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This paper studies the transition dynamics predictions of an R&D-based growth model,
and evaluates their performance in explaining income disparities across nations. We find
that the fraction of the observed cross-country income variation explained by the
transitional dynamics of the model is as large as the one accounted for by existing
steady-state level regressions. Our results suggest that the traditional view of a world in
which nations move along their distinct balanced-growth paths is as likely as the one in
which countries move along adjustment paths toward a common (very long run) steady
state.
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1. INTRODUCTION

Most work on explaining international income differences is based on the under-
lying assumption that countries have distinct long-run growth paths. Sala-i-Martin
(1996) claims that the primary reason to concentrate on steady-state analysis is that
it is easy to study, and it is therefore a springboard on which to advance richer ex-
planations of economic growth. Support for steady-state analysis is even stronger
in the empirical literature [e.g., see Mankiw et al. (1992) (MRW), Nonneman
and Vanhoudt (1996), and Dinopoulos and Thompson (2000)], which focuses on
estimating reduced-form steady-state specifications that successfully fit the cross-
country data.1
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Even though the literature has embraced steady-state analysis, it is widely ac-
cepted that income disparities are most likely due to some combination of steady-
state differences and transition toward the steady state.2 In this paper we provide
additional evidence supporting the role of transition dynamics in explaining cross-
country income differences. We perform a novel exercise in which we take the
opposite viewpoint to steady-state analysis: namely, we assume that all countries
approach the same balanced growth path, and that their income levels differ be-
cause they are at different points along the transition.

More specifically, we study the transition dynamics predictions of a growth
model with endogenous technical progress physical and human capital accumu-
lation, and we evaluate their performance in explaining income disparities across
countries. Even though the model in this paper exhibits certain properties that
can stand out in their own right, the focus is on taking the transition dynamics
predictions of the model to the data by using calibration techniques.

The model considered here is an extended version of Jones’ (2002) framework
with two modifications: First, we allow for human capital stock to accumulate
endogenously over time, and second, technology imitation in our model is costly.
Following Bils and Klenow (2000), we include the above two modifications to
make the model more appropriate to analyze countries at different levels of de-
velopment. We choose Jones’ nonscale growth model—admittedly only one of
various candidates—because it has succeeded in reconciling important properties
of the data such as increasing R&D intensity and rising educational attainment
levels with constant output growth rates. It is important to mention, however, that
the nonscale feature of the model is present only along the balanced-growth path;
scale effects are possible along the transition, as recently pointed out, for exam-
ple, by Dinopoulos and Thompson (1998). The model therefore does not impose
nonscale behavior to developing economies that maybe in transition to the steady
state. Finally, the nonscale growth model can generate the customary MRW-type
steady-state equation, as pointed out by Howitt (2000), a property that will prove
helpful in our analysis.

The main finding from this exercise is that transition dynamics are able to explain
the cross-country income level dispersion as well as steady-state regressions do.
It is also shown that the transition dynamics of the model can explain (in various
degrees) other stylized facts on economic development, such as cross-country
dispersion of growth rates, cross-country dispersion of saving/investment rates,
and cross-country equality of real interest rates. Overall, we interpret our results
as suggesting that a world in which nations move along their balanced-growth paths
is as likely as a world in which countries move along adjustment paths toward a
common (very long run) steady state.

Work related to our approach—using calibration and taking the implications of
growth models to the data—includes Christiano (1989), King and Rebelo (1993),
and Chari et al. (1997). Implications of the nonscale growth model considered
in this paper have been extensively explored by Eicher and Turnovsky (1999a,b,
2001), and Perez-Sebastian (2000). Unlike us, these authors do not consider human
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capital. Recent work by Jones (2002) questions steady-state analysis; however, he
focuses only on the U.S. experience.

The rest of the paper is organized as follows. Section 2 presents the basic model.
In that section, we establish the economic environment and examine the steady-
state and transition dynamics properties of the model. The numerical analysis is
presented in Section 3. In that section, we simulate the adjustment path, assess
how well it fits the cross-country output data, and examine how well it explains
various development-stylized facts. In Section 4, we perform sensitivity analyses
on key parameter values used in the calibration exercise. Section 5 concludes.

2. MODEL

In this section, we present our model. First, we outline the economic environment
under which households and firms operate. Then we solve the socially optimal
problem. Our exposition is focused on aggregate technologies. The main reason
is that the human-capital technology incorporated in this paper cannot be easily
derived from a decentralized setup due to aggregation problems.3

2.1. Economic Environment

The economy consists of identical infinitely lived agents, and population grows
exogenously at rate n. Agents have preferences only over consumption, and choose
to allocate their time endowment in three types of activities: consumption-good
production, R&D effort, and human capital attainment.

Our model economy is characterized by the following three equations: First,
at period t , output (Yt ) is produced using labor (LY t ) and physical capital (Kt )
according to the following aggregate Cobb-Douglas technology:

Yt = Aξ
t (ht LY t )

1−α K α
t , 0 < α < 1, ξ > 0, (1)

where ht represents the effectiveness of average human capital level on labor, α is
the share of capital, ξ is a technology externality, and At is the economy’s technical
level.

Second, the R&D equation that determines technological progress is given by

At+1 − At = µAφ
t (ht L At )

λ

(
A∗

t

At

)ψ

, φ < 1, 0 < λ ≤ 1,

µ, ψ ≥ 0, A∗
t ≥ At , (2)

where L At is the portion of labor employed in the R&D sector at time t , A∗
t is the

worldwide stock of existing technology that grows exogenously at rate gA∗ , φ is an
externality due to the stock of existing technology, and λ captures the existence of
decreasing returns to R&D effort. The above R&D equation is the one proposed by
Jones (1995, 2002) plus a catch-up term (A∗

t /At )
ψ , where ψ is a technology-gap
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parameter. The catch-up term is also consistent with the “relative backwardness”
hypothesis of Findlay (1978) that the rate of technological progress in a relatively
backward country is an increasing function of the gap between its own level of
technology and that of the advanced country.4

Third, we have the schooling equation that determines the way by which hu-
man capital accumulates. The human capital technology follows Bils and Klenow
(2000), who suggest that the Mincerian specification of human capital is the appro-
priate way to incorporate years of schooling in the aggregate production function.
Following their approach, human capital per capita is given by

ht = e f (St ), (3)

where f (St ) = ηSβ
t , η > 0, β > 0; and St is the labor force average years of school-

ing at time t . The derivative f ′(St ) represents the return to schooling estimated
in a Mincerian wage regression: an additional year of schooling raises a worker’s
efficiency by f ′(St ).5,6

We assume that, each period, agents allocate time to human capital formation
only after output production has taken place.7 Let L Ht be the total amount of labor
invested in schooling in the economy at date t . Assume that at some point in time,
say period 1, the average educational attainment equals zero. Next period, given
that consumers live for ever, the average years of schooling will be S2 = L H1/L2,
where Lt is the labor size at date t . In period 3, S3 = (L H1 + L H2)/L3, and so on.
Hence, the average educational attainment can be written as

St =
∑t−1

j=1 L H j

Lt
. (4)

From equation (4), we can write

St+1 = St Lt + L Ht

Lt+1
, (5)

which in turn implies

St+1 − St =
(

1

1 + n

) (
L Ht

Lt
− n St

)
. (6)

It is important to notice that the above human capital technology differs from the
one employed in Jones (2002). In particular, Jones assumes that education invest-
ment fully depreciates each period or, in other words, that human capital does not
accumulate. However, the optimal allocation to investment in education declines
along the adjustment path and therefore without human capital accumulation, hu-
man capital index is larger in lower-income nations; clearly a counterfactual result.
Our equation (6) does not suffer from this counterfactual result because the value
of S rises with the income level, as the international evidence suggests.
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2.2. Social Planner’s Problem

Let Ct be the amount of aggregate consumption at date t . A central planner would
choose the sequences {Ct , St , At , Kt , LY t , L At , L Ht }∞t=0 so as to maximize the
lifetime utility of the representative consumer subject to the feasibility constraints
of the economy, and the initial values L0, K0, S0, and A0. The problem is stated
as follows:

max
{Ct ,St ,At ,Kt ,St ,LY t ,L At ,L Ht }

∞∑
t=0

ρ t

[(
Ct
Lt

)1−θ − 1

1 − θ

]
, (7)

subject to

Yt = Aξ
t

[
e f (St )LY t

]1−α
K α

t , (8)

It = Kt+1 − (1 − δ) Kt = Yt − Ct , (9)

At+1 − At = µAφ
t

[
e f (St )L At

]λ

(
A∗

t

At

)ψ

, (10)

St+1 − St =
(

1

1 + n

) (
L Ht

Lt
− n St

)
, (11)

Lt = LY t + L At + L Ht , (12)

Lt+1

Lt
= 1 + n, for all t, (13)

A∗
t+1

A∗
t

= 1 + gA∗ , (14)

L0, S0, K0, A0 given,

where θ is the inverse of the intertemporal elasticity of substitution,ρ is the discount
factor, and δ is the depreciation rate of physical capital. Equation (9) is a feasibility
constraint as well as the law of motion of the stock of physical capital; it states
that, at the aggregate level, domestic output must equal consumption plus physical
capital investment, It . Equation (12) is the labor constraint; the labor force—that
is, the number of people employed in the output and the R&D sectors—plus the
number of people in school must be equal to population.

Solving this dynamic optimization problem obtains the Euler equations that
characterize the optimal allocation of labor in human capital investment, in R&D
investment, and in consumption/physical capital investment, respectively, as fol-
lows:(

Ct

Lt

)−θ
(1 − α)Yt

LY t
= ρ

1 + n

(
Ct+1

Lt+1

)−θ
(1 − α)Yt+1

LY,t+1

×
[

1 + f ′(St+1)

(
LY,t+1

Lt+1
+ L A,t+1

Lt+1

)]
, (15)
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(
Ct

Lt

)−θ
(1 − α)Yt

LY t
= ρ

1 + n

(
Ct+1

Lt+1

)−θ
λ (At+1 − At )

L At

∗
{

ξYt+1

At+1
+

[
1 + (φ − ψ)

(
At+2 − At+1

At+1

)]

×
[
(1 − α)Yt+1

LY,t+1

/
λ (At+2 − At+1)

L A,t+1

]}
, (16)

(
Ct

Lt

)−θ

= ρ

1 + n

(
Ct+1

Lt+1

)−θ [
αYt+1

Kt+1
+ (1 − δ)

]
. (17)

At the optimum, the planner must be indifferent between investing one addi-
tional unit of labor in schooling, R&D, and final output production. The LHS
of equations (15) and (16) represent the return from allocating one additional
unit of labor to output production. The RHS of equation (15) is the discounted
marginal return to schooling, taking into account labor growth. The RHS term
in brackets arises because human capital determines the effectiveness of labor
employed in output production as well as in R&D. The RHS of equation (16)
is the return to R&D investment. An additional unit of R&D labor generates
[λ(At+1 − At )]/L At new ideas for new types of producer durables. Every new
design increases next period’s output by ξYt+1/At+1 and R&D production by
d At+2/d At+1 times [(1 − α)Yt+1]/LY,t+1{[λ(At+2 − At+1)]/L A,t+1}−1, where the
term [(1 − α)Yt+1]/LY,t+1{[λ(At+2 − At+1)]/L A,t+1}−1 gives the value of one ad-
ditional design that equalizes labor wages across sectors. Euler equation (17) is
standard and states that the planner is indifferent between consuming one ad-
ditional unit of output today and converting it into capital (thus consuming the
proceeds tomorrow).

2.3. Steady-State Growth

We now derive the model’s balanced-growth path. Solving for the interior solution,
equation (12) implies that in order for the labor allocations to grow at constant
rates, L Ht , LY t , and L At must all increase at the same rate as Lt . This means that
the ratio L Ht/Lt is invariant along the balanced-growth path. Hence, equation (11)
implies that, at steady state (SS), Sss is constant and is given by

Sss = uH,ss

n
, (18)

where uH,ss = L H/L|ss. Equation (18) shows that along the balanced-growth path
the economy invests in human capital just to provide new generations with the
steady-state level of schooling.

Let lowercase letters denote per capita variables, and gx = Gx − 1 denote the
growth rate of x . The aggregate production function, given by equation (8), com-
bined with the steady-state condition gY,ss = gK ,ss delivers the gross growth rate
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of output as a function of the gross growth rate of technology as

GY,ss = (G A,ss)
ξ

1−α (1 + n). (19)

Since G A,ss is a constant, it follows from equation (2) that

G A,ss = [(1 + n)λ(G A∗,ss)
ψ ]

1
1+ψ−φ . (20)

Equation (20) shows the relationship between the technology frontier growth rate
and the technology growth rate of the model economy. Since ψ

1 + ψ − φ
< 1, it is

easy to show that there is a unique point at which

G A,ss = G A∗,ss = (1 + n)
λ

1−φ . (21)

Given the nature of the experiments that we want to carry out, we focus on the
special case in which all countries grow at the same rate in steady state. That is,
we assume that G A∗,ss is given by expression (21), and therefore so is G A,ss .8 This
in turn implies that

GY,ss = GC,ss = G K ,ss = (1 + n)
λξ

(1−α)(1−φ) . (22)

Consistent with Jones (1995, 2002) our balanced-growth path is free of scale
effects. The reason why our model’s long-run growth is equivalent to that of Jones
even in the presence of a schooling sector, is that at steady state the mean years of
education, St , reaches a constant level Sss.

2.4. Transition Dynamics

The aggregate production function, equation (8), suggests that we normalize vari-

ables by the term A
ξ

1−α

t Lt . We then rewrite consumption, physical capital, and

output as ĉt = Ct/(A
ξ

1−α

t Lt ), k̂t = Kt/(A
ξ

1−α

t Lt ), and ŷt = Yt/(A
ξ

1−α

t Lt ), respec-
tively. Using equation (15) gives(

ĉt+1

ĉt

)θ (
uY,t+1

uY t

)
(G At )

(θ−1)ξ

1−α

(
ŷt

ŷt+1

)
=

(
ρ

1 + n

)

× [ f ′(St+1)(uY,t+1 + u A,t+1) + 1], (23)

where uY t and u At are the labor shares in R&D and final-output production at time
t , respectively. From the R&D equation (2), we get

G At = At+1

At
= 1 + υ

[
e f (St )u At

]λ
T (1+ψ−φ), (24)
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where T = A∗
t /At ; and υ = µ(A∗

t )
φ−1Lλ

t , which is a constant.9 From equation
(16) we get(

ĉt+1

ĉt

)θ (
ŷt

ŷt+1

) (
uY,t+1

uY t

)
= ρ gAt

G
ξ

1−α
(θ−1)+1

At

(
u A,t+1

u At

)

∗
[(

λξ

1 − α

) (
uY,t+1

u A,t+1

)
+

(
1

gA,t+1

)
+ (φ − ψ)

]
. (25)

Finally, from equation (17) we get

1 + n

ρ

[(
ĉt+1

ĉt

)
(G At )

ξ

1−α

]θ

= α
ŷt+1

k̂t+1
+ (1 − δ). (26)

The system that determines the dynamic equilibrium normalized allocations is
formed by the conditions associated with three control and three state variables as
follows:

Control Variables:

1. Euler equation for labor share in schooling, uHt : Equation (23)
2. Euler equation for labor share in R&D, u At : Equation (25)
3. Euler equation for consumption, ĉt : Equation (26)

Subject to the constraint uY t = 1 − u At − uHt .

State Variables:

1. Law of motion of human capital, St : Equation (6)
2. Law of motion of technology, At : Equation (24)
3. Law of motion of physical capital

(1 + n)k̂t+1 (G At )
ξ

1−α = (1 − δ)k̂t + ŷt − ĉt , (27)

where

Tt+1 = Tt

(
G A∗t

G At

)
, (28)

and
ŷt = k̂α

t

[
e f (St ) uY t

]1−α
. (29)

3. NUMERICAL ANALYSIS

In this section we take the proposed model to the data by means of a calibration
exercise. We first assign values to the parameters. Then, we simulate the transition
dynamics, and compare their predictions to the data. Because there is no analytical
solution to our system of Euler and motion equations presented in the preceding
section, we resort to numerical approximation techniques. More specifically, we
follow Judd (1992) to solve the dynamic equation system, approximating the policy
functions by employing high-degree polynomials in the state variables.10
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TABLE 1. Parameter val-
ues used in the simulations:
Benchmark case

Parameter Value

α 0.36
ρ 0.96
δ 0.06
n 0.012
ξ 0.1
G y 1.02
λ 0.5
φ 0.95
Sss 12.5
η 0.69
β 0.43
θ 1.19

3.1. Calibration

Because relative values of the cross-country data to which we compare the pre-
dictions of the model are taken with respect to U.S. levels, we calibrate the model
parameters using, when possible, U.S. data as the steady-state outcome. Table 1
presents the parameter values used to carry out the simulations. We choose a value
of 0.06 for the depreciation rate (δ), a value of 0.96 for the discount factor (ρ),
and 0.36 for the capital share of output (α), which are standard in the literature. To
assign values to per capita income growth rate in steady state (gy,ss), and to popu-
lation growth rate (n), we follow Jones (2002). In particular, we set gy,ss equal to
2%, the average growth of output per hour worked between 1950 and 1993 in the
United States, and n equal to 1.2%, the average growth rate of the labor force in the
G-5 countries (France, West Germany, Japan, the United Kingdom, and the United
States) during the period 1950–1993. The reason for using the average growth rate
of labor in the G-5 rather than any other group of countries (or, for that matter,
the whole sample) is that the main role of population growth rate in the model
is to move the world technology frontier in steady state, and clearly the majority
of world research effort is conducted in the G5 countries.11 Regarding the value
of the elasticity of output with respect to the technology, Griliches (1988) reports
estimates of ξ between 0.06 and 0.1. We choose to follow Eicher and Turnovsky
(1999b, 2001) and set ξ = 0.1.

It is not clear what the steady-state value of the average educational attainment
ought to be, given that mean years of schooling has been increasing over the
past decades in most developed countries. We choose to set Sss to 12.5, to match
the 1993 U.S. figure reported by Jones (2002). From equations (18), (23), and
(26), it can be easily shown that the values of Sss, n, and G y,ss imply an interest
rate [given by the RHS of (26)] at steady state of 7.9%, which is well within
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U.S. observations.12 In turn, substituting the values of the steady-state interest
rate, ρ, n, and G y,ss into equation (15) implies that the inverse of the intertemporal
elasticity of substitution (θ ) is 1.19, which is well within the empirical estimates.13

Following Bils and Klenow (2000), we use Psacharopoulos’ (1994) cross-country
sample on average educational attainment and Mincerian coefficients to estimate
η and β. Given f (S) = ηSβ , we can construct the regression

ln(Minceri ) = a + b ln Si + εi , (30)

where Minceri = f ′(Si ) is the estimated Mincerian coefficient for country i ; a and
b equal ln(ηβ) and (β − 1), respectively; and εi is a disturbance term. We obtain
η = 0.69 and β = 0.43, which are very close to estimates by Bills and Klenow
(2000).

Finally, we calibrate the R&D technology parameters. As a benchmark case, we
set λ = 0.5, and using equation (21) we recover the value of φ = 0.95.14 Given that
the effect of the parameter ψ is purely transitional, we follow Parente and Prescott
(1994) and calibrate it to replicate miraculous experiences.15 In particular, we
choose ψ so as to reproduce the relative output per worker path between 1960 and
1990 in Japan and between 1963 and 1990 in South Korea.16 We choose to calibrate
ψ for these two economies because they have experienced distinctly different
development experiences, notwithstanding their equally impressive growth rates
(Japan grew at 5.2% per year and South Korea at 6.5% per year during the relevant
periods), therefore making it possible to obtain values for ψ that are potentially
quite different. The South Korean development experience implies a value for ψ

of 0.18, whereas the Japanese development experience implies that ψ equals 0.22.
The initial values of the stock variables and the output data used to calibrate ψ , as
well as the accuracy measures, are presented in Table 2.

TABLE 2. Variable values used to calibrate ψ , and accuracy measures

Initial relative levels
In 1990 Average

K per Y per Y per errora (%) Max. errora (%)
worker S worker worker

Country ψ (%) (years) (%) (%) C uY u A C uY u A

Japan 0.18 16.9 10.2 20.6 60.3 0.01 0.01 0.01 0.03 0.05 0.04
Korea 0.22 11.6 3.2 11.0 42.2 0.07 0.20 0.07 0.30 0.93 0.32

Non-oil 0.18 5.4 2.7 10.4 — 0.20 0.49 0.13 0.91 2.38 0.56
Sample 0.22 5.4 2.7 10.4 — 0.19 0.48 0.14 0.89 2.32 0.59

a We assess the Euler equation residuals over 10,000 state-space points using the approximated rules. For each
variable, the measure gives the current-value decision error that agents using the approximated rules make, assuming
that the (true) optimal decisions were made in the previous period. Santos (2000) shows that the residuals are of the
same order of magnitude as the policy function approximation error.

https://doi.org/10.1017/S136510050403010X Published online by Cambridge University Press

https://doi.org/10.1017/S136510050403010X


476 CHRIS PAPAGEORGIOU AND FIDEL PEREZ-SEBASTIAN

3.2. Transition Dynamics Predictions

Unlike steady-state regressions, in this section we assume that all countries belong
to the same transitional path, approaching a unique, common balanced-growth
path. Specifically, we perform two experiments as follows: First, we simulate the
dynamics of a representative economy and study how well its adjustment path rep-
resents the cross-country data on key variables such as the state variables, interest
rates, investment rates, and output growth rates. Second, we propose an exercise
similar in spirit to that of MRW, which tries to assess how much of the cross-country
output variation can be explained by transition dynamics.17 The primary motiva-
tion for these two experiments is to examine how well the transitional dynamics
of the proposed model can explain cross-county per capita income dispersion and
other important stylized facts.

To carry out the first experiment, we need to estimate the policy rules that take
state variables from given initial values to the steady state. Doing so requires
the following two conditions: (a) given that the further away we move from the
balanced-growth path, the lower the accuracy degree of the numerical approxima-
tion, we choose the initial values so that the numerical approximation provides a
maximum-error measure of about 2% (see Table 2); (b) we start the adjustment
paths inside the cloud of cross-country observations that compose our compre-
hensive sample.18 Given conditions (a) and (b), we pick an initial value for the
relative physical capital stock per worker of 5.4%, an initial value for the average
educational attainment of 2.7 years, and an initial value for relative total factor
productivity (TFP) of 55.2% so as to generate a relative GDP per worker level of
10.4.19,20

The goal of the first experiment is to see how well the transition dynamics of
the model can explain important stylized facts such as cross-country dispersion
of growth rates, cross-country dispersion of saving/investment rates, and cross-
country equality of real interest rates. Figure 1 depicts cross-sectional data, along
with off-steady-state predictions for physical capital, average years of schooling,
TFP, interest rates, investment rates, and relative output growth. It is evident that
the plotted data show wide cross-country dispersion in all variables, except for real
interest rates, which are quite uniform across nations above the 25th percentile.
State variables (K , S, A) generally increase with the relative level of output, and
investment and growth rates generally depict weak inverted-U shapes, starting low
and achieving their maximum values for middle-income nations.21

With fixed initial and final values of the state variables, the question is how well
the transition path follows the data cloud in between. If we look at the charts in
panels A, C, and E of Figure 1, the primary finding is that the simulated dynamics
seem to fit well across the state-variable observations. These charts illustrate a
number of other points worth noting. First, notice that a larger degree of relative
backwardness (i.e., a larger value of ψ) induces faster technology catch-up, and
slower human capital accumulation, making the adjustment paths better fit the
data. Second, the simulated physical and human capital levels tend to diverge with
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FIGURE 1. Adjustment paths for the non-oil sample: Benchmark case. Note: RGDPW is
relative GDP per worker.

respect to the rich countries’ data. This is the result of calibrating the steady state
to U.S. data. The two variables’ divergent processes, however, offset each other
and, as a result, the technology path captures well the observations.

Finally, let us pay attention to the charts in Panels B, D, and F of Figure 1.
Below the 30th percentile in panel F, output-growth predictions are too large; thus,
our model overpredicts output growth at early stages of development. Above the
30th percentile, however, predictions fall across the cloud of observations; thus,
our model does much better in predicting output growth at later stages of devel-
opment. In addition, panels B and D show that predictions capture the uniformity
of the real interest rates (return to capital) above the 25th percentile, and are
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consistent with investment rates above the 35th percentile. As is the case with out-
put growth, our model is weaker in replicating interest and investment rates at early
development.

Our first experiment has shown that transition dynamics capture fairly well the
cross-country equality of the real interest rates, and generate investment rates that
are plausible, even though lower investment ratios at early levels of development
would better capture the dispersion of the data. The main explanation for this lower
dispersion of the predictions is probably a larger degree of market imperfections
and distortions in less developed countries, something that the model cannot ex-
plain, and that can be perceived as a source of differences in steady states or in
convergence speeds along the transition. The predicted output growth rates, on the
other hand, are clearly impossible for countries with relative real GDP below the
30th, but reasonable for more developed nations. For the sake of comparability
between transition dynamics predictions and steady-state regression predictions,
it is important to mention that steady-state predictions are not very successful
in accounting for the observed cross-country income growth dispersion either.
Steady-state growth regressions of the MRW type need to make use of transitional
factors to be able to minimally fit the data.

3.3. Can Transition Dynamics Explain the Cross-Country Output Data?

We now turn attention to the main issue of the paper: How well can the transition
dynamics of the model explain cross-country income dispersion? More specif-
ically, our second experiment tries to assess quantitatively how well the transi-
tion dynamics fit the output-per-worker data. This is important because fitting
the cross-country income data is where steady-state regressions achieve their great
success and therefore such an experiment is well motivated. Since we want to com-
pare the transition dynamics predictions of our model with those of steady-state
income regressions, we need to construct a measure of fit for transition dynam-
ics that can be compared with a measure of fit in level regressions (namely, the
OLS R2).

Taking logs in the Cobb-Douglas representation of the aggregate production
function, and substituting inputs for their balanced-growth values, we end up with
a standard in the literature steady-state econometric equation

log ŷ = τ̂0 + τ̂1 log k̂ + τ̂2 log Ŝ + ε, (31)

where ŷ is the estimate of output per worker; k̂ and Ŝ represent estimates of k
and S, respectively, derived from steady-state conditions using investment rates;
τ̂i ’s are estimated coefficients; and ε is a random disturbance term. Evidently,
for the underlying model to be consistent with the data, estimated coefficients
must be plausible according to the weight assigned by the national accounts to
the different inputs. To each combined value (τ̂1 log k̂ + τ̂2 log Ŝ) the regression
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assigns a predicted output level in log-scale, and all of the predicted output levels
are in turn translated into a measure of fit (the OLS R2).

Following an equivalent procedure, we first calculate for each country the com-
bined value e f (S)(1−α)[K/(L A +LY )]α implied by the data, imposing the calibrated
parameter values. Notice that this extended state variable represents the per worker
human capital term (i.e., e f (S)(1−α)), and the per worker physical capital term {i.e.,
[K/(L A + LY )]α}, as specified in the production function given by equation (8).
Second, to each country’s value of the combined state variable, we assign the
output per worker level Y/(L A + LY ) predicted by the transition path.22

As mentioned previously, to generate the adjustment-path simulation, we em-
ploy initial values for the relative per worker physical capital stock, and the average
educational attainment of 5.4% and 2.7 years, respectively. It works out that these
two initial values imply a minimum value of the relative extended state variable
of 18.9%. The sample that we employ to compute the measure of fit must then
consist of those 51 nations that provide values of the extended state variable above
18.9%.23

Figure 2 displays the actual output data (plot), and the predicted output data for
the two values of ψ (continuous lines). To assess the fit of the adjustment paths,
we employ the following statistic, which is equivalent to the OLS R2:

Pseudo-R2 = 1 −
∑N

j=1(x̂ j − x j )
2∑N

j=1

(
x j − 1

N

∑N
p=1 x p

)2 ,

where x̂ j and x j are the predicted and actual values of variable x for country
j , respectively; and N is the number of countries included in the sample. Our
variable x must be the natural log of relative GDP per worker to make the pseudo-
R2 comparable to the R2 reported in steady-state regressions.

FIGURE 2. Adjustment-path predictions of GDP per worker for 51-nation sample: Benchmark
case. Note: GDPW and KW denote GDP per worker and physical capital per worker,
respectively.
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TABLE 3. Measure of fit for adjustment-path predic-
tions of log-GDP per worker: Benchmark case

Pseudo-R2

Groups ψ = 0.18 ψ = 0.22

51-country 0.736 0.764
21-OECD-country 0.710 0.759

For the adjustment-path predictions expressed in natural logs, Table 3 reports
estimates of the pseudo-R2. As it is shown, the transition path can explain up to
76% of the variation of relative output per worker in both the 51 non-oil and the
21 OECD samples. These numbers compare pretty well with the R2 obtained by
steady-state regressions. For example, MRW report a maximum R2 of 78% for
their non-oil sample, and 28% for the OECD group. Nonneman and Vanhoudt
(1996), in turn, obtain an R2 of 78% for OECD nations. These numbers are just a
bit above the ones delivered by the transition predictions.

How can one interpret our results in the context of the existing empirical lit-
erature? Our results imply that the transition dynamics of an R&D model with
endogenous human capital can explain the cross-country output variation as well
as the more popular steady-state regressions can. Our findings do not discredit in
any way the common steady-state regression exercises. They do, however, provide
evidence that transition dynamics may be at least as important as steady states in
explaining income differences.

4. ROBUSTNESS ANALYSIS OF THE RESULTS

In this section, we perform a sensitivity analysis of our results to changes in key
parameter values. In particular, we focus on the R&D technology parameters, the
population growth rate, the discount factor, and the elasticity of final output with
respect to technology. We mainly study how changes in these parameters affect
our measure of fit (Pseudo-R2) that assesses the capacity of the model to explain
the cross-country dispersion of output per worker.

It is known from Jones (1995) and Eicher and Turnovsky (1999b, 2001) that the
type of nonscale R&D growth models that we use is highly sensitive to the returns
to scale and the shares of technology and labor in the R&D sector. To study the
robustness of our results, we carry out sensitivity analyses for different values of
the parameters λ, φ, and ψ .

Estimates of the labor share in the R&D sector, λ, found in the literature vary
from 0.2 [Kortum (1993)] to 0.75 [Jones and Williams (2000)]. We start the ro-
bustness analysis by examining how the measure of fit changes when we replace
our baseline value of λ = 0.5 with the more extreme values λ = 0.25, 0.75. As
shown in the first row of results in Table 4, when we reduce λ from 0.5 to 0.25,
the adjustment path generates a pseudo-R2 up to 72% for the 51-country sample
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TABLE 4. Measure of fit for adjustment-path predictions of log-GDP per worker:
Sensitivity analysis

Pseudo-R2

Implied values 51-country sample 21-OECD-country sample

λ φ θ gy,ss (%) Sss ψ = 0.18 ψ = 0.22 ψ = 0.18 ψ = 0.22

0.25 0.95 1.19 1.00 13.1 0.687 0.719 0.551 0.634
0.25 0.95 1.38 1.00 12.5 0.731 0.756 0.668 0.727

0.75 0.95 1.19 3.00 11.9 0.748 0.773 0.759 0.793
0.75 0.95 1.13 3.00 12.5 0.716 0.748 0.698 0.748

0.50 0.70 2.20 0.31 12.5 0.794 0.799 0.792 0.802
0.50 0.50 3.00 0.19 12.5 0.802 0.802 0.813 0.817

ψ = 0.10 ψ = 0.30 ψ = 0.10 ψ = 0.30

0.50 0.95 1.19 2.00 12.5 0.655 0.791 0.522 0.802

and up to 63% for the 21-OECD-country sample. As expected the decrease in λ

results in lower steady-state per worker income growth rates (gy,ss falls from 2%
to 1%). However, the effect of lowering λ on the measure of fit comes mainly
from the increase in the steady-state educational attainment level, Sss, which goes
from 12.5 up to 13.1 years, and moves the predictions of S away from the cloud
of points.24 The second row of Table 4 confirms this point. In particular, we show
that when we modify θ to obtain the baseline value Sss = 12.5, the measure of fit
increases up to 76% for the 51-country sample and 73% for the 21-OECD-country
sample. When, on the other hand, the parameter λ is 0.75 (see third row of results
in Table 4), then the pseudo-R2 rises to 77% and 79% for the 51-country and
21-OECD-country samples, respectively. The forth row of results in the table (in
which we modify θ to obtain the baseline value Sss = 12.5), once again confirms
that the induced variation in the steady-state average educational level is the main
cause of the change in the measure of fit. In short, the underlying intuition for the
increase in the pseudo-R2 as the parameter λ rises is the same as that explaining
the benchmark case: A lower rate of human capital formation coupled with a faster
technological catch-up process make the predictions better fit the data in Figure 1.

The empirical literature does not offer much guidance in choosing a reasonable
value for technology externality φ. In our benchmark case, the value for this
parameter (φ = 0.95) is pinned down by the balanced-growth equation (22). Some
authors, such as Eicher and Turnovsky (1999b, 2001), however, argue that a value
of φ = 0.95 may be too large. The fifth and sixth rows of results in Table 4
show that lower values of φ actually improve the fit of the predicted dynamics.
For example, the pseudo-R2 takes on values up to 80% for both country samples
considered when φ = 0.70 and we maintain Sss = 12.5. The pseudo-R2 increases
to 82% for the 21-OECD-country sample when φ declines further to 0.50.25
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To understand the forces that drive the increase in the pseudo-R2 when φ de-
clines, let us focus on Figure 3, which presents the adjustment-path predictions in
the case where we assume a low value of φ = 0.50. Compared to Figures 1 and 2,
the improvement is evident in all the panels. The smaller value of φ in the R&D
equation reduces the total productivity of R&D effort for any given level of A, thus
lowering the economy’s capacity to grow, as shown in panel F.26 At the same time,
however, equation (24) and the definition of v that follows imply that a reduction
of φ is equivalent to a relatively bigger advantage of technological backwardness.
The result is that, compared to the benchmark case, output growth at early stages
of development is achieved, devoting more labor to the R&D sector and less to
schooling. This, in turn, generates a relatively larger accumulation of technology
(panel E) and smaller human capital formation (panel C). The better fit of the
average educational attainment and TFP predictions explain the improvement in
the pseudo-R2 delivered by the predicted income levels (see panel G). Finally, the
lower elasticity of substitution between present and future consumption (a larger
value of θ ) is responsible for the lower investment rates and the improved fit shown
in panel (D).27

We now examine how sensitive the measure of fit is to variations in the catch-up
term ψ . We know from our previous results that the pseudo-R2 rises with ψ ; the
question now is by how much it can vary. Once again we have no guidance about
reasonable values of ψ . We decide to try values of 0.1 and 0.3 so that the calibrated
values of ψ for Japan and South Korea (0.18 and 0.22, respectively) are within
our chosen range. The last row of Table 4 reports our findings. In particular, for
ψ = 0.1 the pseudo-R2 is 66% for the 51-country sample and 52% for the 21-
OECD-country sample, and for ψ = 0.3 pseudo-R2 increases to 79% and 80%,
respectively. Therefore, the decrease in the pseudo-R2 can be substantial for low
values of ψ .

Table 5 provides the measure of fit for changes in other important parameters:
the population growth rate (n), the discounting coefficient (ρ), and the elasticity of

TABLE 5. Measure of fit for adjustment-path predictions of log-GDP per worker:
Sensitivity analysis

Implied values Pseudo-R2 (ψ = 0.18)

ρ n ξ θ gy,ss (%) Sss 51-country 21-OECD-country

0.96 0.020 0.10 1.19 3 9.0 0.795 0.761
0.96 0.020 0.10 0.66 3 12.5 0.676 0.613
0.96 0.012 0.06 1.19 1 13.0 0.761 0.747
0.96 0.012 0.06 1.31 1 12.5 0.783 0.789
0.97 0.012 0.10 1.19 2 16.4 0.502 0.114
0.97 0.012 0.10 1.71 2 12.5 0.765 0.761
0.95 0.012 0.10 1.19 2 9.8 0.804 0.824
0.95 0.012 0.10 0.66 2 12.5 0.648 0.534
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FIGURE 3. Adjustment paths for the non-oil sample: φ = 0.50 case. Note: RGDPW is relative
GDP per worker.
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final output with respect to technology (ξ ). Because the pseudo-R2 is always larger
for ψ = 0.22, the table presents results only for the ψ = 0.18 case. An alternative
value of n is given by its average growth rate in the sample. As we include more
developing nations, the average population growth rate increases. For instance,
the average n for the 51-country sample equals 2%. Compared to the numbers in
the first column of Table 3, the first row of Table 5 shows that if we set n = 0.02, the
pseudo-R2 goes up to 80% and 76%. The reason is the decline in Sss that equals
9.0 in the new scenario. If we modify θ to obtain the baseline value Sss = 12.5
(then θ = 0.66), the measure of fit decreases to 68% and 61%. This occurs for two
reasons: the higher growth rate of output per worker caused by the increase in n,
and the larger elasticity of intertemporal substitution (1/θ ). The primary effect of
these two changes in our experiments is always a faster human capital formation,
which, as we know, is bad for the fit.

We next move the value of ξ . When we try the lower bound reported by Griliches
(1988) (i.e., ξ = 0.06), the pseudo-R2 increases (third and fourth rows of results
in Table 5). Now, the lower value of the elasticity of final output with respect to
technology requires a larger initial technology gap to generate the same relative
TFP [given by Aξ in equation (1)]. This larger initial technology gap, in turn,
increases the initial productivity of R&D, and R&D investment rises at the expense
of schooling. The consequence is relatively faster TFP growth and slower human
capital formation, which is good for the fit.

Finally, the effect of changes in the value assigned to ρ are presented in rows
5 to 8 in Table 5. The fifth row suggests that if the discounting parameter rises
to 0.97, future production capacity becomes more valuable for agents, and the
steady-state average educational attainment increases to 16.4 years. This clearly
moves the predicted evolution of S away from the cloud of points, producing a
much lower pseudo-R2 for output per worker that equals 50% for the 51-country
sample and 11% for the 21-OECD group. The next row shows that when we fix
Sss = 12.5, the fit actually improves. In particular, the pseudo-R2 rises to 77% and
76%, respectively. The reason now is the value of θ = 1.71, which makes present
and future consumption more complementary, and therefore human and physical
capital accumulation proceed more slowly. The smoother path of schooling years is
responsible for the better fit. Exactly the opposite reason explains why the pseudo-
R2 declines to 65% and 53% when we set ρ = 0.95 and fix Sss = 12.5 (last row
in Table 5): It requires increasing the degree of substitutability between present
and future consumption so that θ = 0.66. However, in the seventh row of the table,
we see that if we do not fix Sss, ρ = 0.95 makes Sss decline to 9.8 years and, as a
consequence, the fit improves with respect to the benchmark case.

To summarize, the sensitivity analyses on key parameters reveal that for sensible
parameter values the predicted income levels explain no less than 72% and 67% of
the observed log-income variability across our 51-country sample and 21-OECD-
country sample, respectively. Values of λ above 0.5 (and values of ξ below 0.1)
take these percentages up to 77% and 79%, respectively. In addition, the measure
of fit increases above 80% if we reduce φ below 0.7. On the other hand, the fit can
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decrease below 67% if we allow the steady-state average educational attainment,
Sss, to be above 12.5 years or θ to be lower than 1. However, this seems to us
unreasonable because the maximum value of the average years of education in our
samples corresponds to the United States and equals 11.35, and because values of
θ below 1 go against the available empirical evidence.28 The pseudo-R2 can also
decrease below 67% if we let the catch-up term, ψ, take on values below 0.18;
however, we do not know if values that low are reasonable. We conclude that our
results are quite robust to sensible changes in the shares of labor and technology
in the R&D sector, and in other important parameters.

5. CONCLUSION

In this paper we have studied the capacity of transition dynamics to explain income
disparities across nations. In particular, we have taken the dynamic predictions of
a nonscale R&D model with endogenous human capital to the data by considering
two experiments. First, we have simulated the dynamics of a representative econ-
omy and studied the adjustment paths of key economic variables. Second, we have
assessed quantitatively how well the transition dynamics fit the output per worker
data by proposing a similar in spirit exercise to that of MRW.

Our key finding is that transition dynamics are as successful in fitting the cross-
country output per worker data as steady-state regressions. How can we recon-
cile this finding with the evidence against absolute convergence and in favor of
conditional convergence? Standard convergence tests, such as that of Barro and
Sala-i-Martin (1995), implicitly assume that the half-life of convergence is the
same among countries. Hence, one possibility that can reconcile our finding with
absolute convergence is that the time required to complete a given portion of
the adjustment path varies across economies. From this viewpoint, the diffusion
of ideas ultimately will ensure convergence among nations, and country-specific
fundamentals such as institutions, geography, and climate would determine not the
steady-state outcome but the half-life of the convergence process. Whether this is
the case is an empirical issue that we believe deserves further research.

In addition, we have shown that dynamic predictions of the model can explain (in
various degrees) important stylized facts on economic development. In particular,
transitional dynamics capture fairly well the cross-country equality of the real
interest rates, and generate investment rates that are plausible, especially when the
share of technology in R&D is not high. Transition dynamics are less successful
in explaining the cross-country dispersion of output growth rates: The predicted
rates are impossibly high for the less-developed countries, but reasonable for more
developed nations. However, as we explained, this failure is also a feature of
steady-state regressions.

The main implication of our results for the empirical growth literature is that
by focusing our attention only on reduced-form, balanced-growth predictions we
maybe disregarding a substantial part of the story about economic growth. The
potential payoff of finding ways to better integrate steady state and transition
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dynamics conditions can be large, especially in level regression analysis. Indeed,
some researchers, for example, Jones (2002), have already begun to venture along
this path. Our work also suggests that transition dynamics analysis must play a
more extensive role in discriminating among growth theories, especially in light
of the recent improvements achieved on numerical algorithms.

NOTES

1. MRW explain 78% of income variation across 98 countries. Nonneman and Vanhoudt (1996)
extend MRW to include R&D capital and also explain 78% of the income variation across the OECD
countries.

2. For example, King and Rebelo (1993) emphasize the important role of adjustment paths in
explaining growth experiences. Barro and Sala-i-Martin (1995, ch. 11) report estimates of regional
σ -convergence within countries that allow for a large role for transition dynamics.

3. See note 6 for a discussion on the aggregation problem of this approach.
4. Nelson and Phelps (1966) are the first to construct a formal model based on the catch-up term.

Parente and Prescott (1994) notice that this formulation implies that development rates increase over
time (with A∗

t ), and provide empirical evidence that is consistent with this implication. Benhabib and
Spiegel (1994) find evidence in favor of an R&D equation with imitation in a large sample of countries.

5. For the original discussion on Mincerian wage regressions, see Mincer (1974). For recent dis-
cussion of the advantages of the Mincerian approach in growth modeling and estimation, see Bils and
Klenow (2000) and Krueger and Lindahl (2001).

6. To be fully consistent with the Mincerian interpretation, Hjt =
∑L jt

i=1 e f (sit ), where sit is the
educational attainment of worker i at date t . The mapping between this expression and equation (3) is
not straightforward, and has not been addressed by the literature, with the exception of Lloyd-Ellis and
Roberts (2002) who perform only balanced-growth path analysis in a finitely lived agent framework.
The difficulty arises because different cohorts can possess different schooling levels. To make both
expressions consistent, we could assume that the first generation of agents pins down the workers’
educational attainment, and that posterior cohorts are forced to stay in school until they accumulate
this educational level. In this way, all workers would have the same years of education (i.e., sit = St

for all i), hence
∑L jt

i=1 e f (sit ) = L jt e f (St ). However, introducing this into the model would force us
to keep track of the different cohorts’ years of education across time, thus making the transitional
dynamics analysis much more cumbersome, if not impossible. We leave this important issue to future
research.

7. The primary reason for the particular timing of events is mathematical tractability. In particular,
this timing allows writing the motion equation of St+1 as a function of St and L Ht [see equation (5)].
If timing was reversed, we would obtain the state variable St+1 as a function of St and L H,t+1 that
could make the optimal control problem significantly more difficult to solve.

8. Alternatively, we could assume that the technology leader shifts the world technological frontier
outward according to equation (2), which now reduces to

A∗
t+1 − A∗

t = µA∗φ
t (h∗

At L∗
At )

λ,

where A∗
t /At = 1 as imitation is not possible at the frontier; and ∗ denotes the value that variables take

in the leading country. In such case G∗
A = 1 + g∗

A = (1 + n∗)
λ

1−φ as in Jones (1995, 2002). Assuming
that n = n∗, and substituting G∗

A into equation (20) delivers equation (21).
9. To show that υ is constant requires some algebra. Rewriting the equality in its gross growth

form, υt+1/υt = Gφ−1
A∗t (1+n)λ, and given that G A∗t = G A,ss = (1+n)

λ
1−φ , it follows that υt+1/υt = 1.

Notice that had A∗
t not grown according to equation (21), υ could not be constant, making the simulation

exercise much more difficult to implement.
10. In particular, the parameters of the approximated decision rules are chosen to (approximately)

satisfy the Euler equations over a number of points in the state space, using a nonlinear equation solver.
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A Chebyshev polynomial basis is used to construct the policy functions, and the zeros of the basis
form the points at which the system is solved; that is, we use the method of orthogonal collocation
to choose these points. Finally, tensor products of the state variables are employed in the polynomial
representations. This method has proven to be highly efficient in similar contexts. For example, in
the one-sector growth model, Judd (1992) finds that the approximated values of the control variables
disagree with the values delivered by the true policy functions by no more than one part in 10,000. All
programs were written in GAUSS and are available by the authors upon request.

11. Coe et al. (1997) report that in 1990, industrial countries accounted for 96% of the world’s
R&D expenditure.

12. For example, King and Rebelo (1993) report average real rates of return for the period 1926–
1987 on different U.S. securities that vary between 0.42% and 8.80%.

13. Estimates of θ by Hall (1988) and Attanasio and Weber (1993) range from 1 to 3.5. For a recent
discussion on estimates of θ , see Guvenen (2002).

14. In the next section, we perform a sensitivity analysis on key parameters of the model.
15. As in Parente and Prescott (1994), we smooth the data series involved in the calibration of ψ

using the Hodrick-Prescott filter with the smoothing parameter equal to 25.
16. South Korea’s rapid convergence toward U.S. income levels began around 1963. Japanese

convergence, on the other hand, started right after WWII. Unfortunately, the Japanese Education
Department does not possess estimates of the average educational attainment before 1960. We are
grateful to Tomoya Sakagami who has attempted to obtain these data for us.

17. In addition, we have investigated the asymptotic speed of convergence implied by the model—
the rate by which a country’s output converges to its balanced growth path once the country is sufficiently
close to its long-run equilibrium. In our model, this speed is given by the largest eigenvalue among those
contained in the unit circle. Parameter values in the neighborhood of those employed in our calibration
deliver speeds of convergence that vary between 1.06%–2.08%, consistent with most empirical evi-
dence. Our results are consistent with the finding of Eicher and Turnovsky (1999b, 2001), that moving
from one-sector to multisector nonscale growth models with endogenous technological change leads
to severe reduction in the asymptotic speed of convergence, and allows convergence speeds to vary
across time and variables.

18. Our comprehensive sample (79 countries) consists of the MRW’s non-oil nations for which
average years of schooling per worker are available from the STARS (World Bank) database, minus
Ireland, which is eliminated from the sample due to implausibly high schooling figures. For further
discussion on the data, see the data appendix.

19. Notice that, for relative GDP per worker level of 10.4, our numerical approximation commits
a maximum error of 2.38% in accordance with condition (a); see Table 2.

20. In our simulation exercise, TFP is broadly defined and includes everything not already captured
by the other two stock variables, S and K .

21. Following Jones (1997), we compute real interest rates (return to capital) as the marginal product
of capital, that is, αY/K . As Jones does, we find that the resulting returns for countries below the 25th
percentile are highly heteroskedastic, and that some nations present returns above 100%. The main
pattern that we observe, however, is a large amount of uniformity in the returns to capital above the
25th percentile.

22. Because the simulated adjustment path is a discrete set of pairs[
e f (S)(1−α)

(
K

L A + LY

)α

,
Y

L A + LY

]
,

we use interpolation methods to generate the predicted output level.
23. An asterisk identifies these 51 nations in the data table contained in the Appendix.
24. The inverse relationship between λ and Sss is the result of labor reallocation between the

schooling sector and the R&D sector. For example, a decline in λ decreases the return to working in the
R&D sector, therefore making the R&D activity relatively less attractive than schooling. This triggers
labor movement from the R&D sector to the schooling sector, and then Sss increases.
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25. In this exercise, we modify the value of θ to maintain Sss = 12.5. As before, if instead the
parameter θ remains equal to 1.19, then the fit becomes worse because Sss rises. However, when
θ = 1.19, and φ = 0.50, the pseudo-R2 is larger than the numbers in the first row of Table 4, and to
save space we have omitted this case.

26. Notice that when φ = 0.50, gy,ss decreases to 0.19%, a value that might not be impossible
in light of new findings by Jones (2002). He argues that the long-run income growth rate for the
United States can be considerably smaller than the average value experienced during the past century.
Compared to our benchmark, another implication of such decline in growth rates is that the half-life
of the convergence process doubles, going from 41 up to 82 years.

27. Adjustment paths similar to those in Figure 3 were produced for all parameter values of
λ, φ, ψ, n, ρ, and ξ considered in Tables 4 and 5. Since they do not add anything significant to the
analysis, they are omitted but are available from the authors upon request.

28. In the Barro and Lee (2001) dataset, the maximum number of years of schooling corresponds
to the United States, whose labor force in 2000 had, on average, 12.05 years of formal education.
Regarding empirical estimates of θ , see note 13.
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APPENDIX: DATA SOURCES

A.1. DATA SETS AND COMPUTER PROGRAMS

The data and programs used in this paper are available by the authors upon request.

• Income (GDP) and its components (Source: PWT 5.6). Cross-country GDP per worker
and real investment shares are taken from the Penn World Tables (PWT), Version 5.6,
as described by Summer and Heston (1991). This data set is available on line at:
http://datacentre.chass.utoronto.ca/pwt/index.html.
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• Physical capital stocks (Source: STARS, PWT 5.6, and perpetual inventory approach).
For the non-oil cross-country sample, we follow the perpetual inventory approach.
The capital stock is calculated by summing investment from its earliest available year
(1960 or before) to 1986 with the depreciation rate set at 6%. The initial capital stock
is determined by the initial investment rate, divided by the depreciation rate plus the
growth rate of investment during the subsequent 10 years. In the calibration of the
parameter ψ , the Japanese physical capital stock in 1960 and South Korean physical
capital in 1963 are obtained by deflating the 1965 PWT data (which unfortunately do
not extend to 1960), using growth rates implied by the STARS physical capital data.

• Labor force (Source: PWT 5.6). The cross-country data set on the labor force is also
taken from the Penn World Table, Version 5.6.

• Education [Source: STARS (World Bank)]. Annual data on educational attainment are
the sum of the average number of years of primary, secondary, and tertiary education in
labor force. These series were constructed from enrollment data using the perpetual
inventory method, and they were adjusted for mortality, dropout rates, and grade
repetition. For a detailed discussion on the sources and methodology used to build
this data set, see Nehru et al. (1995).

• Return to capital. Annual data on return to capital (rt ) is calculated as rt = α(Y/K ).

A.2. COUNTRIES IN THE COMPREHENSIVE SAMPLE

Our comprehensive sample includes the 79 countries from the Mankiw et al. (1992) non-
oil sample for which annual data on income, raw labor, human capital, and investment
rates were available for every year of the MRW sample period, 1960–1985. The table below
provides a list of these nations along with the 1960–1985 average value of relevant variables
for each country. An asterisk denotes the 51 nations included in the sample used to carry
out the second experiment.
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TABLE A.1. Mean values of relevant variables for 79 countries

GDP per Capital per Educational Investment
worker worker attainment over GDP

Country (bill. US$) (bill. US$) (years) (%)

Algeria∗ 9,590.3 19,927.6 2.40 21.81
Argentina∗ 14,514.6 25,128.8 6.30 17.09
Australia∗ 24,598.2 73,327.1 6.48 29.05
Austria∗ 18,550.5 45,706.7 8.71 25.81
Bangladesh 3,455.2 1,698.0 2.52 4.51
Belgium∗ 22,559.7 58,855.3 7.84 24.15
Bolivia∗ 5,131.9 9,916.2 4.14 18.77
Brazil∗ 8,571.2 14,648.2 3.04 19.88
Cameroon 2,116.8 1,165.5 1.58 7.78
Canada∗ 25,663.6 60,720.3 8.91 23.31
Chile∗ 10,404.8 21,791.6 5.98 18.69
China 1,378.9 2,877.9 3.22 19.61
Colombia∗ 7,657.8 12,274.0 3.43 16.10
Costa Rica∗ 9,195.0 5,566.6 6.01 15.65
Cyprus∗ 9,114.0 25,260.0 6.85 27.97
Denmark∗ 19,857.8 54,802.1 8.31 26.37
Ecuador∗ 7,451.9 14,550.8 4.11 22.93
Egypt 4,643.7 1,699.1 3.51 4.57
El Salvador 5,627.3 1,821.6 3.43 8.45
Ethiopia 647.9 290.8 0.23 4.95
Finland∗ 17,654.8 61,188.7 8.08 35.38
France∗ 21,948.0 58,143.7 7.98 27.47
Germany∗ 21,868.3 48,559.8 8.43 28.57
Ghana 2,329.7 1,901.5 2.86 6.34
Greece∗ 11,610.7 26,284.0 7.68 25.99
Guatemala∗ 7,117.2 6,729.0 2.66 9.40
Haiti 1,861.3 792.7 1.85 4.97
Honduras∗ 4,257.4 5,934.4 3.16 14.16
Iceland∗ 17,861.0 48,412.5 7.46 29.60
India 2,056.9 2,587.4 2.28 13.63
Indonesia 2,504.2 2,496.9 2.81 14.64
Israel∗ 17,082.7 39,880.0 4.50 27.55
Italy∗ 20,119.9 55,748.5 6.89 28.71
Ivory Coast 3,429.1 2,051.2 0.84 12.07
Jamaica∗ 5,866.5 16,367.1 6.80 22.97
Japan∗ 12,085.7 31,960.9 10.64 33.93
Jordan∗ 9,771.7 10,174.4 2.97 14.12
Kenya 1,760.3 3,615.8 2.36 16.32
Korea. Rep∗ 5,766.5 5,231.2 4.93 21.44
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TABLE A.1. (Continued.)

GDP per Capital per Educational Investment
worker worker attainment over GDP

Country (bill. US$) (bill. US$) (years) (%)

Madagascar 1,706.8 344.04 3.15 1.14
Malawi 1,129.2 1,332.74 3.32 8.16
Malaysia∗ 10,581.6 22,547.62 5.77 29.54
Mali 1,609.8 1,007.26 0.96 5.84
Mauritius∗ 7,338.8 8,191.28 6.37 8.36
Mexico∗ 16,929.0 29,987.27 5.46 14.92
Morocco 6,379.8 6,724.14 2.14 9.98
Mozambique 1,541.0 443.78 2.20 1.36
Myanmar 1,276.8 1,145.10 2.36 8.94
Netherlands∗ 28,218.4 78,868.48 8.25 20.40
New Zealand∗ 39,480.7 39,480.79 8.38 24.44
Nigeria 3,036.2 4,988.88 2.00 9.88
Norway∗ 27,407.2 89,938.15 9.29 28.68
Pakistan 4,075.2 3,622.92 1.94 10.16
Panama∗ 10,140.8 21,008.28 7.01 16.76
Paraguay∗ 6,451.4 9,543.62 5.70 16.40
Peru∗ 8,605.0 18,792.87 6.12 16.90
Philippines∗ 4,678.4 8,643.77 7.33 16.02
Portugal∗ 11,464.4 28,693.64 5.34 21.02
Rwanda 1,567.2 561.09 2.64 6.12
Senegal 2,638.8 1,640.40 1.75 3.56
Sierra Leone 991.6 174.71 1.92 1.38
Singapore∗ 17,883.6 48,914.37 6.77 38.80
Spain∗ 21,162.8 59,324.44 6.79 21.84
Sri Lanka 1,943.2 2,363.75 6.01 12.40
Sudan 2,605.6 3,923.26 1.57 13.40
Sweden∗ 25,875.4 70,883.61 9.63 19.66
Switzerland∗ 29,446.0 101,275.38 6.73 28.60
Tanzania 967.4 1,097.57 2.02 10.80
Thailand∗ 4,657.4 6,973.21 5.45 16.74
Tunisia∗ 8,629.6 11,304.46 4.48 13.36
Turkey∗ 7,009.6 15,438.82 4.22 22.14
Uganda 1,637.6 431.07 2.39 1.82
U.K.∗ 22,472.8 47,706.21 9.94 16.60
U.S.∗ 32,684.6 83,918.58 11.35 21.14
Uruguay∗ 10,773.0 24,664.08 7.53 12.84
Venezuela∗ 19,210.6 47,992.71 6.02 15.48
Zaire 1,171.6 721.89 3.67 5.60
Zambia∗ 2,493.6 8,950.54 4.06 9.52
Zimbabwe∗ 3,271.0 6,270.08 4.36 12.34

∗ 51 nations included in the sample used to carry out the second experiment.
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