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The best constant in a mean-value trace inequality for functions of bounded variation
on admissible domains Ω ⊂ R

n is shown to agree with an isoperimetric constant
associated with Ω. The existence and form of extremals is also discussed. This result
is exploited to compute the best constant in the relevant trace inequality when Ω is a
ball. The existence and the form of extremals in this special case turn out to depend
on the dimension n. In particular, the best constant is not achieved when Ω is a disc
in R

2.

1. Introduction and main results

Given an open set Ω ⊂ R
n, n � 2, we denote by BV(Ω) the space of functions

of bounded variation on Ω, namely, those functions u ∈ L1(Ω) whose first-order
distributional gradient Du is a vector-valued Radon measure with finite total vari-
ation ‖Du‖(Ω). The space BV(Ω) is a Banach space endowed with the norm given
by ‖u‖L1(Ω) + ‖Du‖(Ω) for u ∈ BV(Ω). For ease of presentation, we shall assume
throughout this paper that Ω is connected.

Traces of functions in BV(Ω) on ∂Ω are well defined if Ω is a Lipschitz domain.
More generally, boundary traces of BV functions can be defined if Ω is an admissible
domain, namely, a bounded open set such that Hn−1(∂Ω) < ∞, Hn−1(∂Ω\∂MΩ) =
0 and

min{Hn−1(∂ME ∩ ∂Ω),Hn−1(∂Ω \ ∂ME)} � CHn−1(∂ME ∩ Ω) (1.1)

for some positive constant C and every measurable set E ⊂ Ω [23, definition 5.10.1].
Here, Hn−1 denotes the (n−1)-dimensional Hausdorff measure, ∂ denotes the topo-
logical boundary and ∂M denotes the essential boundary in the sense of geometric
measure theory. In this connection, recall that if E ⊂ Ω is a measurable set, then its
characteristic function χE ∈ BV(Ω) if and only if Hn−1(∂ME ∩Ω) < ∞; moreover,
‖DχE‖(Ω) = Hn−1(∂ME ∩ Ω) [16, theorem 4.5.11]. The quantity Hn−1(∂ME ∩ Ω)
is called the perimeter of E relative to Ω.

If Ω is an admissible domain, then the trace on ∂Ω of a function u ∈ BV(Ω) is
the function

ũ : ∂Ω → R
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defined for Hn−1-almost every x ∈ ∂Ω as

ũ(x) = lim
r→0

1
|Br(x) ∩ Ω|

∫
Br(x)∩Ω

u(y) dy. (1.2)

Note that this limit can actually be shown to exist for Hn−1-a.e. x ∈ ∂Ω. Here,
Br(x) denotes the ball centred at x with radius r.

Alternative notions of the trace on ∂Ω of a function u ∈ BV(Ω) are available in
the literature. One of them involves the upper and lower approximate limits of the
continuation of u by 0 outside Ω [23, definition 5.10.5]. Another makes use of the
rough trace [21, § 6.5.1]. Both these definitions agree with ũ, up to subsets of ∂Ω
of Hn−1-measure zero.

Boundary traces of functions u from the Sobolev space W 1,1(Ω) ⊂ BV(Ω) are
more classically defined on a Lipschitz domain Ω as the limit of the standard traces
on ∂Ω of approximating sequences of smooth functions on Ω̄. The trace of a function
u ∈ W 1,1(Ω) obtained via this definition coincides with ũ, up to subsets of ∂Ω of
Hn−1-measure zero.

It is well known that ũ ∈ L1(∂Ω), the space of integrable functions on ∂Ω with
respect to Hn−1, for any function u ∈ BV(Ω), and that L1(∂Ω) is the smallest
Lebesgue space to which ũ belongs for every u ∈ BV(Ω). Furthermore, the linear
mapping BV(Ω) � u �→ ũ ∈ L1(∂Ω) is bounded. The optimal constant in a Poincaré
trace inequality between infc∈R ‖ũ − c‖L1(∂B) and ‖Du‖(Ω) was found in terms of
the best constant C in the isoperimetric inequality (1.1) as part of the pioneering
work of Maz′ya on the use of isoperimetric inequalities in the characterization of
Sobolev-type embeddings [21, theorem 6.5.2].

One purpose of this paper is to show that, for any admissible domain Ω, the opti-
mal constant in a mean-value Poincaré trace inequality in BV(Ω) can be expressed
via the best constant in a different isoperimetric inequality on Ω. The former con-
stant turns out to be achieved if and only if the latter constant is achieved. Moreover,
the characteristic function of any (possible) optimal set in the relevant isoperimetric
inequality is an extremal function in the trace inequality.

The trace inequality in question reads

‖ũ − ũ∂Ω‖L1(∂Ω) � C(Ω)‖Du‖(Ω) (1.3)

for every u ∈ BV(Ω). Here, ũ∂Ω denotes the mean value of ũ over ∂Ω, given by

ũ∂Ω =
1

Hn−1(∂Ω)

∫
∂Ω

ũ(x) dHn−1(x),

and C(Ω) is the best constant in (1.3), namely, the smallest constant which renders
(1.3) true. Note that, due to the lack of compactness of the mapping BV(Ω) � u �→
ũ ∈ L1(∂Ω), non-constant functions u ∈ BV(Ω) that turn (1.3) into an equality
need not exist. If such a function does exist, it will be called an extremal in (1.3).
A sequence of functions {uk}k∈N such that

‖ũk − (ũk)∂Ω‖L1(∂Ω)

‖Duk‖(Ω)
→ C(Ω)

will be called optimizing in (1.3).
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The isoperimetric constant coming into play in our discussion is defined as

K(Ω) = sup
E

Hn−1(∂ME ∩ ∂Ω)Hn−1(∂Ω \ ∂ME)
Hn−1(∂ME ∩ Ω)

, (1.4)

where the supremum is extended over all measurable sets E ⊂ Ω with positive
Lebesgue measure. Any set E ⊂ Ω at which the supremum in (1.4) is achieved will
be called an isoperimetric set in (1.4). The existence of isoperimetric sets in (1.4)
is not guaranteed in general, and depends on global geometric properties of Ω. A
sequence of sets {Ek}k∈N having the property that

Hn−1(∂MEk ∩ ∂Ω)Hn−1(∂Ω \ ∂MEk)
Hn−1(∂MEk ∩ Ω)

→ K(Ω)

will be called optimizing in (1.4).
The link between the constants C(Ω) and K(Ω) is exhibited by the following

result.

Theorem 1.1. Let Ω be an admissible domain in R
n, n � 2. Then

C(Ω) =
2K(Ω)

Hn−1(∂Ω)
. (1.5)

Extremals u exist in (1.3) if and only if isoperimetric sets exist in (1.4). If E is an
isoperimetric set in (1.4), then any function of the form u = aχE +b is an extremal
in (1.3) for every a, b ∈ R.

More generally, if {Ek} is an optimizing sequence of sets in (1.4), then the
sequence {uk} = {akχEk

+ bk} is an optimizing sequence of functions in (1.3)
for every ak, bk ∈ R.

Our main result is contained in theorem 1.2. It provides us with the best constant
C(Ω) in the trace inequality (1.3) when Ω is a ball B, and relies upon theorem 1.1.
Interestingly, the existence and the form of extremals in the mean-value trace
inequality in B turn out to depend on the dimension n. In particular, theorem 1.2
shows that extremals in the trace inequality (1.3) may actually not exist, even for
domains with such a simple geometry as the disc in R

2. This should be contrasted
with mean-value Poincaré inequalities in BV(Ω) inside Ω, where the best constant
is always achieved, provided that ∂Ω is sufficiently smooth (see remark 1.7).

In what follows, we call the (non-empty) intersection of B with a half-space a
spherical segment in B.

Theorem 1.2. Let B be a ball in R
n, n � 2. Then

‖ũ − ũ∂B‖L1(∂B) � C(n)‖Du‖(B) (1.6)

for every u ∈ BV(B), where

C(n) =

⎧⎪⎨
⎪⎩

n
√

π

2
Γ ( 1

2 (n + 1))
Γ ( 1

2 (n + 2))
if n � 3,

2 if n = 2.

(1.7)

The constant C(n) is the best possible in (1.6).
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If n � 4, the equality holds in (1.6) when u agrees with the characteristic function
of a half-ball.

If n = 3, the equality holds in (1.6) when u agrees with the characteristic function
of any spherical segment.

If n = 2, the equality never holds in (1.6), unless u is constant. Any sequence
of characteristic functions of spherical segments whose measure converges to 0 is
optimizing in (1.6).

Remark 1.3. The trace inequality of [21] to which we alluded above has the form
(1.6), with ‖ũ − ũ∂B‖L1(∂B) replaced with infc∈R ‖ũ − c‖L1(∂B) on the left-hand
side [21, theorem 6.5.2 and corollary 6.4.4/3]. When n � 3, the constant in (1.6)
agrees with the constant of [21]. Since infc∈R ‖ũ − c‖L1(∂B) is attained when c is a
median of ũ, which differs from ũ∂B in general, we have that

inf
c∈R

‖ũ − c‖L1(∂B) � ‖ũ − ũ∂B‖L1(∂B),

and the inequality is strict for a generic function u. Thus, inequality (1.6) simulta-
neously improves and recovers the inequality of [21] for n � 3.

Remark 1.4. Theorem 1.2 yields, in particular, the inequality

‖ũ − ũ∂B‖L1(∂B) � C(n)‖∇u‖L1(B) (1.8)

for every u ∈ W 1,1(B), where ∇u denotes the (weak) gradient of u, and C(n) is
given by (1.7). A standard approximation argument for characteristic functions of
spherical segments by Lipschitz functions ensures that the constant C(n) is sharp
in (1.8) as well.

Remark 1.5. Let q ∈ (0, 1) and let R be the radius of B. An application of the
Hölder inequality yields

‖ũ − ũ∂B‖Lq(∂B) � Hn−1(∂B)(1−q)/q‖ũ − ũ∂B‖L1(∂B). (1.9)

Coupling (1.9) with (1.6) tells us that

‖ũ−ũ∂B‖Lq(∂B) � πn(1−q)/(2q)Γ

(
n + 2

n

)(q−1)/q

C(n)R(1−q)(n−1)/q‖Du‖(B) (1.10)

for every u ∈ BV(B). Moreover, the constant in (1.10) is sharp if n � 3, since the
equality holds provided that u agrees with the characteristic function of a half-ball.

Remark 1.6. Inequality (1.3), and, in particular, (1.6), are a counterpart on
bounded domains of a basic inequality for BV functions in the half-space

R
n
+ = {x = (x′, xn) ∈ R

n−1 × R : xn > 0},

which tells us that
‖ũ‖L1(∂Rn

+) � ‖Du‖(Rn
+) (1.11)

for every u ∈ BV(Rn
+). Inequality (1.11) is standard and easy to prove via one-

dimensional integration along the xn variable and Fubini’s theorem. The constant 1
on the right-hand side of (1.11) is sharp, the sequence

{uk} = {χ{(x′,xn) : |x′|<1, 0<xn<1/k}}
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being optimizing. Inequality (1.11) continues to hold and to be optimal for functions
u ∈ W 1,1(Rn

+); of course, ‖Du‖(Rn
+) can be replaced with ‖∇u‖L1(Rn

+) in this case.
The best constant in the trace inequality for functions u ∈ W 1,p(Rn

+) is also
known. It was found in [13] for p = 2, and in [22] for 1 < p < n. A Moser-type trace
inequality on arbitrary, sufficiently smooth domains Ω ⊂ R

n for functions in the
borderline Sobolev space W 1,n(Ω) is a special case of the results of [9]. Additional
references on sharp trace inequalities include [1, 2, 4, 5, 11,14,20].

Remark 1.7. Incidentally, let us mention that the optimal constant and the
extremal functions in the mean-value Poincaré inequality

‖u − uΩ‖Ln/(n−1)(Ω) � C‖Du‖(Ω), (1.12)

for u ∈ BV(Ω), were found in [8] in the case when Ω = B. Here, uΩ stands
for the mean value of u over Ω. As mentioned above, unlike in (1.3), extremals
in (1.12) do always exist for any set Ω ⊂ R

n whose boundary is of class C2, as
recently established in [6]. When n = 2, the constant C in (1.12) is the smallest
possible among all convex domains when Ω is a disc, as shown in [15]. Existence
problems for extremals in mean-value Poincaré inequalities involving Lp(Ω)-norms
of the gradient with p > 1 have been considered in [12] (see also [19] for an alternate
approach in the special case when Ω is a ball). A description of symmetry properties
of extremals in the mean-value Poincaré inequality on the ball for the L2-norm of
the gradient is the subject of [17]. One-dimensional Poincaré inequalities are treated
in [3, 10]. Related questions are discussed in [7].

2. Proof of theorem 1.1

In this section we are concerned with the proof of theorem 1.1.

Proof of theorem 1.1. Set u+ = 1
2 (u + |u|) and u− = 1

2 (|u| − u), the positive and
the negative parts of u. Since ũ = ũ+ − ũ−, we have that

‖ũ − ũ∂Ω‖L1(∂Ω) � ‖ũ+ − (ũ+)∂Ω‖L1(∂Ω) + ‖ũ− − (ũ−)∂Ω‖L1(∂Ω). (2.1)

Moreover,

‖Du‖(Ω) = ‖D(u+)‖(Ω) + ‖D(u−)‖(Ω). (2.2)

Thus, it suffices to prove inequality (1.6) in the case when u � 0. In this case,

ũ(x) =
∫ ∞

0
χ{ũ�t}(x) dt for Hn−1-a.e. x ∈ ∂Ω. (2.3)

As a consequence,

ũ∂Ω =
1

Hn−1(∂Ω)

∫
∂Ω

ũ(x) dHn−1(x)

=
1

Hn−1(∂Ω)

∫
∂Ω

( ∫ ∞

0
χ{ũ�t}(x) dt

)
dHn−1(x)
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=
1

Hn−1(∂Ω)

∫ ∞

0

( ∫
∂Ω

χ{ũ�t}(x) dHn−1(x)
)

dt

=
1

Hn−1(∂Ω)

∫ ∞

0
Hn−1({ũ � t}) dt. (2.4)

Owing to (2.3) and (2.4),

‖ũ − ũ∂Ω‖L1(∂Ω)

=
∫

∂Ω

∣∣∣∣
∫ ∞

0
χ{ũ�t}(x) dt − 1

Hn−1(∂Ω)

∫ ∞

0
Hn−1({ũ � t}) dt

∣∣∣∣ dHn−1(x)

�
∫

∂Ω

∫ ∞

0

∣∣∣∣χ{ũ�t}(x) − 1
Hn−1(∂Ω)

Hn−1({ũ � t})
∣∣∣∣ dt dHn−1(x)

=
1

Hn−1(∂Ω)

∫ ∞

0

∫
∂Ω

|Hn−1(∂Ω)χ{ũ�t}(x) − Hn−1({ũ � t})| dHn−1(x) dt

=
1

Hn−1(∂Ω)

∫ ∞

0

( ∫
{ũ�t}

(Hn−1(∂Ω) − Hn−1({ũ � t})) dHn−1(x)

+
∫

∂Ω\{ũ�t}
Hn−1({ũ � t}) dHn−1(x)

)
dt

=
1

Hn−1(∂Ω)

∫ ∞

0
[Hn−1({ũ � t})(Hn−1(∂Ω) − Hn−1({ũ � t}))

+ (Hn−1(∂Ω) − Hn−1({ũ � t}))Hn−1({ũ � t})] dt

=
2

Hn−1(∂Ω)

∫ ∞

0
Hn−1({ũ � t})(Hn−1(∂Ω) − Hn−1({ũ � t})) dt. (2.5)

We have that

Hn−1({ũ � t}) = Hn−1(∂M{u � t} ∩ ∂Ω) for almost every t > 0. (2.6)

Equation (2.6) is a consequence of: the coincidence Hn−1-a.e. on ∂Ω of ũ with
the so-called rough trace of u [21, theorem 6.6.2]; the fact that, for almost every
t > 0, the essential boundary ∂M{u � t} agrees, up to a set of Hn−1 measure
zero, with the reduced boundary of {u � t} [23, lemma 5.9.5]; [21, lemma 6.5.1/2],
where equation (2.6) is established with ũ replaced with the rough trace of u, and
∂M{u � t} replaced with the reduced boundary of {u � t}. Thus,

2
Hn−1(∂Ω)

∫ ∞

0
Hn−1({ũ � t})(Hn−1(∂Ω) − Hn−1({ũ � t})) dt

=
2

Hn−1(∂Ω)

∫ ∞

0
Hn−1(∂M{u � t} ∩ ∂Ω)

× (Hn−1(∂Ω) − Hn−1(∂M{u � t} ∩ ∂Ω)) dt

=
2

Hn−1(∂Ω)

∫ ∞

0
Hn−1(∂M{u � t} ∩ ∂Ω)Hn−1(∂Ω \ ∂M{u � t}) dt. (2.7)
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By (1.4),
∫ ∞

0
Hn−1(∂M{u � t} ∩ ∂Ω)Hn−1(∂Ω \ ∂M{u � t}) dt

� K(Ω)
∫ ∞

0
Hn−1(∂M{u � t} ∩ Ω) dt. (2.8)

The coarea formula for BV functions [23, theorem 5.4.4] tells us that∫ ∞

0
Hn−1(∂M{u � t} ∩ Ω) dt = ‖Du‖(Ω). (2.9)

From (2.1), (2.2) and (2.5)–(2.9), we deduce that C(Ω) � 2K(Ω)/Hn−1(∂Ω).
To prove the reverse inequality, given any measurable set E such that

Hn−1(∂ME ∩ Ω) < ∞,

one can make use of the function χE ∈ BV(Ω) as a trial function in (1.3). Doing
so, we easily obtain that

C(Ω) �
‖χ̃E − (χ̃E)∂Ω‖L1(∂Ω)

‖DχE‖(Ω)

=
2Hn−1(∂ME ∩ ∂Ω)Hn−1(∂Ω \ ∂ME)

Hn−1(∂Ω)Hn−1(∂ME ∩ Ω)
. (2.10)

Note that, in (2.10), we have made use of (2.6), applied with u = χE , and of the
fact that ‖DχE‖(Ω) = Hn−1(∂ME ∩ Ω). Inequality (2.10) implies that

C(Ω) � 2K(Ω)
Hn−1(∂Ω)

.

Equation (1.5) is fully proved.
Next, if E is an isoperimetric set in (1.4), then, by (1.5) and (2.10),

2K(Ω)
Hn−1(∂Ω)

= C(Ω)

�
‖χ̃E − (χ̃E)∂Ω‖L1(∂Ω)

‖DχE‖(Ω)

=
2Hn−1(∂ME ∩ ∂Ω)Hn−1(∂Ω \ ∂ME)

Hn−1(∂Ω)Hn−1(∂ME ∩ Ω)

=
2K(Ω)

Hn−1(∂Ω)
. (2.11)

Hence, the equality holds in the inequality in (2.11). Thus, χE , and hence any
function of the form aχE + b with a, b ∈ R, is an extremal in (1.3). An analogous
argument proves the assertion concerning optimizing sequences in (1.3) and (1.4).

Conversely, assume that there exists an extremal u in (1.3). An inspection of
the above proof tells us that if the equality holds in (1.3), then, in particular,
the equality must hold in (2.8), with u replaced with u+ and u−, for almost
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every t ∈ [0, ess sup u+) and t ∈ [0, ess sup u−), respectively. Equality in (2.8)
entails that the level sets {u± � t} are isoperimetric in (1.4) for almost every
t ∈ (ess inf u±, ess sup u±).

3. Proof of theorem 1.2

Let B
n be the ball in R

n, which is centred at 0 and has radius 1. For each ϑ ∈ [0, π],
we denote by T (ϑ) the spherical segment in B

n given by

T (ϑ) = B
n ∩ {(x1, . . . , xn) : x1 � cos ϑ}. (3.1)

Let us call ωn the n-dimensional Lebesgue measure of B
n, namely,

ωn = πn/2/Γ (1 + 1
2n).

Define the function Φ : [0, π] → [0, ωn−1] as

Φ(ϑ) = ωn−1 sinn−1 ϑ for ϑ ∈ [0, π], (3.2)

and the function Ψ : [0, π] → [0, nωn] as

Ψ(ϑ) = (n − 1)ωn−1

∫ ϑ

0
sinn−2 η dη for ϑ ∈ [0, π]. (3.3)

Elementary geometric considerations show that

Φ(ϑ) = Hn−1(∂MT (ϑ) ∩ B
n) (3.4)

and

Ψ(ϑ) = Hn−1(∂MT (ϑ) ∩ ∂B
n) (3.5)

for every ϑ ∈ [0, π].
Given a measurable set E ⊂ B

n, we denote by Es the spherical symmetral of E
about the half-axis H = {(x1, . . . , xn) : x1 � 0, x2 = · · · = xn = 0}. The set Es

is defined as the subset of B
n such that the intersection of Es with any sphere S

centred at 0 is a spherical cap, centred at S ∩ H, such that

Hn−1(Es ∩ S) = Hn−1(E ∩ S).

In particular, Es is symmetric about the x1-axis.
The next result is an inequality between Hn−1(∂ME∩B

n) and Hn−1(∂ME∩∂B
n)

for any measurable set E ⊂ B
n. It will be exploited to show that, when Ω = B

n, the
supremum in (1.4) agrees with the supremum of the same functional restricted to
the class of spherical segments in B

n. The relevant inequality is essentially contained
in [21, lemma 6.4.4]. We reproduce a proof here for completeness.

Proposition 3.1. Spherical segments in B
n minimize Hn−1(∂ME ∩B

n) among all
measurable sets E ⊂ B

n with prescribed Hn−1(∂ME ∩ ∂B
n). In formulae,

Hn−1(∂ME ∩ B
n) � Φ(Ψ−1(Hn−1(∂ME ∩ ∂B

n))) (3.6)

for every measurable set E ⊂ B
n.
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Proof. Fix s ∈ (0, nωn). Let E ⊂ B
n be a measurable set such that

Hn−1(∂ME ∩ ∂B
n) = s.

We may obviously assume that Hn−1(∂ME ∩ B
n) < ∞, and hence that

Hn−1(∂ME) < ∞.

By [21, lemma 6.4.1/1], there exists a sequence of polyhedra {Pk} enjoying the
following properties. Define Qk = Pk ∩ B

n for k ∈ N. Then

lim
k→∞

χQk
= χE in L1(Bn),

lim
k→∞

Hn−1(∂Qk ∩ B
n) = Hn−1(∂ME ∩ B

n), (3.7)

and

lim
k→∞

Hn−1(∂Qk ∩ ∂B
n) = Hn−1(∂ME ∩ ∂B

n). (3.8)

Fix any k ∈ N. By the very definition of spherical symmetrization,

Hn−1(∂Qs
k ∩ ∂B

n) = Hn−1(∂Qk ∩ ∂B
n). (3.9)

Moreover, since spherical symmetrization does not increase the perimeter relative
to B (see, for example, [18]),

Hn−1(∂Qs
k ∩ B

n) � Hn−1(∂Qk ∩ B
n). (3.10)

Now, let Tk be the spherical segment in B
n such that

∂Tk ∩ ∂B
n = ∂Qs

k ∩ ∂B
n. (3.11)

Obviously,
Hn−1(∂Tk ∩ B

n) � Hn−1(∂Qs
k ∩ B

n). (3.12)

By (3.11),
Hn−1(∂Tk ∩ ∂B

n) = Hn−1(∂Qk ∩ ∂B
n), (3.13)

and, by (3.12) and (3.10),

Hn−1(∂Tk ∩ B
n) � Hn−1(∂Qk ∩ B

n). (3.14)

Owing to (3.4) and (3.5), the equality holds in (3.6) if E = Tk, namely,

Hn−1(∂Tk ∩ B
n) = Φ(Ψ−1(Hn−1(∂Tk ∩ ∂B

n))). (3.15)

Inequality (3.6) follows from (3.13)–(3.15) and (3.7) and (3.8).

Let us now define the function f : (0, π) → [0,∞) as

f(ϑ) =
1

sinn−1 ϑ

( ∫ ϑ

0
sinn−2 η dη

)( ∫ π

ϑ

sinn−2 η dη

)
for ϑ ∈ (0, π). (3.16)
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Note that f(ϑ) is related to the functional on the right-hand side of (1.4) evaluated
for E = T (ϑ) by the equality

Hn−1(∂T (ϑ) ∩ ∂B
n)Hn−1(∂B

n \ ∂T (ϑ))
Hn−1(∂T (ϑ) ∩ Bn)

= (n − 1)2ωn−1f(ϑ) for ϑ ∈ (0, π).

(3.17)
In the next lemma, monotonicity properties of f are established in order to deter-
mine the supremum of the left-hand side of (3.17).

Lemma 3.2. Let n � 2, and let f be the function defined as in (3.16). Then, f(ϑ) =
f(π − ϑ) for ϑ ∈ (0, π). Moreover, we have the following.

(i) If n = 2, then f is strictly decreasing in (0, 1
2π]. Hence,

sup
ϑ∈(0,π)

f(ϑ) = lim
ϑ→0+

f(ϑ)

= lim
ϑ→π−

f(ϑ),

and supϑ∈(0,π) f(ϑ) is not achieved.

(ii) If n = 3, then f is constant in (0, π).

(iii) If n � 4, then f is strictly increasing in (0, 1
2π]. Hence,

max
ϑ∈(0,π)

f(ϑ) = f( 1
2π).

Proof. (i) If n = 2, then

f(ϑ) =
ϑ(π − ϑ)

sin ϑ
for ϑ ∈ (0, 1

2π].

Thus,

f ′(ϑ) =
g(ϑ)
sin2 ϑ

for ϑ ∈ (0, 1
2π],

where we have set

g(ϑ) = (π − 2ϑ) sin ϑ − ϑ(π − ϑ) cos ϑ for ϑ ∈ [0, 1
2π].

Note that g(0) = g( 1
2π) = 0, and

g′(ϑ) = (−ϑ2 + πϑ − 2) sin ϑ for ϑ ∈ [0, 1
2π].

Thus,

g′ < 0 in [0, 1
2 (π −

√
π2 − 8)) and g′ > 0 in (1

2 (π −
√

π2 − 8), 1
2π].

Hence, g < 0 in (0, 1
2π), and f is strictly decreasing in (0, 1

2π].

(ii) If n = 3, then

f(ϑ) =
(1 − cos ϑ)(1 + cos ϑ)

sin2 ϑ
= 1 for ϑ ∈ (0, π).

Hence, f is constant in (0, π).
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(iii) If n � 4, then

f ′(ϑ) =
h(ϑ)
sinn ϑ

for ϑ ∈ (0, 1
2π],

where we have set

h(ϑ) = sinn−1 ϑ

( ∫ π

ϑ

sinn−2 η dη −
∫ ϑ

0
sinn−2 η dη

)

− (n − 1) cos ϑ

( ∫ π

ϑ

sinn−2 η dη

)( ∫ ϑ

0
sinn−2 η dη

)

for ϑ ∈ [0, 1
2π]. Observe that h(0) = h( 1

2π) = 0, and

h′(ϑ) = m(ϑ) sin ϑ for ϑ ∈ [0, 1
2π],

where

m(ϑ) = −2 sin2n−4 ϑ+(n−1)
( ∫ π

ϑ

sinn−2 η dη

)( ∫ ϑ

0
sinn−2 η dη

)
for ϑ ∈ [0, 1

2π].

Next, note that m(0) = 0, and

m′(ϑ) = z(ϑ) sinn−2 ϑ for ϑ ∈ [0, 1
2π]

where

z(ϑ) = −4(n − 2) sinn−3 ϑ cos ϑ

+ (n − 1)
( ∫ π

ϑ

sinn−2 η dη −
∫ ϑ

0
sinn−2 η dη

)
for ϑ ∈ [0, 1

2π].

The function z has the following properties:

z(0) = (n − 1)
∫ π

0
sinn−2 η dη > 0, z( 1

2π) = 0,

and

z′(ϑ) = 2(n − 3) sinn−4 ϑ((2n − 3) sin2 ϑ − 2n + 4) for ϑ ∈ [0, 1
2π].

Thus,

z′ < 0 in
(

0,

√
arcsin

2n − 4
2n − 3

)
and z′ > 0 in

(√
arcsin

2n − 4
2n − 3

,
π

2

)
.

As a consequence, there exists ϑ1 ∈ (0,
√

arcsin(2n − 4)/(2n − 3)) such that

z > 0 in (0, ϑ1) and z < 0 in (ϑ1,
1
2π).

Therefore,
m′ > 0 in (0, ϑ1) and m′ < 0 in (ϑ1,

1
2π);

hence, there exists ϑ2 ∈ (0, 1
2π) such that

m > 0 in (0, ϑ2) and m < 0 in (ϑ2,
1
2π).
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Note that m necessarily has to be negative in a neighbourhood of 1
2π, since h(0) =

h( 1
2π)(= 0). Consequently,

h′ > 0 in (0, ϑ2) and h′ < 0 in (ϑ2,
1
2π),

whence h > 0 in (0, 1
2π). Thus, f ′ > 0 in (0, 1

2π), hence, f strictly increases in
(0, 1

2π].

Proposition 3.3. Let n � 2, and let K(Bn) be defined as in (1.4), with Ω = B
n,

namely,

K(Bn) = sup
E

Hn−1(∂ME ∩ ∂B
n)Hn−1(∂B

n \ ∂ME)
Hn−1(∂ME ∩ Bn)

. (3.18)

Then

K(Bn) =

⎧⎨
⎩

(nωn)2

4ωn−1
if n � 3,

2π if n = 2.
(3.19)

If n � 4, the supremum in (3.18) is attained if E is a half-ball. If n = 3, the supre-
mum in (3.18) is attained if E is any spherical segment. If n = 2, the supremum
in (3.18) is not attained; any sequence of spherical segments of the form T (ϑk) is
optimizing, provided that the sequence {ϑk} converges either to 0+ or to π−.

Proof. For every measurable set E ⊂ B
n, define the spherical segment TE as

TE = T (Ψ−1(Hn−1(∂ME ∩ ∂B
n))),

where T and Ψ are defined as in (3.1) and (3.3), respectively. Therefore,

Hn−1(∂ME ∩ ∂B
n)Hn−1(∂B

n \ ∂ME)
Hn−1(∂ME ∩ Bn)

� Hn−1(∂MTE ∩ ∂B
n)Hn−1(∂B

n \ ∂MTE)
Hn−1(∂MTE ∩ Bn)

= (n − 1)2ωn−1f(Ψ−1(Hn−1(∂ME ∩ ∂B
n)))

� (n − 1)2ωn−1 sup
ϑ∈(0,π)

f(ϑ)

= K(Bn), (3.20)

where f is defined by (3.16). Note that the first inequality holds by proposition 3.1,
and the last equality holds by lemma 3.2. Furthermore, the equality holds in the
first inequality whenever E is a spherical segment. Thus, the conclusion follows via
lemma 3.2 again.

Proof of theorem 1.2. An dilation scaling and translation argument shows that the
constant C(n) in (1.6) is independent of the radius and of the centre of B. The
conclusion is thus a consequence of theorem 1.1 and proposition 3.3.
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