.

Let H = (M,B,S,O, A, [[ ]]) be a Maurer machine and (Oa, ma) = [[a]] for all a ∈ A.

Then the apply operator •H is defined by the equations given in Table 5 and the rule

given in Table 6. In these tables, a stands for an arbitrary member of A and S stands for

an arbitrary member of S.

† Let A1, . . . , An be sets. Then the function from A1 × . . . × An to Ai (1 � i � n) that maps each (a1, . . . , an) ∈
A1 × . . . × An to ai is usually denoted by πi. We write pi instead of πi because of the confusion that would

otherwise arise with the projection operator introduced in Section 3.
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Let H = (M,B,S,O, A, [[ ]]) be a Maurer machine, p ∈ Tfinrec(A) and S ∈ S. Then p

converges from S on H if there exists an n ∈ � such that πn(p) •H S �= ↑. We say that p

diverges from S on H if p does not converge from S on H . The rule from Table 6 can be

read as follows: if x diverges from S on H , then x •H S equals ↑.

We introduce some auxiliary notions, which will be useful in proofs to come.

Let H = (M,B,S,O, A, [[ ]]) be a Maurer machine and (Oa, ma) = [[a]] for all a ∈ A.

Then the step relation �H ⊆ (Tfinrec(A) × S) × (Tfinrec(A) × S) is inductively defined

as follows:

— if p = tau ◦ p′, then (p, S) �H (p′, S);

— if Oa(S)(ma) = T and p = p′ � a� p′′, then (p, S) �H (p′, Oa(S));

— if Oa(S)(ma) = F and p = p′ � a� p′′, then (p, S) �H (p′′, Oa(S)).

Let H = (M,B,S,O, A, [[ ]]) be a Maurer machine. Then a full path in �H is one of

the following:

— a finite path 〈(p0, S0), . . . , (pn, Sn)〉 in �H such that there exists no (pn+1, Sn+1) ∈
Tfinrec(A) × S with (pn, Sn) �H (pn+1, Sn+1);

— an infinite path 〈(p0, S0), (p1, S1), . . .〉 in �H .

Moreover, let p ∈ Tfinrec(A) and S ∈ S. Then the full path of (p, S) on H is the unique

full path in �H from (p, S). If p converges from S on H , the full path of (p, S) on

H is called the computation of (p, S) on H and we write ||(p, S)||H for the length of the

computation of (p, S) on H .

It is easy to see that (p0, S0) �H (p1, S1) only if p0 •H S0 = p1 •H S1, and that

〈(p0, S0), . . . , (pn, Sn)〉 is the computation of (p0, S0) on H only if pn = S and Sn = p0 •H S0.

It is also easy to see that, if p0 converges from S0 on H , then ||(p0, S0)||H is the least n ∈ �
such that πn(p0) •H S0 �= ↑.

In the definition of a Maurer machine, we could have taken a function [[ ]] that

associates with each a ∈ A a triple (na, Oa, ma) ∈ M×O×M such that S(na), S(ma) ∈ {T, F}
for all S ∈ S. In that case, S(na) would indicate whether basic action a is enabled in state

S , that is, whether the processing of a is not blocked in state S . In this paper, we consider

only threads that are behaviours of deterministic sequential programs under execution.

For such behaviours, we are not interested in the possibility that some basic actions are

not always enabled, so we assume that all basic actions of a Maurer machine are enabled

in all states. Under this assumption, it is sufficient that the function [[ ]] associates with

each a ∈ A a pair (Oa, ma) ∈ O × M as in the definition given at the beginning of this

section.

5. Program algebra

In this section, we review PGA (ProGram Algebra), an algebra of sequential programs

based on the idea that sequential programs are, in essence, sequences of instructions. PGA

provides a program notation for finite-state threads. A hierarchy of program notations

that provide more and more sophisticated programming features are rooted in PGA (see

Bergstra and Loots (2002)).
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In PGA, it is assumed that there is a fixed but arbitrary set A of basic instructions.

PGA has the following primitive instructions:

— for each a ∈ A, a void basic instruction a

— for each a ∈ A, a positive test instruction +a

— for each a ∈ A, a negative test instruction −a

— for each k ∈ �, a forward jump instruction #k

— a termination instruction !.

We write I for the set of all primitive instructions.

The intuition is that the execution of a basic instruction a may modify a state and

produces T or F at its completion. In the case of a positive test instruction +a, basic

instruction a is executed and execution proceeds with the next primitive instruction if T

is produced, otherwise the next primitive instruction is skipped and execution proceeds

with the primitive instruction following the skipped one. In the case where T is produced

and there is not at least one subsequent primitive instruction and in the case where F

is produced and there are not at least two subsequent primitive instructions, deadlock

occurs. In the case of a negative test instruction −a, the role of the value produced is

reversed. In the case of a void basic instruction a, the value produced is disregarded:

execution always proceeds as if T is produced. The effect of a forward jump instruction

#k is that execution proceeds with the kth next instruction of the program concerned. If

k equals 0 or the kth next instruction does not exist, #k results in deadlock. The effect of

the termination instruction ! is that execution terminates.

The thread extraction operator introduced below, together with the apply operators

introduced in Section 4, allows us to associate operations of Maurer machines with basic

instructions, and consequently with primitive instructions of PGA.

PGA has the following constants and operators:

— for each u ∈ I, an instruction constant u ;

— the binary concatenation operator ; ;

— the unary repetition operator ω .

Closed terms of PGA are considered to denote programs. The intuition is that a program

is, in essence, a non-empty finite or infinite sequence of primitive instructions. These

sequences are called single pass instruction sequences because PGA has been designed to

enable single pass execution of instruction sequences: each instruction can be dropped

after it has been executed. Programs are considered to be equal if they represent the

same single pass instruction sequence. The axioms for instruction sequence equivalence

are given in Table 7. In this table, n stands for an arbitrary natural number greater than

0. For each n > 0, the term Xn is defined by induction on n as follows: X1 = X and

Xn+1 = X ; Xn. The unfolding equation Xω = X ; Xω is derivable. Each closed term of

PGA is derivably equal to a term in canonical form, that is, a term of the form P or P ;Qω ,

where P and Q are closed terms of PGA that do not contain the repetition operator.

Each closed term of PGA is considered to denote a program of which the behaviour

is a finite-state thread, taking the set A of basic instructions for the set A of actions. The

thread extraction operator | | assigns a thread to each program. The thread extraction

operator is defined by the equations given in Table 8 (for a ∈ A, k ∈ � and u ∈ I)
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Table 7. Axioms of PGA

(X ; Y ) ; Z = X ; (Y ; Z) (PGA1)

(Xn)ω = Xω (PGA2)

Xω ; Y = Xω (PGA3)

(X ; Y )ω = X ; (Y ; X)ω (PGA4)

Table 8. Defining equations for thread extraction operator

|a| = a ◦ D |#k| = D

|a ; X| = a ◦ |X| |#0 ; X| = D

|+a| = a ◦ D |#1 ; X| = |X|
|+a ; X| = |X| � a� |#2 ; X| |#k + 2 ; u| = D

|−a| = a ◦ D |#k + 2 ; u ; X| = |#k + 1 ; X|
|−a ; X| = |#2 ; X| � a� |X| | ! | = S

| ! ;X| = S

and the rule given in Table 9. This rule is expressed in terms of the structural congruence

predicate ∼= , which is defined by the formulas given in Table 10 (for n, m, k ∈ � and

u1, . . . , un, v1, . . . , vm+1 ∈ I).

The equations given in Table 8 do not cover the case where there is a cyclic chain of

forward jumps. Programs are structurally congruent if they are the same after removing

all chains of forward jumps in favour of direct jumps. Because a cyclic chain of forward

jumps corresponds to #0, the rule from Table 9 can be read as follows: if X starts with a

cyclic chain of forward jumps, then |X| equals D. It is easy to see that the thread extraction

operator assigns the same thread to structurally congruent programs. Therefore, the rule

from Table 9 can be replaced by the following generalisation: X ∼=Y ⇒ |X| = |Y |.
Let E be a finite guarded recursive specification over BTA and PX be a closed term of

PGA for each X ∈ V(E). Let E ′ be the set of equations that results from replacing all

occurrences of X in E by |PX | for each X ∈ V(E). If E ′ can be obtained by applications

of axioms PGA1–PGA4, the defining equations for the thread extraction operator, and

the rule for cyclic jump chains, then |PX | is the solution of E for X. Such a finite guarded

recursive specification can always be found. Thus, the behaviour of each closed PGA

term is a thread that is definable by a finite guarded recursive specification over BTA.

Moreover, each finite guarded recursive specification over BTA can be translated to a

Table 9. Rule for cyclic jump chains

X ∼= #0 ; Y ⇒ |X| = D
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Table 10. Defining formulas for structural congruence predicate

#n + 1 ; u1 ; . . . ; un ; #0 ∼= #0 ; u1 ; . . . ; un ; #0

#n + 1 ; u1 ; . . . ; un ; #m ∼= #m + n + 1 ; u1 ; . . . ; un ; #m

(#n + k + 1 ; u1 ; . . . ; un)
ω ∼= (#k ; u1 ; . . . ; un)

ω

#m + n + k + 2 ; u1 ; . . . ; un ; (v1 ; . . . ; vm+1)
ω ∼= #n + k + 1 ; u1 ; . . . ; un ; (v1 ; . . . ; vm+1)

ω

X ∼= X

X1
∼= Y1 & X2

∼= Y2 ⇒X1 ; X2
∼= Y1 ; Y2 & X1

ω ∼= Y1
ω

PGA program of which the behaviour is the solution of the finite guarded recursive

specification concerned.

Closed terms of PGA are loosely called PGA programs. PGA programs in which the

repetition operator does not occur are called finite PGA programs. Henceforth, we write

Pfin for the set of all finite PGA programs. We write Pfin(A), where A ⊆ A, for the set of

all closed terms from Pfin that contain only basic instructions from A.

In the remainder of this paper, with the exception of Section 11, we consider finite

PGA programs only.

6. Stored programs

In this short section we describe how we can represent PGA programs in the memory of

a Maurer machine.

It is assumed that a fixed but arbitrary finite set Mprog and a fixed but arbitrary bijection

mprog : [0, card (Mprog) − 1] → Mprog have been given. Mprog is called the program memory.

We write size(Mprog) for card (Mprog). Let n, n′ ∈ [0, size(Mprog) − 1] be such that n � n′.

Then we write Mprog[n] for mprog(n), and Mprog[n, n
′] for {mprog(k) | n � k � n′}.

The program memory is a memory of which the elements can be addressed by means

of members of [0, size(Mprog) − 1]. We write MAprog for [0, size(Mprog) − 1] and MA′
prog for

[0, size(Mprog)].

The program memory elements are meant to contain the primitive instructions that

form part of a finite PGA program.

We write Iprog for I \ {#k | k > size(Mprog) − 1}. Iprog is the program memory base set.

We write Sprog for the set of all functions Sprog : Mprog → Iprog.

Let P = u1 ; . . . ; un ∈ Pfin with n � size(Mprog). Then the stored representation of P ,

written sprog(P ), is the unique function sprog : Mprog[0, n − 1] → Iprog such that for all

i ∈ [0, n − 1], we have sprog(Mprog[i]) = ui+1. We call sprog(P ) a stored program.

Note that sprog(u1 ; . . . ; un) is not defined if n > size(Mprog). The size of the program

memory restricts the programs that can be stored.

7. Non-pipelined instruction processing

In this section we model a micro-architecture with non-pipelined instruction processing.

We will not specify explicitly the instruction set architecture for which this
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micro-architecture is modelled. We start from an arbitrary Maurer machine and enhance

it. That Maurer machine determines the instruction set architecture for which a micro-

architecture is modelled. However, there are some specific Maurer machines for which

the enhancement is primarily intended, and these Maurer machines will be introduced

in Section 12. From now on, when we write ‘PGA instruction’ we will mean ‘primitive

instruction of PGA’.

We enhance Maurer machines by extending the memory with a program memory (Mprog),

a program counter upper bound register (pcbr), a program counter (pc), an instruction

register (ir), a decoded instruction type register (ditr), a basic action register (bar), a

displacement register (dr), an executed instruction type register (eitr), an instruction reply

register (irr), a fetch reply register (rrfetch), a pre-process reply register (rrprep), an execute

reply register (rrexec) and a post-process reply register (rrpostp), and the operation set with

a fetch operation (Ofetch), a pre-process operation (Oprep), an execute operation (Oexec) and

a post-process operation (Opostp). Moreover, we replace the basic actions of the original

Maurer machine by basic actions fetch, prep, exec and postp, with which the operations

Ofetch, Oprep, Oexec and Opostp are associated. The resulting Maurer machines are called

SP-NPL-enhancements. SP stands for stored program and NPL stands for non-pipelined

instruction processing. In SP-NPL-enhancements of Maurer machines, the five instruction

types bsc, ptst, ntst, fjmp and term are distinguished. These types correspond to the

five kinds of PGA instructions introduced in Section 5. Henceforth, we write IT for

the set {bsc, ptst, ntst, fjmp, term}. The memory elements pcbr, pc, ir, ditr, bar, dr, eitr

and irr are used to communicate information between the execution handling operations

Ofetch, Oprep, Oexec and Opostp. The memory elements rrfetch, rrprep, rrexec and rrpostp are

the reply registers of the execution handling operations Ofetch, Oprep, Oexec and Opostp,

respectively. It is assumed that pcbr, pc, ir, ditr, bar, dr, eitr, irr, rrfetch, rrprep, rrexec

and rrpostp are pairwise different memory elements. From now on, we will write M ′
ip for

{pcbr, pc, ir, ditr, bar, dr, eitr, irr} and M ′
rr for {rrfetch, rrprep, rrexec, rrpostp}. We assume that

Mprog ∩ (M ′
ip ∪M ′

rr) = �. From now on, we will write � for the set {T, F}. After presenting

a precise definition of an SP-NPL-enhancement, we will give further explanations of how

an SP-NPL-enhancement operates.

Let H = (M,B,S,O, A, [[ ]]) be a Maurer machine such that M∩(Mprog∪M ′
ip∪M ′

rr) = �
and fetch, prep, exec, postp �∈ A, and let (Oa, ma) = [[a]] for all a ∈ A. Then the SP-NPL-

enhancement of H is the Maurer machine H ′ = (M ′, B′,S′,O′, A′, [[ ]]′) such that

M ′ = M ∪ Mprog ∪ M ′
ip ∪ M ′

rr,

B′ = B ∪ MA′
prog ∪ Iprog ∪ IT ∪ A ∪ �,

S′ = {S ′ : M ′ → B′ |
S ′ � M ∈ S & S ′ � Mprog ∈ Sprog & S ′(pcbr) ∈ MAprog &

S ′(pc) ∈ MA′
prog & S ′(ir) ∈ Iprog &

S ′(ditr) ∈ IT & S ′(bar) ∈ A & S ′(dr) ∈ MAprog &

S ′(eitr) ∈ IT & S ′(irr) ∈ � &

S ′(rrfetch) ∈ � & S ′(rrprep) ∈ � & S ′(rrexec) ∈ � & S ′(rrpostp) ∈ �}
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O′ = {O′ : S′ → S′ |
∃O ∈ O • ∀S ′ ∈ S′ •

(O′(S ′) � M = O(S ′ � M) & O′(S ′) � (M ′ \ M) = S ′ � (M ′ \ M))}
∪ {Ofetch, Oprep, Oexec, Opostp}

A′ = {fetch, prep, exec, postp}
[[a]]′ = (Oa, rra) for all a ∈ A′.

Ofetch is the unique function from S′ to S′ such that for all S ′ ∈ S′

Ofetch(S
′) � M = S ′ � M

Ofetch(S
′) � Mprog = S ′ � Mprog

Ofetch(S
′)(pcbr) = S ′(pcbr)

Ofetch(S
′)(pc) = S ′(pc) + 1 if S ′(pc) + 1 � S ′(pcbr)

Ofetch(S
′)(pc) = S ′(pc) if S ′(pc) + 1 > S ′(pcbr)

Ofetch(S
′)(ir) = S ′(Mprog[S

′(pc)]) if S ′(pc) � S ′(pcbr)

Ofetch(S
′)(ir) = #0 if S ′(pc) > S ′(pcbr)

Ofetch(S
′) � {ditr, bar, dr} = S ′ � {ditr, bar, dr}

Ofetch(S
′) � {eitr, irr} = S ′ � {eitr, irr}

Ofetch(S
′)(rrfetch) = T if S ′(pc) � S ′(pcbr)

Ofetch(S
′)(rrfetch) = F if S ′(pc) > S ′(pcbr)

Ofetch(S
′) � (M ′

rr \ {rrfetch}) = S ′ � (M ′
rr \ {rrfetch}).

Oprep is the unique function from S′ to S′ such that for all S ′ ∈ S′:

Oprep(S
′) � M = S ′ � M

Oprep(S
′) � Mprog = S ′ � Mprog

Oprep(S
′)(pcbr) = S ′(pcbr)

Oprep(S
′) � {pc, ir} = S ′ � {pc, ir}

Oprep(S
′)(ditr) = p1(dec(S

′))

Oprep(S
′)(bar) = p2(dec(S

′))

Oprep(S
′)(dr) = p3(dec(S

′))

Oprep(S
′) � {eitr, irr} = S ′ � {eitr, irr}

Oprep(S
′)(rrprep) = T

Oprep(S
′) � (M ′

rr \ {rrprep}) = S ′ � (M ′
rr \ {rrprep}),
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where dec : S′ → IT × A × MAprog is defined by

dec(S ′) = (bsc, a, S ′(dr)) if S ′(ir) = a

dec(S ′) = (ptst, a, S ′(dr)) if S ′(ir) = +a

dec(S ′) = (ntst, a, S ′(dr)) if S ′(ir) = −a

dec(S ′) = (fjmp, S ′(bar), k) if S ′(ir) = #k

dec(S ′) = (term, S ′(bar), S ′(dr)) if S ′(ir) = ! .

Oexec is the unique function from S′ to S′ such that for all S ′ ∈ S′

Oexec(S
′) � M = OS ′(bar)(S

′ � M) if opc(S ′)

Oexec(S
′) � M = S ′ � M if ¬ opc(S ′)

Oexec(S
′) � Mprog = S ′ � Mprog

Oexec(S
′)(pcbr) = S ′(pcbr)

Oexec(S
′) � {pc, ir} = S ′ � {pc, ir}

Oexec(S
′) � {ditr, bar, dr} = S ′ � {ditr, bar, dr}

Oexec(S
′)(eitr) = S ′(ditr)

Oexec(S
′)(irr) = OS ′(bar)(S

′ � M)(mS ′(bar)) if opc(S ′)

Oexec(S
′)(irr) = T if ¬ opc(S ′)

Oexec(S
′)(rrexec) = T

Oexec(S
′) � (M ′

rr \ {rrexec}) = S ′ � (M ′
rr \ {rrexec}),

where opc : S′ → � is defined by

opc(S ′) = T iff S ′(ditr) ∈ {bsc, ptst, ntst}.

Opostp is the unique function from S′ to S′ such that for all S ′ ∈ S′

Opostp(S
′) � M = S ′ � M

Opostp(S
′) � Mprog = S ′ � Mprog

Opostp(S
′)(pcbr) = S ′(pcbr)

Opostp(S
′)(pc) = pcu(S ′)

Opostp(S
′)(ir) = S ′(ir)

Opostp(S
′) � {ditr, bar, dr} = S ′ � {ditr, bar, dr}

Opostp(S
′) � {eitr, irr} = S ′ � {eitr, irr}

Opostp(S
′)(rrpostp) = T if S ′(eitr) �= term

Opostp(S
′)(rrpostp) = F if S ′(eitr) = term

Opostp(S
′) � (M ′

rr \ {rrpostp}) = S ′ � (M ′
rr \ {rrpostp}),
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Fig. 1. Structure of an SP-NPL-enhancement

where pcu : S′ → MA′
prog is defined by

pcu(S ′) = S ′(pc) if S ′(eitr) = bsc ∨
S ′(eitr) = ptst & S ′(irr) = T ∨
S ′(eitr) = ntst & S ′(irr) = F ∨
S ′(eitr) = term

pcu(S ′) = S ′(pc) + 1 if (S ′(eitr) = ptst & S ′(irr) = F ∨
S ′(eitr) = ntst & S ′(irr) = T) &

S ′(pc) + 1 � S ′(pcbr)

pcu(S ′) = S ′(pc) − 1 + S ′(dr) if S ′(eitr) = fjmp & S ′(dr) �= 0 &

S ′(pc) − 1 + S ′(dr) � S ′(pcbr)

pcu(S ′) = S ′(pcbr) + 1 if (S ′(eitr) = ptst & S ′(irr) = F ∨
S ′(eitr) = ntst & S ′(irr) = T) &

S ′(pc) + 1 > S ′(pcbr) ∨
S ′(eitr) = fjmp &

(S ′(dr) = 0 ∨
S ′(pc) − 1 + S ′(dr) > S ′(pcbr)).

Figure 1 shows the structure of an SP-NPL-enhancement.The program counter pc

contains the address of the program memory element from which a PGA instruction is

fetched next, unless its content is greater than the highest program address (contained in

pcbr). Fetched PGA instructions are stored in ir. The program counter is incremented

at every fetch. Pre-processing amounts to decoding the PGA instruction stored in ir: the

type of that PGA instruction is stored in ditr, the basic action involved is stored in bar

if it is not a jump or termination instruction, and the displacement is stored in dr if it
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is a jump instruction. Execution does not deal with jump and termination instructions;

they are dealt with by post-processing. Post-processing amounts to adjusting the program

counter and recognising termination. The program counter is adjusted on a positive test

instruction that has given a negative reply, a negative test instruction that has given a

positive reply, and a jump instruction.

Essential information about the last fetched PGA instruction is forwarded from one

execution handling operation to the next: from Ofetch to Oprep via ir, from Oprep to Oexec

via ditr and either bar or dr, from Oexec to Opostp via eitr and irr. Moreover, each execution

handling operation has its own reply register. All this fits in well with the pipelined variant

of SP-NPL-enhancements we will introduce in Section 8.

Because the memory is extended with only finitely many memory elements, it is easy to

check, using Maurer (1966, Proposition IV), that the SP-NPL-enhancement of a Maurer

machine is indeed a Maurer machine. The same remark also applies to the SP-PL-

enhancement of a Maurer machine introduced in Section 8.

Consider the guarded recursive specification over BTA given by the following equation:

CT = (prep ◦ exec ◦ (CT � postp � S)) � fetch � D.

Let P be a finite PGA program. Then applying thread |P | to a state of Maurer machine

H has the same effect as applying the execution handling thread CT to the corresponding

state of the SP-NPL-enhancement of H in which the program memory contains the stored

representation of P . This is stated rigorously in the following theorem.

Theorem 1 (SP-NPL-enhancement). Let H ′ = (M ′, B′,S′,O′, A′, [[ ]]′) be the SP-NPL-

enhancement of H = (M,B,S,O, A, [[ ]]), let P = u1 ; . . . ; un ∈ Pfin(A) be such that

n � size(Mprog), and let S ′
0 ∈ S′ be such that S ′

0�Mprog[0, n−1] = sprog(P ), S ′
0(pcbr) = n−1

and S ′
0(pc) = 0. Then |P | •H (S ′

0 � M) = (CT •H ′ S ′
0) � M.

Proof. Let (Oa, ma) = [[a]] for all a ∈ A and (Oa, rra) = [[a]]′ for all a ∈ A′. Then

it is easy to see that, for all S ′ ∈ S′ and a ∈ A such that S ′(pc) � S ′(pcbr) and

S ′(Mprog[S
′(pc)]) ∈ {a,+a,−a}, we have

Opostp(Oexec(Oprep(Ofetch(S
′)))) � M = Oa(S

′ � M) (1)

Opostp(Oexec(Oprep(Ofetch(S
′))))(irr) = Oa(S

′ � M)(ma), (2)

and it is easy to see that, for all S ′ ∈ S′ and a ∈ A such that S ′(pc) � S ′(pcbr) and

S ′(Mprog[S
′(pc)]) �∈ {a,+a,−a}, we have

Opostp(Oexec(Oprep(Ofetch(S
′)))) � M = S ′ � M. (3)

Let (p′
i, S

′
i ) be the (i+1)th element in the full path of (CT , S ′

0) on H ′. Then it is easy to

prove by induction on i that

p′
4i+4 = CT if S ′

4i+1(rrfetch) = T & S ′
4i+4(rrpostp) = T

p′
4i+4 = S if S ′

4i+1(rrfetch) = T & S ′
4i+4(rrpostp) = F

p′
4i+1 = D if S ′

4i+1(rrfetch) = F

(4)
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(if 4i + 4 < ||(CT , S ′
0)||H ′ in case CT converges from S ′

0 on H ′). Let (pi, Si) be the (i+1)th

element in the full path of (|P |, S ′
0 � M) on H , and let (p′

i, S
′
i ) be the (i+1)th element in the

full path of (CT , S ′
0) on H ′ of which the first component equals CT , S or D and the second

component, say S ′, satisfies S ′(Mprog[S
′(pc)]) �= #k for all k ∈ MAprog. Then, using (1), (2),

(3) and (4), it is straightforward to prove by induction on i and case distinction on the

structure of finite PGA programs that

pi = |sprog(P )(Mprog[S
′
4i(pc)]) ; . . . ; sprog(P )(Mprog[n − 1])|,

Si = S ′
4i � M

(if i < ||(|P |, S ′
0 � M)||H when |P | converges from S ′

0 � M on H). From this, the theorem

follows immediately.

From now on, execution handling threads, like CT , will be called power threads.

8. Pipelined instruction processing

In this section, we model a micro-architecture with pipelined instruction processing, which

is a variant of the micro-architecture with non-pipelined instruction processing modelled

in Section 7. In the latter micro-architecture, PGA instructions are processed after one

another, whereas, in the micro-architecture modelled here, four PGA instructions can

be simultaneously overlapped in processing. We again start from an arbitrary Maurer

machine and enhance it.

We enhance Maurer machines by extending the memory as in the case of SP-NPL-

enhancements and additionally with an instruction skip flag (isf), a jump decoded flag (jdf),

a jump processed flag (jpf), a pipeline status register (plsr) and a reply register (rr), and the

operation set with a step operation (Ostep), a pipeline control operation (Oplctr) and a halt

operation (Ohalt). Moreover, we replace the basic actions of the original Maurer machine

by basic actions step, plctr and halt with which the extra operations Ostep, Oplctr and Ohalt

are associated. The resulting Maurer machines are called SP-PL-enhancements. SP again

stands for stored program and PL stands for pipelined instruction processing. In SP-PL-

enhancements of Maurer machines, the four pipeline stages fetchst, prepst, execst and

postpst are distinguished. Henceforth, we write PS for {fetchst, prepst, execst, postpst}.
The memory elements isf , jdf , jpf and plsr are used to control the pipelined processing

of PGA instructions and to produce a reply in rr at the completion of each step of the

pipelined instruction processing. It is assumed that isf , jdf , jpf , plsr and rr are pairwise

different memory elements. From now on, we will write M ′
plc for {isf , jdf , jpf , plsr, rr}. It

is assumed that (Mprog ∪ M ′
ip ∪ M ′

rr) ∩ M ′
plc = �. We will give a more detailed explan-

ation of how an SP-PL-enhancement operates after we have given a precise definition

for it.

Let H = (M,B,S,O, A, [[ ]]) be a Maurer machine such that M ∩ (Mprog ∪ M ′
ip ∪ M ′

rr ∪
M ′

plc) = � and step, plctr, halt �∈ A, and let (Oa, ma) = [[a]] for all a ∈ A. Then the
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SP-PL-enhancement of H is the Maurer machine H ′ = (M ′, B′,S′,O′, A′, [[ ]]′) such that

M ′ = M ∪ Mprog ∪ M ′
ip ∪ M ′

rr ∪ M ′
plc

B′ = B ∪ MA′
prog ∪ Iprog ∪ IT ∪ A ∪ � ∪ P(PS )

S′ = {S ′ : M ′ → B′ |
S ′ � M ∈ S & S ′ � Mprog ∈ Sprog & S ′(pcbr) ∈ MAprog &

S ′(pc) ∈ MA′
prog & S ′(ir) ∈ Iprog &

S ′(ditr) ∈ IT & S ′(bar) ∈ A & S ′(dr) ∈ MAprog &

S ′(eitr) ∈ IT & S ′(irr) ∈ � &

S ′(rrfetch) ∈ � & S ′(rrprep) ∈ � & S ′(rrexec) ∈ � & S ′(rrpostp) ∈ � &

S ′(jdf) ∈ � & S ′(isf) ∈ � & S ′(jpf) ∈ � & S ′(plsr) ∈ P(PS ) &

S ′(rr) ∈ �}
O′ = {O′ : S′ → S′ |

∃O ∈ O • ∀S ′ ∈ S′ •

(O′(S ′) � M = O(S ′ � M) & O′(S ′) � (M ′ \ M) = S ′ � (M ′ \ M))}
∪ {Ostep, Oplctr, Ohalt}

A′ = {step, plctr, halt}
[[a]]′ = (Oa, rr) for all a ∈ A′,

where:

— Ostep is the unique function from S′ to S′ such that for all S ′ ∈ S′:

Ostep(S
′) = O′

fetch(O
′
prep(O

′
exec(O

′
postp(S

′)))),

where O′
fetch, O

′
prep, O

′
exec and O′

postp are suboperations defined by:

– O′
fetch is the unique function from S′ to S′ such that for all S ′ ∈ S′,

O′
fetch(S

′) = S ′ if fetchst �∈ S ′(plsr)

O′
fetch(S

′) � (M ′ \ M ′
plc) = Ofetch(S

′ � (M ′ \ M ′
plc)) if fetchst ∈ S ′(plsr)

O′
fetch(S

′) � M ′
plc = S ′ � M ′

plc if fetchst ∈ S ′(plsr).

– O′
prep is the unique function from S′ to S′ such that for all S ′ ∈ S′,

O′
prep(S

′) = S ′ if prepst �∈ S ′(plsr)

O′
prep(S

′) � (M ′ \ M ′
plc) = Oprep(S

′ � (M ′ \ M ′
plc)) if prepst ∈ S ′(plsr)

O′
prep(S

′)(jdf) = jdc(S ′) if prepst ∈ S ′(plsr)

O′
prep(S

′) � (M ′
plc \ {jdf}) = S ′ � (M ′

plc \ {jdf}) if prepst ∈ S ′(plsr),

where jdc : S′ → � is the unique function from S′ to � such that for all S ′ ∈ S′,

jdc(S ′) = T iff Oprep(S
′ � (M ′ \ M ′

plc))(ditr) ∈ {fjmp, term}.
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– O′
exec is the unique function from S′ to S′ such that for all S ′ ∈ S′,

O′
exec(S

′) = S ′ if execst �∈ S ′(plsr)

O′
exec(S

′) � (M ′ \ M ′
plc) = Oexec(S

′ � (M ′ \ M ′
plc)) if execst ∈ S ′(plsr)

O′
exec(S

′)(isf) = isc(S ′) if execst ∈ S ′(plsr)

O′
exec(S

′) � (M ′
plc \ {isf}) = S ′ � (M ′

plc \ {isf}) if execst ∈ S ′(plsr),

where isc : S′ → � is the unique function from S′ to � such that for all S ′ ∈ S′,

isc(S ′) = T iff

S ′(ditr) = ptst & Oexec(S
′ � (M ′ \ M ′

plc))(irr) = F ∨
S ′(ditr) = ntst & Oexec(S

′ � (M ′ \ M ′
plc))(irr) = T.

– O′
postp is the unique function from S′ to S′ such that for all S ′ ∈ S′,

O′
postp(S

′) = S ′ if postpst �∈ S ′(plsr)

O′
postp(S

′) � (M ′ \ M ′
plc) = O′′

postp(S
′ � (M ′ \ M ′

plc)) if postpst ∈ S ′(plsr)

O′
postp(S

′)(jpf) = jpc(S ′) if postpst ∈ S ′(plsr)

O′
postp(S

′) � (M ′
plc \ {jpf}) = S ′ � (M ′

plc \ {jpf}) if postpst ∈ S ′(plsr),

where jpc : S′ → � is the unique function from S′ to � such that for all S ′ ∈ S′,

jpc(S ′) = T iff S ′(eitr) = fjmp,

and O′′
postp is defined as Opostp in the case of the SP-NPL-enhancement, except

for the replacement of the auxiliary program counter update function pcu by the

function pcu ′ defined by

pcu ′(S ′) = S ′(pc) if S ′(eitr) �= fjmp

pcu ′(S ′) = S ′(pc) − 2 + S ′(dr) if S ′(eitr) = fjmp & S ′(dr) �= 0 &

S ′(pc) − 2 + S ′(dr) � S ′(pcbr)

pcu ′(S ′) = S ′(pcbr) + 1 if S ′(eitr) = fjmp &

(S ′(dr) = 0 ∨
S ′(pc) − 2 + S ′(dr) > S ′(pcbr)).

— Oplctr is the unique function from S′ to S′ such that for all S ′ ∈ S′

Oplctr(S
′) � (M ′ \ M ′

plc) = S ′ � (M ′ \ M ′
plc)

Oplctr(S
′)(jdf) = F

Oplctr(S
′)(isf) = F

Oplctr(S
′)(jpf) = F

Oplctr(S
′)(plsr) = plsu(S ′)

Oplctr(S
′)(rr) = ru(S ′),
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where plsu : S′ → P(PS ) is the unique function from S′ to P(PS ) such that for all

S ′ ∈ S′

fetchst ∈ plsu(S ′) iff S ′(rrfetch) = T &

(fetchst ∈ S ′(plsr) & S ′(jdf) = F ∨
S ′(isf) = T ∨ S ′(jpf) = T)

prepst ∈ plsu(S ′) iff S ′(rrfetch) = T &

(fetchst ∈ S ′(plsr) & S ′(jdf) = F ∨
S ′(isf) = T)

execst ∈ plsu(S ′) iff prepst ∈ S ′(plsr) & S ′(isf) = F

postpst ∈ plsu(S ′) iff execst ∈ S ′(plsr),

and ru : S′ → � is the unique function from S′ to � such that for all S ′ ∈ S′,

ru(S ′) = T iff plsu(S ′) �= � & S ′(rrpostp) = T.

— Ohalt is the unique function from S′ to S′ such that for all S ′ ∈ S′

Ohalt(S
′) � (M ′ \ {rr}) = S ′ � (M ′ \ {rr})

Ohalt(S
′)(rr) = T if S ′(rrpostp) = F

Ohalt(S
′)(rr) = F if S ′(rrpostp) = T.

Figure 2 shows the structure of an SP-PL-enhancement. The suboperations O′
fetch, O

′
prep

and O′
exec of Ostep either do not affect the memory elements of M ′ \M ′

plc or do affect these

memory elements exactly in the way in which the operations Ofetch, Oprep and Oexec of the

SP-NPL-enhancement of H would affect them. The suboperation O′
postp of Ostep either

does not affect the memory elements of M ′ \ M ′
plc or affects them in a way that is similar

to the way in which the operation Opostp of the SP-NPL-enhancement of H would affect

them. The difference compared with Opostp is due to the different way in which skipping

of a PGA instruction is accomplished in pipelined instruction processing.

The suboperations O′
fetch, O

′
prep, O

′
exec and O′

postp of Ostep correspond to the pipeline

stages that a PGA instruction being processed passes through successively. When the

suboperation corresponding to a stage other than the last one has handled a PGA

instruction, the suboperation corresponding to the next stage is enabled to handle that

PGA instruction in the next step, subject to the exceptions mentioned below. O′
fetch, the

suboperation corresponding to the first stage, is always enabled to fetch a PGA instruction

in the next step, subject to the exceptions mentioned below. The exceptions are:

— when O′
prep has decoded a jump or termination instruction, pipelined instruction

processing is stalled beginning with the PGA instruction fetched in the same step;

— when O′
exec has executed either a positive test instruction with a negative reply as

result or a negative test instruction with a positive reply as result, the PGA instruction

fetched immediately after the test instruction is discarded and pipelined instruction

processing is started again with the next step if the latter instruction is a jump or

termination instruction;

https://doi.org/10.1017/S0960129507006548 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006548


J. A. Bergstra and C. A. Middelburg 394

Fig. 2. Structure of an SP-PL-enhancement

— when O′
postp has adjusted the program counter on a jump instruction, the last fetched

PGA instruction is discarded and pipelined instruction processing is started again with

the next step.

Thus, the suboperations O′
fetch, O

′
prep, O

′
exec and O′

postp are not all enabled to handle a

PGA instruction in every step of the pipelined instruction processing. The content of

the pipeline status register indicates which of the suboperations are enabled. Enabledness

is controlled by the pipeline control operation Oplctr. This operation is intended to be

performed immediately after Ostep. It takes parts of the output of the suboperations of

Ostep to fix up the enabledness of these suboperations for the next step.

The idea is that in each step the suboperations O′
fetch, O′

prep, O′
exec and O′

postp are

performed in parallel. To justify the use of the term pipeline here, we have to show that

the suboperations can actually be performed in parallel. We will return to this issue in

Section 9.

Consider the guarded recursive specification over BTA given by the equation

CT ′ = step ◦ (CT ′ � plctr � (S � halt � D)).

Let P be a finite PGA program. Then, applying thread |P | to a state of the Maurer

machine H has the same effect as applying power thread CT ′ to the corresponding

state of the SP-PL-enhancement of H in which the program memory contains the stored

representation of P . This is stated rigorously in the following theorem.
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Theorem 2 (SP-PL-enhancement). Let H ′ = (M ′, B′,S′,O′, A′, [[ ]]′) be the SP-PL-

enhancement of H = (M,B,S,O, A, [[ ]]), let P = u1 ; . . . ; un ∈ Pfin(A) be such that

n � size(Mprog), let S ′
0 ∈ S′ be such that S ′

0 � Mprog[0, n − 1] = sprog(P ), S ′
0(pcbr) = n − 1,

S ′
0(pc) = 0, S ′

0(rrfetch) = T, S ′
0(jdf) = S ′

0(isf) = S ′
0(jpf) = F and S ′

0(plsr) = {fetchst}. Then

|P | •H (S ′
0 � M) = (CT ′ •H ′ S ′

0) � M.

Proof. We prove that (CT •H ′′ (S ′
0 � (M ′ \ M ′

plc))) � M = (CT ′ •H ′ S ′
0) � M, where H ′′

is the SP-NPL-enhancement of H . From this and Theorem 1, the theorem will follow

immediately.

We will use the following notation in the proof. For each S ′ ∈ S′ and each n > 0,

we define cyclen(S ′) by induction on n as follows: cycle1(S ′) = Oplctr(Ostep(S
′)) and

cyclen+1(S ′) = Oplctr(Ostep(cyclen(S ′))). For each S ′ ∈ S′, we define tip(S ′) as follows:

tip(S ′) ⇔ fetchst ∈ S ′(plsr) & prepst ∈ cycle1(S ′)(plsr) & execst ∈ cycle2(S ′)(plsr) &

postpst ∈ cycle3(S ′)(plsr). Thus, tip(S ′) indicates that some instruction will be totally

processed from state S ′.

Analysis of input and output regions yields three potential sources of interference

between the suboperations of Ostep: OR(O′
postp) ∩ OR(O′

fetch) = {pc}, OR(O′
postp) ∩

IR(O′
fetch) = {pc} and IR(O′

postp)∩OR(O′
fetch) = {pc}. It is easy to see, by stalling pipelined

instruction processing when O′
prep has decoded a jump instruction, that interference does

not really happen: O′
fetch does not change any memory element if O′

postp has changed pc

in the same step, and O′
postp does not change any memory element if O′

fetch has changed

pc in the previous step. Because of this, it is not difficult to see that for all S ′ ∈ S′,

tip(S ′) ⇒ cycle4(S ′) � M = Opostp(Oexec(Oprep(Ofetch(S
′ � (M ′ \ M ′

plc))))) � M. (5)

We have that tip(S ′
0) holds. Moreover, tip is preserved by the total processing of an

instruction if there is a next instruction to be processed:

— If S ′(Mprog[S
′(pc)]) = a and S ′(pc) + 1 � S ′(pcbr),

then

tip(S ′) ⇒ tip(cycle1(S ′)).

— If S ′(Mprog[S
′(pc)]) ∈ {+a,−a}, cycle3(S ′)(isf) = F and S ′(pc) + 1 � S ′(pcbr), then

tip(S ′) ⇒ tip(cycle1(S ′)).

— If S ′(Mprog[S
′(pc)]) ∈ {+a,−a}, cycle3(S ′)(isf) = T and S ′(pc) + 2 � S ′(pcbr), then

tip(S ′) ⇒ tip(cycle2(S ′)).

— If S ′(Mprog[S
′(pc)]) = #k and S ′(pc) + k � S ′(pcbr), then

tip(S ′) ⇒ tip(cycle4(S ′)).

Let (pi, Si) be the (i+1)th element in the full path of (CT , S ′
0 � (M ′ \ M ′

plc)) on H ′′. Then it

is easy to prove by induction on i that

p4i+4 = CT if S ′
4i+1(rrfetch) = T & S ′

4i+4(rrpostp) = T

p4i+4 = S if S ′
4i+1(rrfetch) = T & S ′

4i+4(rrpostp) = F

p4i+1 = D if S ′
4i+1(rrfetch) = F

(6)
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Table 11. Pipelined instruction processing of a ; +b ; #3 ; c ; #2 ; d ; !

1 2 3 4 5 6 7 8 9 10 11 12

a fetch prep exec postp

+b fetch prep exec postp

#3 fetch prep

c fetch prep exec postp

#2 fetch prep exec postp

d fetch

! fetch prep exec postp

fetch

(if 4i + 4 < ||(CT , S ′
0 � (M ′ \ M ′

plc))||H ′′ when CT converges from S ′
0 � (M ′ \ M ′

plc) on H ′′).

Let (p′
i, S

′
i ) be the (i+1)th element in the full path of (CT ′, S ′

0) on H ′. Then it is easy to

prove by induction on i that

p′
4i+4 = CT ′ if tip(S4i) & S ′

4i+1(rrfetch) = T & S ′
4i+4(rrpostp) = T

p′
4i+4 = S if tip(S4i) & S ′

4i+1(rrfetch) = T & S ′
4i+4(rrpostp) = F

p′
4i+1 = D if tip(S4i) & S ′

4i+1(rrfetch) = F

(7)

(if 4i + 4 < ||(CT ′, S ′
0)||H ′ when CT ′ converges from S ′

0 on H ′). Let (pi, Si) be the (i+1)th

element in the full path of (CT , S ′
0 �(M ′ \M ′

plc)) on H ′′ of which the first component equals

CT , S or D, and let (p′
i, S

′
i ) be the (i+1)th element in the full path of (CT ′, S ′

0) on H ′ of

which the first component equals CT ′, S or D and the second component, say S ′, satisfies

tip(S ′) if the first component equals CT ′. Then, using (5), (6), (7) and the preservation

properties of tip, it is straightforward to prove by induction on i and case distinction on

the kinds of primitive instructions of PGA that

(pi = CT ⇔ p′
i = CT ′) & (pi = S ⇔ p′

i = S) & (pi = D ⇔ p′
i = D),

Si � (M ′ \ M ′
plc) = S ′

i � (M ′ \ M ′
plc)

(if i < ||(CT , S ′
0 � (M ′ \ M ′

plc))||H ′′ when CT converges from S ′
0 � (M ′ \ M ′

plc) on H ′′). The

theorem then follows immediately.

Example (Pipelined instruction processing). Table 11 shows the pipelined instruction

processing of the PGA program a ; +b ; #3 ; c ; #2 ; d ; !. It is assumed that the execution

of +b results in a negative reply. We see that the pipelined instruction processing of this

PGA program is stalled three times: after the jump instruction #3 has been decoded

in step 4, after the jump instruction #2 has been decoded in step 6, and after the

termination instruction ! has been decoded in step 10. Because the execution of the

positive test instruction +b has produced a negative reply in step 4, the next instruction

in the pipeline, that is, the jump instruction #3, is not executed and post-processed in

later steps. Pipelined instruction processing is started again from step 5, because there

is no longer a jump instruction in the pipeline. The jump instruction #2 passes all
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Table 12. Pipelined instruction processing of a ; +b ; c ; #3 ; d ; e

1 2 3 4 5 6 7 8

a fetch prep exec postp

+b fetch prep exec postp

c fetch prep

#3 fetch prep exec postp

d fetch

e

fetch

four pipeline stages before pipelined instruction processing is started again from step 9.

Moreover, because the jump is actually taken, the prematurely fetched instruction d is

discarded when pipelined instruction processing is started again. The attempt to fetch

another instruction prematurely in step 10 does not succeed because the last instruction

of the PGA program was fetched in step 9. Instruction processing stops after step 12,

because in that step the termination instruction is recognised.

Table 12 shows the pipelined instruction processing of the program a ;+b ;c ;#3;d ;e. It

is assumed that the execution of +b results in a negative reply. We see that the pipelined

instruction processing of this PGA program is stalled once: after the jump instruction

#3 has been decoded in step 5. Because the execution of the positive test instruction

+b has produced a negative reply in step 4, the next instruction in the pipeline, that is,

the void basic instruction c, is not executed and post-processed in later steps. The jump

instruction #3 passes all four pipeline stages before pipelined instruction processing is

started again from step 8. Moreover, because the jump is actually taken, the prematurely

fetched instruction d is discarded when pipelined instruction processing is started again.

The attempt to fetch another instruction in step 8 does not succeed because the jump

instruction #3 has brought the program counter beyond the last instruction of the PGA

program. Instruction processing stops after step 8, because fetching fails in that step while

there is no other instruction in the pipeline. This situation corresponds to a programming

error, such as a jump out of the program, as a result of which further instruction processing

is blocked.

With pipelined instruction processing, execution of the first example program takes 12

steps and execution of the second example program takes 8 steps. With non-pipelined

instruction processing, these would take 20 steps and 13 steps, respectively. However, there

will be no real gain unless O′
fetch, O

′
prep, O

′
exec and O′

postp can be performed in parallel.

9. Parallel composability

In this section, we justify the use of the term pipeline in Section 8 by showing that the

suboperations O′
fetch, O

′
prep, O

′
exec and O′

postp of Ostep can actually be performed in parallel.
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In the case under consideration, performing a number of operations in parallel

amounts to accomplishing the state transformations going with the different operations

simultaneously. It should be borne in mind that accomplishing them simultaneously and

accomplishing them in arbitrary order do not always yield the same result.

Let (M,B,S,O) be a Maurer computer, O ∈ O and O1, O2 : S → S be such that

O2(O1(S)) = O(S) for all S ∈ S. Then O is parallel composable of O1 and O2 if the

following conditions are fulfilled:

— O1 is consistent with O2: if O1 and O2 affect the same memory element, then they

affect that memory element in the same way;

— O1 is transparent to O2: if O1 affects a memory element, then that memory element

does not affect any memory element under O2.

More precisely, O is parallel composable of O1 and O2 if and only if O1 con O2 & O1 tra

O2, where con and tra are defined as follows:

— O1 con O2 iff

∀m ∈ OR(O1) ∩ OR(O2), S ∈ S •

(O1(S)(m) �= S(m) & O2(S)(m) �= S(m) ⇒ O1(S)(m) = O2(S)(m))

— O1 tra O2 iff

∀m ∈ OR(O1) ∩ IR(O2), S ∈ S •

(O1(S)(m) �= S(m) ⇒
¬ (∃S ′ ∈ S • (∀m′ ∈ M \ {m} • O1(S)(m′) = S ′(m′) &

∃m′′ ∈ OR(O2) • O2(O1(S))(m′′) �= O2(S
′)(m′′)))).

Sufficient conditions for O1 con O2 and O1 tra O2 to hold are OR(O1) ∩ OR(O2) = � and

OR(O1) ∩ IR(O2) = �, respectively.

Let (M,B,S,O) be a Maurer computer, O ∈ O, and O1, O2 : S → S be such that

O2(O1(S)) = O(S) for all S ∈ S. Then O1 and O2 are commutative if O2(O1(S)) =

O1(O2(S)) for all S ∈ S. Note that O1 and O2 do not have to be commutative in order

for O to be parallel composable of O1 and O2; and O does not have to be parallel

composable of O1 and O2 in order for O1 and O2 to be commutative. In other words,

parallel composability does not imply commutativity, or the other way round.

Parallel composability generalises easily to n operations (for n � 2).

Let (M,B,S,O) be a Maurer computer, let O ∈ O, and let O1, . . . , On : S → S be such

that On(. . . O1(S) . . .) = O(S) for all S ∈ S. Then O is parallel composable of O1, . . . , On if

and only if
∧

1�i<n

∧
i<j�n(Oi con Oj & Oi tra Oj).

The suboperations O′
fetch, O′

prep, O′
exec and O′

postp of Ostep from Section 8 can be

performed in parallel. This is stated rigorously in the following theorem.

Theorem 3 (Parallel composability). Take the SP-PL-enhancement of a Maurer machine

H as in Section 8. Then Ostep is parallel composable of O′
postp, O

′
exec, O

′
prep and O′

fetch.
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Proof. The following follow immediately from the definitions:

OR(O′
postp) ∩ OR(O′

exec) = � OR(O′
postp) ∩ IR(O′

exec) = �

OR(O′
postp) ∩ OR(O′

prep) = � OR(O′
postp) ∩ IR(O′

prep) = �

OR(O′
postp) ∩ OR(O′

fetch) = {pc} OR(O′
postp) ∩ IR(O′

fetch) = {pc}
OR(O′

exec) ∩ OR(O′
prep) = � OR(O′

exec) ∩ IR(O′
prep) = �

OR(O′
exec) ∩ OR(O′

fetch) = � OR(O′
exec) ∩ IR(O′

fetch) = �

OR(O′
prep) ∩ OR(O′

fetch) = � OR(O′
prep) ∩ IR(O′

fetch) = �.

Hence we only need to take a closer look at the conditions O′
postp con O′

fetch and

O′
postp tra O′

fetch; and we only need to consider the memory element pc. Now, take an

arbitrary state S ′. It is easy to see that if O′
postp changes pc in state S ′, then O′

exec must

not have set isf one step back and O′
prep must have set jdf two steps back. It is also easy

to see that, as a consequence, O′
fetch does not change any memory element in states S ′

and O′
prep(S

′). Hence, both the consistency condition and the transparency condition are

trivially met.

The proof of Theorem 3 shows that stalling pipelined instruction processing when O′
prep

has decoded a jump instruction is crucial for parallel composability. It is easy to see

that Ostep is not parallel composable of O′
postp, O

′
exec, O

′
prep, O

′
fetch and Oplctr. This is to

be expected. For example, the flags jdf , isf and jpf are set by O′
prep, O

′
exec and O′

postp to

influence how plsr is updated by Oplctr.

10. Conditional jump instructions

In this section, we extend PGA with conditional jump instructions and look at the effect

of this on non-pipelined and pipelined instruction processing.

We add to PGA the following primitive instructions:

— for each a ∈ A and k ∈ �, a positive conditional jump instruction +a#k

— for each a ∈ A and k ∈ �, a negative conditional jump instruction −a#k.

A positive conditional jump instruction +a#k has the same effect as +a ; #k, but counts

as one instruction; and a negative conditional jump instruction −a#k has the same

effect as −a ; #k, but counts as one instruction. In Bergstra and Loots (2002), PGA

is extended with a unit instruction operator u that turns PGA programs into single

instructions. In that extension of PGA, called PGAu, +a#k and −a#k can be taken as

abbreviations for u(+a;#k) and u(−a;#k), respectively. In Ponse (2002), thread extraction

for PGAu programs is described by means of a mapping from PGAu programs to PGA

programs.

The SP-NPL-enhancement of a Maurer machine changes only slightly when conditional

jump instructions are added. Only the set IT and the auxiliary functions dec, opc and pcu

used in the definition of the SP-NPL-enhancement of a Maurer machine from Section 7

have to be redefined. The set IT is redefined because the two kinds of conditional jump

instructions give rise to two additional instruction types: pcfjmp and ncfjmp. The function
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dec is redefined in order to deal with the decoding of conditional jump instructions. The

function opc is redefined because conditional jump instructions cause an operation to

be performed. The function pcu is redefined in order to deal with the adjustment of the

program counter in the case of conditional jump instructions.

IT is redefined to be the set {bsc, ptst, ntst, fjmp, pcfjmp, ncfjmp, term}.
The function dec : S′ → IT × A × MAprog is redefined as follows:

dec(S ′) = (bsc, a, S ′(dr)) if S ′(ir) = a

dec(S ′) = (ptst, a, S ′(dr)) if S ′(ir) = +a

dec(S ′) = (ntst, a, S ′(dr)) if S ′(ir) = −a

dec(S ′) = (fjmp, S ′(bar), k) if S ′(ir) = #k

dec(S ′) = (pcfjmp, a, k) if S ′(ir) = +a#k

dec(S ′) = (ncfjmp, a, k) if S ′(ir) = −a#k

dec(S ′) = (term, S ′(bar), S ′(dr)) if S ′(ir) = ! .

The function opc : S′ → � is redefined as follows:

opc(S ′) = T iff S ′(ditr) ∈ {bsc, ptst, ntst, pcfjmp, ncfjmp}.

The function pcu : S′ → MA′
prog is redefined as follows:

pcu(S ′) = S ′(pc) if S ′(eitr) = bsc ∨
S ′(eitr) = ptst & S ′(irr) = T ∨
S ′(eitr) = ntst & S ′(irr) = F ∨
S ′(eitr) = pcfjmp & S ′(irr) = F ∨
S ′(eitr) = ncfjmp & S ′(irr) = T ∨
S ′(eitr) = term

pcu(S ′) = S ′(pc) + 1 if (S ′(eitr) = ptst & S ′(irr) = F ∨
S ′(eitr) = ntst & S ′(irr) = T) &

S ′(pc) + 1 � S ′(pcbr)

pcu(S ′) = S ′(pc) − 1 + S ′(dr) if (S ′(eitr) = fjmp ∨
S ′(eitr) = pcfjmp & S ′(irr) = T ∨
S ′(eitr) = ncfjmp & S ′(irr) = F) &

S ′(dr) �= 0 &

S ′(pc) − 1 + S ′(dr) � S ′(pcbr)

pcu(S ′) = S ′(pcbr) + 1 if (S ′(eitr) = ptst & S ′(irr) = F ∨
S ′(eitr) = ntst & S ′(irr) = T) &

S ′(pc) + 1 > S ′(pcbr) ∨
(S ′(eitr) = fjmp ∨
S ′(eitr) = pcfjmp & S ′(irr) = T ∨
S ′(eitr) = ncfjmp & S ′(irr) = F) &

(S ′(dr) = 0 ∨
S ′(pc) − 1 + S ′(dr) > S ′(pcbr)).
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Like the SP-NPL-enhancement of a Maurer machine, the SP-PL-enhancement of a

Maurer machine changes only slightly when conditional jump instructions are added.

The memory has to be extended with a conditional jump flag (cjf), which, like the other

flags, contains a Boolean value. Also, the set M ′
plc, the auxiliary functions jpc and pcu ′,

the suboperation O′
exec and the operation Oplctr used in the definition of the SP-PL-

enhancement of a Maurer machine from Section 8 have to be redefined. The flag cjf

is needed in order to control the pipelined processing of instructions in the presence of

conditional jump instructions. The set M ′
plc is redefined because of the addition of the flag

cjf . The function jpc is redefined because, after adjustment of the program counter on

conditional jump instructions, pipelined instruction processing must be restarted as in the

case of unconditional jump instructions. Just like pcu before, the function pcu ′ is redefined

in order to deal with the adjustment of the program counter in the case of conditional

jump instructions. The suboperation O′
exec is redefined in order to set the additional flag

cjf when, in the case of conditional jump instructions, the reply value is produced on

which the jump concerned must actually take place. The operation Oplctr is redefined in

order to control the pipelined processing of instructions in the presence of conditional

jump instructions.

M ′
plc is redefined to be the set {isf , jdf , jpf , cjf , plsr, rr}.

The function jpc : S′ → � is redefined as follows:

jpc(S ′) = T iff

S ′(eitr) = fjmp ∨
S ′(eitr) = pcfjmp & S ′(irr) = T ∨ S ′(eitr) = ncfjmp & S ′(irr) = F.

The function pcu ′ : S′ → MA′
prog is redefined as follows:

pcu ′(S ′) = S ′(pc) if S ′(eitr) ∈ {bsc, ptst, ntst, term} ∨
S ′(eitr) = pcfjmp & S ′(irr) = F ∨
S ′(eitr) = ncfjmp & S ′(irr) = T

pcu ′(S ′) = S ′(pc) − 2 + S ′(dr) if S ′(eitr) = fjmp & S ′(dr) �= 0 &

S ′(pc) − 2 + S ′(dr) � S ′(pcbr)

pcu ′(S ′) = S ′(pc) − 3 + S ′(dr) if (S ′(eitr) = pcfjmp & S ′(irr) = T ∨
S ′(eitr) = ncfjmp & S ′(irr) = F) &

S ′(dr) �= 0 &

S ′(pc) − 3 + S ′(dr) � S ′(pcbr)

pcu ′(S ′) = S ′(pcbr) + 1 if S ′(eitr) = fjmp &

(S ′(dr) = 0 ∨
S ′(pc) − 2 + S ′(dr) > S ′(pcbr)) ∨

(S ′(eitr) = pcfjmp & S ′(irr) = T ∨
S ′(eitr) = ncfjmp & S ′(irr) = F) &

(S ′(dr) = 0 ∨
S ′(pc) − 3 + S ′(dr) > S ′(pcbr)).
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The suboperation O′
exec is redefined as follows:

O′
exec(S

′) = S ′ if execst �∈ S ′(plsr)

O′
exec(S

′) � (M ′ \ M ′
plc) = Oexec(S

′ � (M ′ \ M ′
plc)) if execst ∈ S ′(plsr)

O′
exec(S

′)(isf) = isc(S ′) if execst ∈ S ′(plsr)

O′
exec(S

′)(cjf) = cjc(S ′) if execst ∈ S ′(plsr)

O′
exec(S

′) � (M ′
plc \ {isf , cjf}) = S ′ � (M ′

plc \ {isf , cjf}) if execst ∈ S ′(plsr),

where isc : S′ → � is defined as in the case without conditional jump instructions and

cjc : S′ → � is the unique function from S′ to � such that for all S ′ ∈ S′,

cjc(S ′) = T iff

S ′(ditr) = pcfjmp & Oexec(S
′ � (M ′ \ M ′

plc))(irr) = T ∨
S ′(ditr) = ncfjmp & Oexec(S

′ � (M ′ \ M ′
plc))(irr) = F.

Oplctr is redefined as follows:

Oplctr(S
′) � (M ′ \ M ′

plc) = S ′ � (M ′ \ M ′
plc)

Oplctr(S
′)(jdf) = F

Oplctr(S
′)(isf) = F

Oplctr(S
′)(jpf) = F

Oplctr(S
′)(cjf) = F

Oplctr(S
′)(plsr) = plsu(S ′)

Oplctr(S
′)(rr) = ru(S ′),

where plsu : S′ → P(PS ) is the unique function from S′ to P(PS ) such that for all

S ′ ∈ S′,

fetchst ∈ plsu(S ′) iff S ′(rrfetch) = T &

(fetchst ∈ S ′(plsr) & S ′(jdf) = F & S ′(cjf) = F ∨
S ′(isf) = T ∨ S ′(jpf) = T)

prepst ∈ plsu(S ′) iff S ′(rrfetch) = T &

(fetchst ∈ S ′(plsr) & S ′(jdf) = F & S ′(cjf) = F ∨
S ′(isf) = T)

execst ∈ plsu(S ′) iff prepst ∈ S ′(plsr) & S ′(isf) = F & S ′(cjf) = F

postpst ∈ plsu(S ′) iff execst ∈ S ′(plsr).

11. Backward jump instructions

In this short section we discuss backward jump instructions and sketch the effect of their

inclusion on non-pipelined and pipelined instruction processing.

In the preceding sections we have only considered finite PGA programs, that is, closed

terms of PGA in which the repetition operator does not occur. This means that programs

that are infinite sequences of primitive instructions are excluded. In other words, programs

for which the execution goes on indefinitely are not covered. However, in a setting with

backward jump instructions, there exists for each such program a behaviourally equivalent

program that is a finite sequence of primitive instructions.
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In a setting with backward jump instructions, there are, in addition to the primitive

instructions of PGA introduced earlier, the following primitive instructions:

— for each k ∈ �, a backward jump instruction \#k.

We write I′ for the set consisting of all primitive instructions of PGA and all backward

jump instructions. A PGLB program is a closed term that can be built from:

— for each u ∈ I′, an instruction constant u

— the concatenation operator ; .

The meaning of PGLB programs is described in Bergstra and Loots (2002) by means

of a mapping from PGLB programs to PGA programs. For each PGA program, there

exists a PGLB program that is mapped to a PGA program with the same behaviour. In

other words, the expressiveness is not decreased by replacing the repetition operator by

backward jump instructions.

The addition of backward jump instructions gives rise to trivial changes of the SP-NPL-

and SP-PL-enhancements of Maurer machines: forward jump instructions and backward

jump instructions can be treated in the same way.

Only the set IT and the auxiliary functions dec and pcu used in the definition of the

SP-NPL-enhancement of a Maurer machine from Section 7 and the auxiliary function

pcu ′ used in the definition of the SP-PL-enhancement of a Maurer machine from Section 8

have to be redefined. The set IT must be redefined because the backward jump instructions

give rise to an additional instruction type: bjmp. The function dec must be redefined in

order to deal with the decoding of backward jump instructions. The function pcu and

pcu ′ must be redefined in order to deal with the adjustment of the program counter in

the case of backward jump instructions.

It is easy to see that with the correct redefinitions, Theorems 1 and 2 go through after

the addition of backward jump instructions. Conditional backward jump instructions

can be added in the same way as conditional forward jump instructions were added in

Section 10.

12. Instruction set architectures

In this section, we introduce the concept of a strict load/store Maurer instruction set

architecture. This concept gets its name because:

— it is described in the setting of Maurer’s model for computers;

— it is concerned only with load/store architectures;

— the load/store architectures it deals with are strict in some respects, which will be

explained after it has been formalised.

The concept of a strict load/store Maurer instruction set architecture, or, for short,

a strict load/store Maurer ISA, is an approximation of the concept of a load/store

instruction set architecture. It is focussed on instructions for data manipulation and data

transfer. Instructions for transfer of program control are treated in a uniform way over

different strict load/store Maurer ISAs. Instances of the concept of a strict load/store

Maurer ISA are those Maurer machines for which SP-NPL- and SP-PL-enhancements are
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primarily intended. The SP-NPL- and SP-PL-enhancements of a strict load/store Maurer

ISA can be viewed as implementations of that ISA.

Each Maurer machine has a number of basic actions with which an operation is

associated. In this section, when we refer to Maurer machines that are strict load/store

Maurer ISAs, such basic actions are loosely called basic instructions. The term basic

action is not commonly used when we are talking about ISAs, and, moreover, basic

instructions and basic actions are identified in the semantics of PGA.

The basic idea underlying the concept of a strict load/store Maurer ISA is that there

is a main memory whose elements contain data, an operating unit with a small internal

memory through which data can be manipulated, and an interface between the main

memory and the operating unit for data transfer between them. For the sake of simplicity,

data is restricted to the natural numbers between 0 and some upper bound. Other types

of data that could be supported can always be represented by the natural numbers

provided. Moreover, the data manipulation instructions offered by a strict load/store

Maurer ISA are not restricted and may include ones that are tailored to manipulation of

representations of other types of data. Therefore, we believe that nothing essential is lost

by the restriction to natural numbers.

The concept of a strict load/store Maurer ISA is parametrised by:

— an address width k

— a word length l

— a bit size m of the operating unit

— a number u of pairs of address and data registers for load instructions

— a number v of pairs of address and data registers for store instructions

— a set A′ of basic instructions for data manipulation.

It is assumed that a fixed but arbitrary set Mdata of cardinality 2k and a fixed but

arbitrary bijection mdata : [0, 2k − 1] → Mdata have been given. Mdata is called the data

memory. The data memory is a memory whose elements can be addressed by means of

natural numbers in the interval [0, 2k − 1]. The address width k can be regarded as the

number of bits used for the binary representation of addresses of data memory elements.

We write Baddr for [0, 2k − 1]. The data memory elements are meant for containing data.

They can contain natural numbers in the interval [0, 2l − 1]. The word length l can be

regarded as the number of bits used to represent data in data memory elements. We write

Bdata for [0, 2l − 1].

It is assumed that a fixed but arbitrary set Mou of cardinality m, called the operating

unit memory, has been given. The operating unit memory is a memory whose elements

can contain natural numbers in the set {0, 1}, that is, bits. We write Bit for {0, 1}. The bit

size m can be regarded as the number of bits that the internal memory of the operating

unit contains. Usually, a part of the operating unit memory is partitioned into groups to

which data manipulation instructions can refer.

It is assumed that fixed but arbitrary sets Mld and Mla of cardinality u and fixed but

arbitrary bijections mld : [0, u − 1] → Mld and mla : [0, u − 1] → Mla have been given. It

is also assumed that fixed but arbitrary sets Msd and Msa of cardinality v and fixed but

arbitrary bijections msd : [0, v − 1] → Msd and msa : [0, v − 1] → Msa have been given.
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The members of Mla and Mld are called load address registers and load data registers,

respectively. The members of Msa and Msd are called store address registers and store data

registers, respectively. The load and store registers are special memory elements meant for

transferring data between the data memory and the operating unit memory. The members

of Mla and Msa can contain addresses, that is, members of Baddr. The members of Mld and

Msd can contain data, that is, members of Bdata. It is assumed that Mdata, Mou, Mld, Msd,

Mla, Msa and {rra | a ∈ A} are pairwise disjoint sets.

Let n ∈ [0, 2k −1], n′ ∈ [0, u−1] and n′′ ∈ [0, v−1]. Then, we write Mdata[n] for mdata(n),

Mld[n
′] for mld(n

′), Mla[n
′] for mla(n

′), Msd[n
′′] for msd(n

′′) and Msa[n
′′] for msa(n

′′).

A strict load/store Maurer instruction set architecture with parameters k, l, m, u, v and

A′ is a Maurer machine H = (M,B,S,O, A, [[ ]]) with

M = Mdata ∪ Mou ∪ Mld ∪ Msd ∪ Mla ∪ Msa ∪ {rra | a ∈ A}
B = Bdata ∪ Baddr ∪ �
S = {S : M → B |

∀m ∈ Mdata ∪ Mld ∪ Msd • S(m) ∈ Bdata &

∀m ∈ Mla ∪ Msa • S(m) ∈ Baddr &

∀m ∈ Mou • S(m) ∈ Bit & ∀a ∈ A • S(rra) ∈ �}
O = {Oa | a ∈ A}
A = {load:n | n ∈ [0, u − 1]} ∪ {store:n | n ∈ [0, v − 1]} ∪ A′

[[a]] = (Oa, rra) for all a ∈ A,

where, for all n ∈ [0, u − 1], Oload:n is the unique function from S to S such that for all

S ∈ S,

Oload:n(S) � (M \ {Mld[n], rrload:n}) = S � (M \ {Mld[n], rrload:n})
Oload:n(S)(Mld[n]) = S(Mdata[S(Mla[n])])

Oload:n(S)(rrload:n) = T,

and, for all n ∈ [0, v − 1], Ostore:n is the unique function from S to S such that for all

S ∈ S,

Ostore:n(S) � (M \ {Mdata[S(Msa[n])], rrstore:n}) = S � (M \ {Mdata[S(Msa[n])], rrstore:n})
Ostore:n(S)(Mdata[S(Msa[n])]) = S(Msd[n])

Ostore:n(S)(rrstore:n) = T,

and, for all a ∈ A′, Oa is a function from S to S such that,

IR(Oa) ⊆ Mou ∪ Mld

OR(Oa) ⊆ Mou ∪ Msd ∪ Mla ∪ Msa ∪ {rra}.

We have made the deliberate decision to restrict consideration to load/store architec-

tures. We believe that load/store architectures give rise to a relatively simple interface

between the data memory and the operating unit. For example, with an architecture

other than a load/store architecture, it is more difficult to identify statically, when we

are concerned with instructions for data manipulation and/or data transfer, those cases

in which the operations associated with instructions that follow each other can be safely

performed in a different order or in parallel.
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A strict load/store Maurer ISA is strict in the following respects:

— with data transfer between the data memory and the operating unit, there is a strict

separation between memory elements used for loading data, loading addresses, storing

data, and storing addresses;

— from these memory elements, only the memory elements used for loading data are

allowed in the input regions of data manipulation operations;

— a data memory whose size is less than the number of addresses determined by the

address width is not allowed.

The first two ways in which a strict load/store Maurer ISA is strict relate to the interface

between the data memory and the operating unit. We believe that they yield the most

conveniently arranged interface for theoretical work relevant to micro-architecture design.

More complicated interfaces are found in many load/store architectures for which there

are implementations. The third way in which a strict load/store Maurer ISA is strict saves

us from having to deal with addresses that do not actually address a memory element.

Such addresses can be dealt with in many different ways, each of which complicates the

architecture considerably. We consider their exclusion desirable in much theoretical work

relevant to micro-architecture design.

An anonymous referee drew our attention to the fact that a strict separation between

memory elements used for loading data, loading addresses, storing data, and storing

addresses was also made in Cray and Thornton’s design of the CDC 6600 computer

(Thornton 1970), which was arguably the first load/store architecture to be implemented.

However, in their design, the memory elements used for storing data are also allowed in

the input regions of data manipulation operations.

13. Conclusions

We have modelled micro-architectures with non-pipelined instruction processing and

pipelined instruction processing, using Maurer machines, basic thread algebra and pro-

gram algebra. Because our descriptions of micro-architectures are more precise than those

usually given, we have been able to verify that stored programs are executed as intended

with these micro-architectures. Also, a thorough understanding of the issues relevant to

pipelined instruction processing can be acquired by modelling micro-architectures based

on different pipeline organisations.

In this paper, pipelined instruction processing deals with control conflicts, but does

not deal with data conflicts. Because memory access is not made explicit, data conflicts

simply do not occur in the model presented in this paper. Models in which memory access

is made explicit may have it placed in a separate pipeline stage, as a result of which

data conflicts may occur. In those models, additional assumptions are needed about the

instruction set architecture. Such additional assumptions are incorporated in the concept

of a strict load/store Maurer instruction set architecture introduced in this paper.

Several techniques for speeding up instruction processing involve multi-threading, a

form of concurrency where some interleaving strategy determines how threads that exist

concurrently are interleaved (see also Bergstra and Middelburg (2007c) and Bergstra
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and Middelburg (2005)). When modelling micro-architectures for those techniques, the

enabledness of basic actions, as discussed in Section 4, is likely to be relevant. It is

certainly relevant in the case of micro-threading (Bolychevsky et al. 1996; Jesshope and

Luo 2000).

There are many options for future work. We will just mention the modelling of micro-

architectures for different combinations of instruction set architectures and techniques for

speeding up instruction processing. Through this, the work presented in this paper may

grow into a theoretical basis for micro-architecture design.

The work presented in this paper, as well as the preceding work presented in Bergstra

and Middelburg (2007a), has convinced us that a special notation for the description of

micro-architectures is desirable. For example, it is annoying that there has to be an explicit

description for each memory element that is not affected by an operation. However, we

found that fixing an appropriate notation still requires some significant design decisions.

We aim at a notation for which the semantics can be given simply by a translation to

logical formulas, much in the spirit of predicative methodology (Hehner et al. 1986). The

following alternative description of the operation Ofetch from Section 7 shows what an

appropriate notation might look like:

Ofetch : if pc + 1 � pcbr then pc := pc + 1 ,

if pc � pcbr then (ir := Mprog[pc] ; rr := T) else (ir := #0 ; rr := F) .

The work presented in Bergstra and Middelburg (2007a) and this paper has also

convinced us that modularity is material to this work: it is about combining and extending

models and about renaming and hiding names used in those models. All this has until

now been done informally, but in the future there may arise a need to formalise it. We

believe that module algebra Bergstra et al. (1990) is a suitable formalism on which to

base that formalisation.

Parallel composability in connection with pipelined instruction processing is studied in

a different setting in Hoe and Arvind (2004). Using algebraic techniques from Harman

and Tucker (1996), three simple pipelined systems and a pipelined implementation of a

micro-processor are both modelled and verified in Fox and Harman (2003) and Fox (1998),

respectively. The simple pipelined systems as well as the pipelined implementation of a

micro-processor are modelled as iterated maps. By modelling a pipelined micro-processor

as an iterated map, we can use a level of abstraction that is higher than that at which micro-

architecture design takes place. We focus our attention on modelling at the latter level of

abstraction. A very extensive and up-to-date overview of interesting work on modelling

and verifying pipelined micro-processors can also be found in Fox and Harman (2003).
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