
J. Plasma Physics (2004), vol. 70, part 6, pp. 651–669. c© 2004 Cambridge University Press

DOI: 10.1017/S0022377804003046 Printed in the United Kingdom
651

Local analysis of MHD spectra for
cylindrical plasmas with flows

CHUNME I WANG, J.W. S. BLOKLAND, R.KEPPENS
and J. P. GOEDBLOED

FOM-Institute for Plasma Physics ‘Rijnhuizen’, Association EURATOM/FOM, Trilateral
Euregio Cluster, PO Box 1207, 3430 BE, Nieuwegein, The Netherlands

(chunmei@rijnh.nl)

(Received 6 January 2004 and in revised form 17 March 2004)

Abstract. An analytical and numerical study of the ideal magnetohydrodynamic
(MHD) spectrum of waves and instabilities of a cylindrical plasma column with
flows is presented. Our analytical results are relevant for thermally stratified,
rotating, magnetized cylindrical equilibria. The presence of azimuthal flow makes
the general analysis of the MHD spectrum difficult, except in cases where the
continuous parts of the spectrum are absent. In the presence of Doppler shifted
Alfvén and slow continua, a local analysis at resonant surfaces or internal extrema
can provide a simple and reliable way to access information on MHD spectroscopy.
In this paper, local cluster conditions, which govern the occurrence of sequences of
discrete global modes, have been generalized for rotating equilibria. The generalized
Suydam criterion for instability is revisited. A numerical study confirms our ana-
lytical results and clearly demonstrates how the local criteria govern the existence
of the accumulating eigenmodes.

1. Introduction
The magnetohydrodynamic (MHD) description of plasma motion assumes that
the constituent electron and ions species can be treated as fluids and that the
dynamics of interest are at the macroscopic length and time scales. Specifically,
MHD focuses on lengths much larger than ion cyclotron radii, and time scales longer
than the inverse ion cyclotron frequencies ω−1

ic . For plasma dynamics on time scales
shorter than the resistive decay of the magnetic field, the ideal single fluid MHD
description is appropriate. Since ideal MHDs express basic conservation laws (mass,
momentum, energy, and magnetic flux) directly generalizing the Euler equations of
compressible gas dynamics, much theoretical understanding of macroscopic plasma
behavior has been developed within the ideal MHD framework. In particular, to
analyze the stability properties of a given static (no flow) equilibrium configuration,
one can exploit either the energy variational principle (Newcomb 1960), or directly
solve the linearized MHD equations by analytic or numerical means. The possibility
to use the knowledge on all waves and instabilities specific to a given equilibrium
state as a diagnostic on the equilibrium itself has been termed as MHD spectro-
scopy (Goedbloed et al. 1993). This encompasses computing the MHD spectrum
of all stable and unstable modes for the configuration at hand: when there are
no unstable modes, the eigenfrequencies and eigenoscillations can still be used as
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a ‘magnetoseismological’ means to probe the equilibrium structure. This has met
significant successes in various solar physics applications, from active region or
sunspot seismology (Bogdan and Braun 1995) to coronal seismology (Nakariakov
et al. 1999) of loops and magnetic arcades in the solar corona.
The MHD spectrum of a plasma in equilibrium is governed by the equation of

motion, typically written in terms of the Lagrangian displacement field ξ of a fluid
element. In a static equilibrium, this equation of motion is

ρ∂2ξ/∂t2 = Fstatic(ξ), (1.1)

which contains the self-adjoint force operator Fstatic(ξ) (Fstatic is self-adjoint,
if

∫
η∗ ·Fstatic(ξ) dr=

∫
Fstatic(η)∗ · ξ dr for arbitrary vectors ξ and η), and its

eigenvalues ω, from ξ ∼ e−iωt, can only be real or purely imaginary (Bernstein et al.
1958). Sufficient and necessary conditions for stability can equivalently be obtained
by exploiting the energy principle, which shows that static inhomogeneous MHD
equilibria can be unstable due to pressure gradients or equilibrium current densities.
However, the force operator formalism allows one to compute the complete ideal
MHD spectrum, which for a one-dimensional (1D) static plasma column consists of
unstable discrete modes, stable discrete modes, and stable continuous spectra. The
latter are the Alfvén and slow continua and form the basic organizing structure of
the MHD spectrum (Goedbloed and Poedts 2004). The discrete parts of the spec-
tra can split into five Sturmian or anti-Sturmian (the number of zeros of the
radial eigenfunction ξ is a monotonically increasing (Sturmian) or decreasing (anti-
Sturmian) function of ω2) sequences of sub-spectra separated by the Alfvén (ω2

A)
and slow (ω2

S) continua, and two additional spectral ranges where monotonicity does
not hold in general. Infinite sequences of discrete global modes can cluster at the
tips of the Alfvén or the slow continua once local cluster conditions are satisfied
(Goedbloed and Sakanaka 1974), also giving rise to the so-called global Alfvén
eigenmodes (Appert et al. 1982). These modes were also studied by Mahajan et al.
(1983) with the additional effect of a finite ion cyclotron term ω/ωic.
In contrast to static plasma equilibria, where a detailed picture has been estab-

lished for the stability of a cylindrical plasma configuration, it is still a challenge to
make sense of the complete MHD spectrum of waves and instabilities for equilibria
with both axial and azimuthal flow. This is in essence due to the loss of the self-
adjointness property of the governing force operator. The study of MHD spectra
with flows has already attracted a lot of attention (Spies 1978; Hameiri 1981). At
the present time, the MHD stability of rotating geometrically confined plasmas has
become a question of practical importance, for example in fusion research because
of substantial neutral beam power in recent tokamak experiments, available not
only to heat the plasma, but also to produce mass flows (Brau et al. 1983; Burrell
et al. 1988). Furthermore, plasma flows are ubiquitous in astrophysical contexts,
such as magnetized accretion disks, collimated jets and stellar winds. These flows
have speeds which substantially influence the background equilibrium state, and
therefore its stability against small perturbations.
In our previous paper (Wang et al. 2003), we studied the MHD stability of a slow

capillary discharge for laser wakefield accelerator applications ignoring the back-
ground flow field. In the present paper, we analytically and numerically study the
ideal MHD spectrum for a rotating magnetized plasma in such a cylindrical column.
Although the introduction of equilibrium flows destroys the self-adjointness of the
force operator, within ideal MHDs we still retain the basic structure of the full MHD
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spectrum organized around the stable slow and Alfvén continua and the fast cluster
points. In the presence of flow, we now distinguish between backward and forward
Alfvén and slow continua. Note that for static equilibria, the introduction of non-
ideal effects like resistivity not only makes the eigenproblem no longer self-adjoint,
but significantly changes the entire MHD spectrum: the ideal, stable continua are
replaced by a dense collection of damped, discrete modes located on specific curves
in the complex eigenfrequency plane (Lortz and Spies 1984; Pao and Kerner 1985).
In this paper, we avoid this additional complication and conveniently exploit the
fact that we can still unambiguously identify the stable continua.
We focus primarily on local characteristics, deriving the conditions for the ex-

istence of cluster sequences at internal extrema of the forward and backward
Alfvén continua Ω±

A and slow continua Ω±
S (defined later in (2.18) and (2.19)). This

generalizes the earlier work of Bondeson et al. (1987) by the inclusion of plasma
rotation. Our numerical results confirm the appearance and disappearance of cluster
sequences as governed by the analytical cluster conditions. As in Bondeson et al.
(1987), we treat axial and azimuthal flows in the generalized Hain–Lüst equa-
tion, and recover the generalized Suydam criterion at the resonant surface, where
k0·B= 0 with k0 ≡ (0,m/r, k). In general, sequences of damped and overstable
interchange modes locally accumulate in oscillation frequency to the value of the
Doppler shift k0· v, once this generalized Suydam criterion is satisfied. However,
when a local extremum in the continua Ω±

A, Ω
±
S passes through the resonant surface,

we always find unstable modes, which no longer strictly obey the analytical cluster
conditions or Suydam’s criterion.
This paper is arranged as follows. In Sec. 2, starting from the Frieman–Rotenberg

equation of motion, the second-order eigenvalue problem is derived. In Sec. 3, we
recover the sufficient and necessary stability criterion for the magnetized Couette
flow against axisymmetric perturbations recently derived by means of the inter-
change method (Christodoulou et al. 2003). We also present the generalized Suydam
criterion and the local cluster conditions valid at the internal extrema of the
continua. In Sec. 4, the numerical solutions consider the effects of azimuthal flow
on clustering, in contrast to part of the analysis and the numerical examples shown
in Bondeson et al. (1987), which solely accounted for axial flow in the equilibrium.

2. Eigenvalue problem
To study the MHD spectrum in the presence of equilibrium flows, we begin with
the basic formalism introduced by Frieman and Rotenberg (1960):

ρ
∂2ξ

∂t2
+ 2ρv · ∇∂ξ

∂t
− F(ξ) = 0, (2.1)

where

F(ξ) = Fstatic(ξ) + ∇ · [ρξ(v · ∇)v− ρvv · ∇ξ], (2.2)

Fstatic(ξ) ≡ −∇Π + B · ∇Q+ Q · ∇B, (2.3)

with the Eulerian perturbations of the total pressure Π and the magnetic field Q

Π = −ξ · ∇p − γp∇ · ξ + B ·Q, (2.4)

Q = ∇ × (ξ × B). (2.5)
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The variables ρ, v, B and p are the equilibrium density, plasma flow, magnetic
field and thermal pressure, respectively. We adopt standard cylindrical coordinates
(r, θ, z) and assume that all equilibrium variables only depend on the radial co-
ordinate r (so that vr =Br = 0). All remaining equilibrium variables are then only
constrained by the force balance in the radial direction:(

p +
1
2
B2

)′
= ρ

v2
θ

r
− B2

θ

r
, (2.6)

where the prime denotes differentiation with respect to r. Note that the axial
flow profile vz is completely free. Because of the symmetry of the equilibrium,
we consider the solutions of (2.1) in the form of normal modes:

ξ(r, θ, z, t) = (ξr,mk(r), ξθ,mk(r), ξz,mk(r)) exp i(mθ + kz − ωt). (2.7)

It is instructive to use a field line projection which introduces the basic variables χ =
rξr, η = ir(B/B) × er · ξ and ζ = irB/B · ξ. Then after some algebra, the equation
of motion (2.1) can be turned into a pair of first-order differential equations for χ
and the perturbed total pressure Π:

AS

r

(
χ′

Π′

)
+

(
C D
E −C

)(
χ
Π

)
= 0. (2.8)

Here the coefficients are given by:

A = ρω̃2 − F 2 = ρ(ω̃ − ωA)(ω̃ + ωA), (2.9)

S = (γp + B2)ρω̃2 − γpF 2 = ρ(γp + B2)(ω̃ − ωS)(ω̃ + ωS), (2.10)

C = − 1
r2

[(
B2

θ − ρv2
θ

)
ω̃2 + (Bθω̃ + vθF )2

]
ρ2ω̃2 +

2m

r3
(BθF + ρvθω̃)S, (2.11)

D = ρ2ω̃4 −
(

k2 +
m2

r2

)
S, (2.12)

E = −AS

r2

{
A + r

[
1
r2

(
B2

θ − ρv2
θ

)]′}
+

4
r4

(BθF + ρvθω̃)2S

− 1
r4

[(
B2

θ − ρv2
θ

)
ρω̃2 + ρ(Bθω̃ + vθF )2

]2
, (2.13)

where we introduce the local Doppler shifted frequency ω̃ ≡ ω −k0· v with k0 ≡
(0,m/r, k), the parallel gradient operator F ≡k0·B, the Alfvén frequency ωA ≡
F/

√
ρ, the slow frequency ωS ≡ (F/

√
ρ)

√
γp/(γp + B2), and the ratio of specific

heats γ. The system (2.8) was derived by Hameiri (1981) and Bondeson et al. (1987)
for a cylindrical plasma with flow. Recently, a more general system for cases with
equilibrium flow and radial gravitational stratification was obtained by Keppens
et al. (2002), and used for MHD spectroscopy of accretion disks. One can use a
generalization of the Hain–Lüst (1958) equation for flow:(

AS

rD
χ′

)′
+

(
U +

V

D
+

(
W

D

)′)
χ = 0, (2.14)
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which is equivalent to the system (2.8), where

U =
A

r
−

[
1
r2

(
B2

θ − ρv2
θ

)]′
, (2.15)

V = − 1
r3

(
k2 +

m2

r2

)[(
2B2

θ − ρv2
θ

)2
ρω̃2 − ρ2v2

θ(2Bθω̃ + vθF )2
]

− 4
r3

(BθF + ρvθω̃)2(ρω̃2 − k2γp) +
4m

r4
(BθF + ρvθω̃)

(
2B2

θ − ρv2
θ

)
ρω̃2,

(2.16)

W =
2S

r2

[
kBθG +

m

r
ρvθω̃ + ρv2

θ

(
k2 +

m2

r2

)]
− ρ2vθω̃

2

r2
[2BθFω̃ + vθ(ρω̃2 + F 2)],

(2.17)

where G = mBz/r − kBθ. Without flows (v= 0, ω̃ = ω), (2.14) reduces to the Hain–
Lüst (1958) equation (i.e. Goedbloed’s (1971) form of it for γ � 1). Equation (2.14)
has singularities whenever A= 0 or S = 0. These singularities give rise to four
continua, namely the forward and backward Alfvén continua

Ω±
A ≡ k0· v± ωA, (2.18)

and the forward and backward slow continua

Ω±
S ≡ k0· v± ωS. (2.19)

As clearly seen from the equivalent form (2.8), the frequency ranges given byD = 0
are not part of the MHD spectrum, so that these singularities of (2.14) are apparent
(Appert et al. 1974).
For completeness, we point out that there is another continuum, with frequencies

exactly given by the local Doppler shift ΩE ≡k0· v, which is not described by the
Lagrangian formalism exploited in (2.1), (2.8) or (2.14). This Eulerian entropy
continuum does occur in all computations where spatially localized Eulerian per-
turbations are exploited (e.g. the set of primitive perturbed variables consisting of
density ρ1, velocity v1, pressure p1, magnetic field B1). In particular, the numerical
study of Sec. 4 is done in a Eulerian framework and the computed spectra will
feature this additional continuum, as is pointed out there. The eigenmodes in
this Eulerian entropy continuum represent trivial density or entropy disturbances,
advected with the local flow speed.We directly derive all analytical results in the fol-
lowing from the Lagrangian description, safely ignoring this additional continuum.
This is possible since all modes in this Eulerian entropy continuum are completely
decoupled from the Alfvén, slow and fast MHD modes governed by (2.1), (2.8) or
(2.14), and are therefore of marginal interest.

3. Analytical criteria for stability and clustering
Clearly much of the intricacy of the MHD spectroscopy of magnetized cylindrical
plasma with flow hinges on the existence of the four stable continua Ω±

A and Ω±
S . In

general, due to the fact that these stable continua can partially overlap and/or have
internal extrema, a complete stability assessment of a certain equilibrium needs a
numerical approach. In some cases, it is possible to obtain local analytical criteria
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governing the existence of cluster sequences of discrete modes at surfaces where the
local Alfvén/slow frequency vanishes or where an internal extremum is reached in
one of the continua. In general, obtaining sufficient and necessary stability criteria
is only possible for cases where the continua are absent. We first recover recent
results on the stability of compressible magnetized Couette flow, independently
obtained using the interchange method (Christodoulou et al. 1996) and the energy
variational principle (Newcomb 1962).

3.1. Stability criterion for magnetized Couette flow

In the case of magnetized Couette flow (vz = 0) and no axial magnetic field, the
MHD continua vanish for perturbations that are axisymmetric (m = 0). Looking
for solutions of (2.8), we can insert an oscillatory behavior exp(ikrr) in the radial
direction, where the radial wavelength should be much shorter than the typical
length scale of the equilibrium variation, e.g. the cylinder radius R (Rkr � 1). In
this case, the 2 × 2 system (2.8) yields the local dispersion equation

k2
r

A2S2

r2
+ C2 + DE = 0. (3.1)

For a purely azimuthal magnetic field and axisymmetric perturbations (m = 0),
taking the limit (kr, k) → ∞ at finite ratio kr/k, as in Keppens et al. (2002), and
defining the fast magnetosonic speed c2

θ ≡ (γp + B2
θ )/ρ, the local dispersion equation

(3.1) gives rise to solutions

ω2 ≈ k2

k2
r + k2

[
− r

ρ

(
B2

θ

r2

)′
+

2vθ(rvθ)′

r2
+

ρ′

ρ

v2
θ

r
−

(
p′
tot − B2

θ/r
)2

c2
θρ

2

]
, (3.2)

where the total pressure ptot ≡ p + B2
θ/2. The term in square brackets then deter-

mines whether local unstable modes occur. In the hydrodynamic limit, the Solberg–
Høiland criterion (Tassoul 1978) for stability is recovered since the positivity of this
term can be written as

κ2 + N2 � 0, (3.3)

where the Rayleigh term κ2 = 2vθ(rvθ)′/r2 and the Brunt–Väisälä frequency N2 =
[ρ′/ρ − p′/(γp)]p′/ρ.
The more general case of magnetized Couette flow was recently studied by

Christodoulou et al. (2003). As is done there, we rewrite the stability expression
in terms of certain physical quantities that are conserved during the interchange of
two fluid elements. These are the specific angular momentum L (≡ rvθ = constant),
the specific azimuthal magnetic flux Ψ (≡ Bθ/(ρr)= constant), and the specific
entropy S (≡ pρ−γ = constant). So-called adiabatic changes in total pressure ptot
occur under the constraints of the conservation lawsΨ = constant and S = constant,
so that

dptot
dr

∣∣∣∣
ad

= c2
θ

dρ

dr
+

B2
θ

r
. (3.4)

We can then rewrite the term in square brackets in (3.2), yielding the necessary
and sufficient condition for stability:

1
r3

dL2

dr
− ρr

dΨ2

dr
− 1

ρ2c2
θ

(
dptot
dr

− B2
θ

r

)(
dptot
dr

− dptot
dr

∣∣∣∣
ad

)
� 0, (3.5)
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exactly as obtained by Christodoulou et al. (2003) using the interchange method.
They emphasized the importance of the coupling between magnetic tension and
the total pressure gradient in the last magnetoconvective term of criterion (3.5).
For a system with both azimuthal and axial magnetic fields and axisymmetric

perturbations, we consider the limit of long axial wavelength k → 0, and k0·B → 0,
which again makes the continua vanish. The local dispersion equation (3.1) then
simplifies to

ω2 = k2
r

γp + B2

ρ
− r

ρ

(
B2

θ

r2

)′
+

2vθ(rvθ)′

r2
+

ρ′

ρ

v2
θ

r
. (3.6)

As pointed out by Christodoulou et al. (1996), the presence ofBz breaks the isolation
of perturbations between axially separated regions, leading to non-conservation of
the specific angular momentum L and specific azimuthal magnetic flux Ψ. The
axial magnetic field introduces new conservation laws, namely the axial current I
(≡ rBθ = constant), angular velocityΩ (≡ vθ/r = constant), specific axial magnetic
flux H (≡ Bz/ρ = constant), and specific entropy S (≡ pρ−γ = constant) (Lubow
and Spruit 1995; Christodoulou et al. 1996). If we adopt these conserved quantities,
(3.6) transforms into

ω2 = r
dΩ2

dr
− 1

r3ρ

dI2

dr
− 1

ρ2c2
z

(
dptot
dr

+
B2

θ

r

)(
dptot
dr

− dptot
dr

∣∣∣∣
ad

)

+ k2
rc2

B +
4B2

θ

r2ρ
+ 4Ω2 +

1
ρ2c2

z

(
dptot
dr

+
B2

θ

r

)2

, (3.7)

where c2
B = (γp + B2)/ρ, adiabatic changes in total pressure are now dptot/dr|ad =

c2
zρ

′ − B2
θ/r, and c2

z = (γp + B2
z)/ρ. Due to the positiveness of the last four terms, a

sufficient criterion for stability is obtained:

r
dΩ2

dr
− 1

r3ρ

dI2

dr
− 1

ρ2c2
z

(
dptot
dr

+
B2

θ

r

)(
dptot
dr

− dptot
dr

∣∣∣∣
ad

)
� 0, (3.8)

in agreement with (32) of Christodoulou et al. (2003).

3.2. Generalized Suydam criterion

As is well known, in the absence of equilibrium flows, the violation of Suydam’s
criterion together with the validity of the oscillation theorem (Goedbloed and
Sakanaka 1974) allow one to predict the existence of global instabilities. In fact,
they would be the most global modes in the Sturmian sequence of unstable discrete
modes accumulating to the marginal zero frequency. Hence, in the static case, the
local Suydam criterion becomes a significant first test for overall stability. It also
explicitly appears as such in Newcomb’s (1960) stability theorems obtained from
the ideal MHD energy principle. For the case of flowing equilibria studied here,
although there is no counterpart to the energy principle, we state without proof
that the oscillation theorem can be generalized to the case with flow for weakly
inhomogeneous plasmas. This in turn makes the generalized Suydam criterion
a useful tool in analyzing stability. However, a definitive conclusion on overall
stability will require a full numerical treatment of the eigenvalue problem as well.
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Hence, for more general cases than those studied in Sec. 3.1, where the continua
Ω±
A,S do not vanish and equilibrium flow is involved, the lack of self-adjointness of
the force operator in the linear MHD equation (2.1) prevents a stability determ-
ination by the energy principle. We can, however, still perform a local analysis
at resonant surfaces (F = 0), where the generalized Hain–Lüst equation (2.14) is
singular for ω̃2 = 0.
Investigating the behaviour at such resonant surfaces separately still makes phys-

ical sense, since where F = 0, perturbations do not disturb the equilibriummagnetic
field locally. Hence, the driving forces of instability are minimally counterbalanced
by magnetic tension, causing instabilities to be predominantly localized on this
surface (Suydam 1958).
At a resonant surface r = r0 where k0·B = 0, both A and S vanish quadratically

for a frequency equal to the local Doppler shift. We consider the situation ω̃(r0) ±
ωA,S(r0) = 0, (ω̃ ± ωA,S)′(r0) � 0. Expansion of the coefficients A,S,D close to r0

gives

A ≈ F ′2(M2 − 1)s2, (3.9)

S ≈ (γp + B2)
(
M2 − M2

c

)
F ′2s2, (3.10)

D ≈
(

k2 +
m2

r2

)
(γp + B2)F ′2(M2 − M2

c

)
s2, (3.11)

where s = r−r0,M = −√
ρ(k0· v)′/(k0·B)′, andMc =

√
γp/(γp + B2). Expanding

U , V/D, and W/D in the same way and substituting all these terms back into the
generalized Hain–Lüst equation (2.14) yields

(s2χ′)′ + D0χ = 0, (3.12)

where

D0 =
(

q

q′Bz

)2 1
1 − M2

{
−2

p′

r
− 2

B2

B2
θ

Vθ

(
Vθ

r

)′
− 2

V 2
θ

r2
+ 2

q′

qr

B2
z

Bθ
MVθ +

1
r2B2

θ

× 1 − M2
c

(1 − M2)
(
M2

c − M2
) [(Vθ +MBθ)2 +M2

(
B2

θ − V 2
θ

)
]2 +

4(Vθ + MBθ)2

r2(1 − M2)

}
,

(3.13)

with Vθ =
√

ρvθ and q = rBz/Bθ. These expressions were first published by Bondeson
et al. (1987). Note that D0 → ±∞ if M2 approaches 1 or M2

c . The first case occurs
when the Alfvén frequency range ΩA(r) has a local extremum at r0, while the
second case indicates that the slow frequency range ΩS(r) has a local extremum at
r0. However, one should remember that the expression for D0 obtained in (3.13) is
based on the assumption (ω̃ ± ωA,S)′(r0) � 0, so that it is no longer valid when the
local extremum of the Alfvén or slow continuum passes through r0.
The behavior of χ close to the singularity is found from a Frobenius expansion:

χ = sν
∞∑

n=0

ansn. (3.14)

For our purpose, it is sufficient to just determine the index ν from the leading
order term (ν(ν + 1) + D0)sν , which gives the indicial equation ν(ν + 1) + D0 = 0.
The indicial equation has roots ν1,2 = − 1

2 ±
√

1
4 − D0, which are complex when
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D0 > 1
4 . Consequently, the solutions χ oscillate infinitely rapidly as the singularity is

approached, which signal the instabilities. This generalized Suydam criterion D0 >
1
4 provides an analytic condition for the existence of sequences of overstable and
damped modes clustering towards the local Doppler shift. However, Suydam sta-
bility D0 < 1

4 does not guarantee that the equilibrium is globally stable (Sakanaka
and Goedbloed 1974).
Equation (3.13) includes almost all local equilibrium variables and their local

gradients, making it hard to deduce a clear physical interpretation. If we specialize
to rigid rotation vθ = Ωr (where Ω= constant) and constant axial flow, so that
M = 0, the criterion for stability reduces to

p′ +
r

8

(
q′Bz

q

)2

+
B2

2B2
θ

r2Ω2ρ′ − ρΩ2r

(
B2

2B2
θ

Ω2r2

c2
s

+ 1
)

> 0, (3.15)

where the sound speed cs =
√

γp/ρ. Without rotation, (3.15) reduces to the well-
known Suydam criterion (Suydam 1958), where the driving force of the instability is
the pressure gradient in combination with the curvature of the magnetic field. From
(3.15) one can see that rigid rotation without density variation (ρ′ = 0) acts to locally
destabilize the plasma. In combination with a density gradient, the centrifugal force
with an unfavorable density gradient may destabilize the plasma, analogous to the
Rayleigh–Taylor stability in a gravitational field, where the lighter fluid should sit
on top of the heavier one for stability. The case of purely axial flow has already
been presented in Bondeson et al. (1987, (8′)). For a plane-parallel, gravitation-
ally stratified layer, the generalized Suydam criterion is found in van der Holst
et al. (1999).

3.3. Local extrema in the continua and cluster conditions

The generalized Suydam criterion relies on the presence of a resonant surface
where F = 0, and all four continua coincide. When such a resonant surface does
not exist, cluster sequences of discrete global modes may still be associated with a
local extremum in any of the forward and backward Alfvén continua Ω±

A or slow
continua Ω±

S .
When the Alfvén continuum Ω±

A has a local extremum at r = r±
A, we may consider

frequencies in the neighborhood of that extremum so that ω̃(r±
A) ∓ ωA(r±

A) = 0 and
also (ω̃ ∓ ωA)′(r±

A) = 0. We will assume (ω̃ ∓ ωA)′′(r±
A) � 0 though. The expansion of

A close to r±
A yields

A ≈ 1
2A′′s2

A± = ∓ρωAΩ±
A

′′
s2
A± , (3.16)

where sA± = r − r±
A. Exploiting similar local expansions for the other coefficients

S,D,U, V , and W , the generalized Hain–Lüst equation (2.9) reduces to

(s2
A±χ′)′ + D±

Aχ = 0, (3.17)

https://doi.org/10.1017/S0022377804003046 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377804003046


660 C. Wang et al.

where

D±
A =

2
A′′

{
G2r

B2

(
2kB2Bθ

r2G
+

B2
θ

r2

)′
−4k2B2

θ

r2

(
1 − γp

B2

)
+

G2r

B2

(
V 2

θ

r2
± 2VθFBz

r2G

)′

± 8Vθ
kBθ(kγp − BzF )

r2B2
− 4V 2

θ

(
k2

r2

(
1 − γp

B2

)
+

3kBθG

r2B2

)
∓ 4V 3

θ

kG

r2B2

}
,

(3.18)

with A′′ = ∓ 2ρωAΩ±
A

′′
from (3.15). Without rotation, D±

A reduces to

D±
A =

2
A′′

{
rG2

B2

(
2kB2Bθ

r2G
+

B2
θ

r2

)′
− 4k2B2

θ

r2

(
1 − γp

B2

)}
, (3.19)

which agrees with the expression given by Goedbloed (1984) and by Bondeson et al.
(1987). Note that the local criterion is not influenced by axial flow.
As in the previous section, we exploit a Frobenius expansion about the singu-

larity. The indicial equation ν(ν + 1) + D±
A = 0 is obtained from the leading order

term, where the indices are ν1,2 = 1
2 ±

√
1
4 − D±

A . If D
±
A > 1

4 is satisfied, there may
exist sequences of modes clustering to the local extremum of the Alfvén continua
Ω±
A.
The same analysis can be carried out at an internal extremum of the slow continua

Ω±
S , considering frequencies in the neighborhood of that extremum so that ω̃(r±

S ) ±
ωS(r±

S ) = 0 and (ω̃ ± ωS)′(r±
S ) = 0. We assume (ω̃ ± ωS)′′(r±

S ) � 0 and expand S

close to r±
S :

S ≈ 1
2S ′′s2

S± = ∓ρ(γp + B2)ωSΩ±
S

′′
s2
S± , (3.20)

where sS± = r − r±
S . We get the cluster condition D±

S > 1
4 with

D±
S =

2F 2

S ′′
M4

c

1 − M2
c

{
F 2

(
1 − M2

c

)
+ 2Bθ

(
Bθ

r

)′
−

(
2Bθk

rF

)2

(B2 + γp)

± r

(
2BθVθ

r2Mc

)′
+ r

(
V 2

θ

r2M2
c

)′
± 8VθBθ

r2F 2Mc

(
kGBθ − k2γp

)

+
4V 2

θ

r2F 2M2
c

[
F 2M2

c − k2γp +
m

r
BθF − 2

(
k2 +

m2

r2

)
B2

θ

]

± 4V 3
θ

r2F 2Mc

[
m

r
F −

(
k2 +

m2

r2

)
Bθ

M2
c

]
−

V 4
θ (k2 + m2/r2)

(
1 − M2

c

)
r2F 2M4

c

}
,

(3.21)

where S ′′ = ∓2ρ(γp + B2)ωSΩ±
S

′′
from (3.19). Note that as soon as rotation is in-

cluded, both expressions (3.17) and (3.20) show a clear asymmetry between forward
and backward shifted continua. Without azimuthal flow, (42) of Goedbloed (1984)
or (31) of Bondeson et al. (1987) are recovered.
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4. Numerical study
For the numerical study of the MHD spectra of a cylindrical plasma column with
flow, we exploit the code LEDAFLOW (Nijboer et al. 1997), which is a generaliza-
tion of LEDA code (Kerner and Lerbinger 1985) for a one-dimensional equilibrium
with flow. The MHD equations are linearized, a Fourier representation is used for
the variation of the eigenfunctions in the homogeneous directions, and then they
are discretized using finite elements in the inhomogeneous direction. A suitable
combination of cubic Hermite elements and quadratic elements for the perturbed
quantities prevents the creation of spurious eigenvalues. A Galerkin method is
used to complete the system. The result is a complex non-Hermitian eigenvalue
problem that is solved by a QR solver. The inverse vector iteration method is used
to calculate the eigenfunctions for one single eigenvalue. The boundary conditions
on the eigenfunctions treat the cylindrical edge as a rigid boundary.

4.1. Equilibrium

The following equilibrium is used in our numerical stability study:

ρ(r) = 1 + (D − 1)r2, (4.1)

Bθ(r) =
1
2
jz0r

(
1 − δ

2
r2

)
, (4.2)

Bz(r) =
√

2
γβ0

(1 − Γr2), (4.3)

vθ(r) = r(A + Br + Cr2), (4.4)

where distances are normalized to the cylinder wall, R = 1. The density and the
velocity are scaled with the density on the axis ρ(0) and the sound speed on the axis
cs0 =

√
γp(0)/ρ(0), respectively. In the equilibrium, D ≡ ρ(1)/ρ(0) is the density

variation. The azimuthal magnetic field is due to a diffuse current jz = jz0(1 − δr2).
The parameter β0 is the ratio of the thermal pressure to magnetic pressure on
the axis, and Γ serves to quantify the cross-sectional variation of the longitudinal
magnetic field. In (4.4), we have chosen a profile for vθ that allows for easy ma-
nipulation of the location of a local extremum in the Alfvén and slow continua.
Recently, a particular example of such a flow field vanishing at two concentric
cylindrical boundaries (called a ‘Dean flow’) was applied by Huang and Hassam
(2001) to a simple coil configuration for thermonuclear plasma confinement, where
the centrifugal force should resolve the loss cone issue and the flow shear should
stabilize interchanges. This would happen for supersonic flow speeds. Hence, we
also allow for supersonic flow speeds but do not impose the Dean flow boundary
conditions. Instead, we choose parameter valuesA= 0,B � 0,C � 0. This is slightly
inconsistent on axis, but facilitates the best control of the localization of the modes.
We will not consider axial flow; this was studied by Bondeson et al. (1987). The
pressure is not treated as an independent variable, but is derived from the force
balance equation (2.6).
In the following sections, we numerically solve the 1D linear MHD equations in

cylindrical coordinates with the equilibrium profiles as specified above. Our simu-
lations verify and extend the analytical results on how discrete modes accumulate
to extrema in the continua, and Suydam modes oscillating at resonant surfaces.
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Figure 1. (a) Radial dependence of the Alfvén continua ω±
A (full curves) and slow continua

ω±
S (dotted curves) for a static z-pinch equilibrium with β−1

0 =0, D =0.1, jz0 =2.0, δ =1.2,
and mode numbers m= − 1, k =2. (b) Blow-up of the positive branches of the continua
shown in (a). The arrows indicate the extrema which have cluster sequences, the squares
indicate those that have no cluster sequences.

0.6
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–0.6

Im
 (
ω

)

Re (ω)

–1.4 0.0 1.4

Figure 2. The entire MHD spectrum for the static z-pinch. Two sequences of discrete modes
cluster to the extrema of ω+

S and ω−
S marked by vertical bars. The arrows indicate the

direction of an increasing number of nodes of the modes.

4.2. Cluster sequences

Beginning with a static case (Ω = 0), we consider a pure z-pinch (β−1
0 = 0) with

D = 0.1, jz0 = 2.0, δ = 1.2, and take mode numbers m = − 1, k = 2. Figure 1 shows
the radial dependence of the Alfvén and slow continua, which have local extrema
at r = 0.745 and 0.785, respectively. At the local extrema of the Alfvén and slow
continua, we obtainD±

A(0.745)= −12.4,D±
S (0.785)= 3.63 (>0.25). The latter value

forecasts that there may exist sequences of discrete global modes accumulating to
the local extrema of ω±

S . The MHD spectra are presented in Fig. 2. In this figure,
one clearly sees the unstable modes on the imaginary axis and the cluster sequences
on the real axis at the edges of ω±

S . In this section, we focus on the cluster modes.
To better understand the behavior of these modes, in Fig. 3 we present the axial
velocity eigenfunction vz,1 of the fifth cluster mode. Eigenfunctions of higher order
modes show more oscillations when the singularity is approached, as expected by
the oscillation theorem (Goedbloed and Sakanaka 1974).
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Figure 3. The eigenfunction vz,1 of the fifth mode of Fig. 2, which oscillates most rapidly at
the location of the extremum in the slow continuum at r = 0.78.
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Figure 4. (a) Doppler shifted Alfvén continua Ω±
A (full curves) and slow continua Ω±

S (dotted
curves) for an equilibrium with a ‘Dean flow’ B =0.5, C = −0.5, corresponding a maximal
Alfvén Mach number MA ≈ 0.13, radial electric field Er =0, and other parameters as in
Figs 1–3. The dashed curve is the local Doppler shift k0· v. (b) Blow-up of the forward
branches of the continua shown in (a). The arrows indicate the extrema which have cluster
sequences, the squares indicate those that have no cluster sequences.

For identical density and magnetic equilibrium profiles, we now permit an azi-
muthal flow with B = 0.5, C = − 0.5. For these parameter values, the azimuthal
rotation reaches a maximal sonic Mach number MS = vθ/cs ∼ 0.08 at a radial dis-
tance r ≈ 0.65. Similarly, the Alfvén Mach number for the equilibrium rotation
reaches MA = vθ/(Bθ/

√
ρ) ∼ 0.13 at r ≈ 0.5. Due to the flow, the Alfvén and slow

continua are no longer symmetric between backward and forward traveling modes
(Fig. 4). The values ofD±

A,S at the internal extrema of the Alfvén and slow continua
now become D+

S (0.22)= −164.5, D+
A (0.39)= 89.4 (>0.25), D+

S (0.84)= 3.0 (>0.25),
D+
A (0.85)= −5.4, which are all associated with the forward continua Ω+

A,S, and
the remaining two D−

A(0.61)= −14.9, D−
S (0.72)= 3.7 (>0.25) are associated with

the backward continua Ω−
A,S. There are six extrema all together, three of which

should have cluster sequences according to the criteria. In Fig. 5, which shows the
computed spectrum, only two cluster sequences can be seen. Note that LEDA-
FLOW also computes the Eulerian entropy continuum, which coincides with the
local Doppler shift k0· v. It is situated around Re(ω)= − 0.1 in Fig. 5. Compar-
ing the spectrum with the continuous ranges plotted in Fig. 4, we find that the
extremum of Ω+

A at r = 0.39 (which should have a cluster sequence) overlaps with
the slow continuum at other positions. This superposition explains why we can no
longer distinguish this cluster sequence. To make this sequence visible, we move
the cylinder wall from R = 1 to 0.6, thereby eliminating the overlap with the slow
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Figure 5.Entire MHD spectrum form= −1, k =2, apparently only two sequences of discrete
modes accumulating to the extrema of Ω±

S . A third predicted cluster sequence at Ω+
A is not

distinguishable from that at Ω+
S .
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Figure 6. Part of the MHD spectrum for the equilibrium used in Figs 4 and 5, now restricted
to the interval 0� r � 0.6. The ‘missing’ sequence of discrete modes clusters to the exposed
edge of Ω+

A at r =0.39.

continuum. A part of the resulting MHD spectrum is shown in Fig. 6. As predicted
analytically, we now see the third cluster sequence accumulating at the extremum
of Ω+

A at r = 0.39.

4.3. Suydam instability

The Suydam criterion is a necessary and sufficient condition for instability localized
at a resonant surface. As mentioned by Goedbloed and Sakanaka (1974), in the
static case, there are actually two numbers characterizing a Suydam eigenmode,
namely, the number of nodes n in the radial direction and the azimuthal mode
number m. High n or m modes are highly localized on this surface. The least
localized mode is m = 1, n = 0, which is indeed the most unstable Suydam mode.
We now numerically explore the characteristics of the Suydam modes for a

rotating plasma. We fix the mode numbers to m = 1 and k = 1, and consider a
rotating equilibrium with parameters D = 1.0, jz0 = 2.0, δ = 4.0, β−1

0 = 1.5, Γ = 1.8,
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Figure 7. (a) Alfvén continuaΩ±
A (full curves), slow continuaΩ±

S (dotted curves), and Eulerian
entropy continuum k0· v (dashed curve) for a rotating equilibrium with parameters D =1.0,
jz0 =2.0, δ =4.0, β−1

0 =1.5, Γ=1.8, B =2.0, C =2.6, the mode numbers m=1, k =1,
corresponding maximal Alfvén Mach number MA =30, and radial electric field Er varying
from −0.5 to 5. Note the presence of the resonant surface k0·B=0 at r =0.728 where all
continua coincide. (b) Blow-up of (a). Dropping the Eulerian entropy continuum, we clearly
see the resonant surface and the nearby internal extrema.
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Figure 8. (a) The entire MHD spectrum for equilibrium parameters and mode numbers as in
Fig. 7. The densely packed complex modes are closely related to the presence of the Suydam
surface. (b) The MHD spectra with the same equilibrium, now restricted to the interval
0.71� r � 0.74.

B = 2.0, C = 2.6. Under these rather arbitrarily chosen parameter values, both Bθ

and Bz change sign within the interval [0, 1], and the rotation becomes transonic
at r ≈ 0.7, reaching a Mach number MS ≈ 1.7 at r = 1. The rotation is also super-
Alfvénic on a large part of the domain, reaching maximal Alfvén Mach number
MA = 30. Note that this equilibrium has a non-vanishing radial electric field Er

varying from−0.5 to 5 in dimensionless units. This choice of equilibrium parameters
ensures that there is a resonant surface, as seen at r = 0.728 in Fig. 7(b), and at this
surface D0 = 1.8 × 103. Figure 8(a) is the corresponding spectrum for this rotating
system: two global complexmodes coexist with a densely packed set of discrete local
modes strongly relating to the Suydam surface. To better distinguish these local
Suydam modes, we recompute the spectrum while restricting the equilibrium on a
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Figure 9. The azimuthal velocity eigenfunctions of the first mode (a) and the fifth mode
(b) of Fig. 8(b). One can see that the eigenfunctions oscillate rapidly at the resonant surface
r =0.728.

small interval by setting an inner wall at Ri = 0.71 and the outer wall at Ro = 0.74.
Figure 8(b) shows this MHD spectrum. The azimuthal velocity eigenfunctions vθ,1

of the first and the fifth modes from Fig. 8(b) are shown in Figs 9(a) and 9(b),
respectively. In comparison to Fig. 9(a), one can see that the less unstable, higher
order Suydam mode in Fig. 9(b) has more radial nodes and is more highly localized
at the resonant surface.
As seen in Fig. 7(b), the continua not only have a resonant surface, but also

have internal extrema. Motivated by the analogous study of the transition of local
extrema through the resonant surface by Bondeson et al. (1987) for purely axial
flow, we now carry out a similar study for a rotating plasma. Except for β0, all
the other parameters are set to be the same as in the case above. By varying
β0, the extremum of the slow continuum Ω+

S coincides with the resonant surface
at the point rS = r0 = 0.726 with β−1

0 = 1.008. As explained before, the analytical
formulae then diverge andD+

S → −∞,D0 → +∞. We can move this extremum from
the left of the resonant surface to the right of the resonant surface by further
decreasing β−1

0 . Then, DS and D0 flip signs. This is also seen when numerically
evaluating the data D+

S (0.726)= −4.7 × 107, D0(0.726) → +∞ for β−1
0 = 1.008, and

D+
S (0.730)= 1.2 × 106, D0(0.726)= −9.6 × 108 for β−1

0 = 1.0. Both DS and D0 tend
to infinity and they have opposite signs for rS close to r0.
We have computed the complete spectrum for β−1

0 = 1.008 on the interval 0�
r � 1 (Fig. 10(a)). As in Fig. 8(a), we find both global modes and local modes in
the complex plane. To better understand the local modes, we focus on a small
interval (0.71� r � 0.74), again using 100 grid points (Fig. 10(b)). For much higher
radial resolution, the figure does not change. According to the Suydam criterion
or the cluster conditions, the complex modes of Fig. 10(b) closely relate to the
Suydam surface and/or the extremum of Ω+

S . However, unlike in Fig. 9(b), where
the higher-order Suydam modes oscillate more rapidly at the resonant surface, this
is not evident in the higher-order eigenfunctions in Fig. 11. The eigenfunctions vary
globally with peaks at the resonant surface. When we slightly deviate rS from r0

by lowering β−1
0 = 1.0, the same conclusions can be drawn. The MHD spectra and

eigenfunctions for β−1
0 = 1.0 and 1.008 are almost the same, as depicted in Figs 10

and 11. For these cases, we can no longer exploit the Suydam criterion and cluster
conditions, as they are strictly speaking no longer valid for rS very close to r0.
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Figure 10. (a) The complete MHD spectrum on the interval 0� r � 1 and (b) on the interval
0.71� r � 0.74 for equilibrium parameters D =1.0, jz0 =2.0, δ =4.0, β−1

0 =1.008, Γ=1.8,
B =2.0, C =2.6, and mode numbersm=1, k =1. The corresponding maximal Alfvén Mach
number MA =32, and Er varies from −4 to 0.5. When slightly varying β−1

0 from 1.008 to
1.0,D0 flips sign from+∞ to−∞, while the MHD spectrum shows no pronounced difference.
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Figure 11. Azimuthal velocity eigenfunctions of (a) the first, (b) the third and (c) the fifth
mode of Fig. 10(b).

5. Summary and discussion
In this paper we have performed an MHD spectroscopy study of a rotating mag-
netized plasma in a cylindrical column. We have generalized the analytical criteria
which govern the existence of cluster sequences of discrete modes at surfaces where
the local Alfvén/slow frequency vanishes or where an internal extremum is reached
in one of the continua. Our numerical study included cases with and without
rotation, and agrees well with the local cluster conditions. The generalized Suydam
criterion was revisited and tested numerically with emphasis on the azimuthal
equilibrium flow effects. The Suydam criterion provides a sufficient condition for
instability when there is no extremum coincident with the resonant surface. How-
ever, when the extremum of the Alfvén or slow continua transit the resonant surface,
our numerical study always shows instabilities that no longer strictly obey the
analytical local Suydam criterion or cluster conditions.
Our analytical results are relevant for all thermally stratified, rotating, mag-

netized cylindrical equilibria. The presence of axial and azimuthal flows in the
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equilibrium clearly affects the overall MHD stability, as well as the appearance
of sequences of discrete modes. Currently, virtually all practical applications of
MHD spectroscopy ignore equilibrium flows altogether. For example, the observed
oscillations of solar coronal loops have recently been interpreted as global kink
modes with oscillation frequencies in the range of the ideal Alfvén continuum
(Goossens et al. 2002), modeling the loop as a static cylindrical flux tube. A nu-
merical study like that presented in Sec. 4 should be undertaken for stationary
coronal loop equilibria. Similarly, in fusion plasmas, the occurrence of toroidal and
poloidal flows can dramatically enrich the linear wave properties of the confined
plasma. The assumption of a cylindrical plasma column ultimately needs to be re-
laxed for realistic aspect ratio tokamak configurations, where the effects of genuine
toroidicity enter. In that context, first insights have emerged from studies where
only toroidal equilibrium flow was taken into account, predicting the existence of
global toroidal flow induced Alfvén eigenmodes (van der Holst et al. 2000). When
poloidal flow is taken along as well, it enters the computation of the stationary
toroidal equilibrium itself in a non-trivial manner (Beliën et al. 2002). Still within
the ideal MHD framework, such stationary toroidal equilibria were then recently
shown to allow for unstable Alfvén continuummodes when the equilibrium poloidal
flow surpasses the slow magnetosonic speed (Goedbloed et al. 2004). Future work
should investigate the generalizations of these ideal, single fluid MHD results on
waves and instabilities in rotating plasmas, to more realistic, non-ideal, two-fluid
models of plasma dynamics, where specifically the singular nature of the local
continuum modes is likely to be replaced by finite amplitude behavior.

Acknowledgements

This work was performed as part of the research program of ‘Stichting voor Funda-
menteel Onderzoek der Materie’ (FOM) with financial support from NWO, within
the FOM programme 55 on Laser Wakefield Accelerators. R. Keppens and J. P.
Goedbloed performed this work while supported by the European Communities
under the contract of Association between EURATOM/FOM, carried out within
the framework of the European Fusion Program. Views and opinions expressed
herein do not necessarily reflect those of the European Commission.

References

Appert, K., Gruber, R. and Vaclavik, J. 1974 Phys. Fluids 17, 1471.
Appert, K., Gruber, R., Troyon, F. and Vaclavik, J. 1982 Plasma Phys. 24, 1147.
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