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In this paper, we study the self-similar solutions and the time-asymptotic behaviour
of solutions for a class of degenerate and singular diffusion equations in the form

ut = (|(p(u))x|λ−2(p(u))x)x, −∞ < x < +∞, t > 0,

where λ > 2 is a constant. The existence, uniqueness and regularity for the
self-similar solutions are obtained. In particular, the behaviour at two end points is
discussed. Based on the monotonicity property of the self-similar solutions and the
comparison principle, we also investigate the time convergence of the solution for the
Cauchy problem to the corresponding self-similar solution when the initial data have
some decay in space variable.

1. Introduction

Consider the diffusion equation of the form

ut = (|(p(u))x|λ−2(p(u))x)x, −∞ < x < +∞, t > 0, (1.1)

where λ > 2 and p(s) ∈ C([0, +∞)) ∩ C1((0, +∞)). Here we assume that the
function p(s) has the property that lims→+∞ p(s) = +∞, p′(s) > 0 for s > 0
and p′(s) is a monotone function in (0, +∞). Hence, besides the degeneracy at the
points where ux = 0 with p′(u) < +∞, the equation is degenerate if p′(0) = 0
and singular if p′(0) = +∞ at u = 0. This type of equation has a background in
physics and engineering sciences (see [9,16,19,20,22] and the references therein). In
recent decades, equations in the form (1.1) have been studied extensively because
of the rich phenomena caused by the degeneracy and singularity (see, for example,
the important case when λ = 2 [1, 3–8, 15, 17, 21, 23, 25]). When λ �= 2 and p(s) =
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sm(m > 0), (1.1) is called the non-Newtonian polytropic filtration equation; it
has been thoroughly investigated in [11, 27] and also in [2, 10, 12–14, 18, 24, 26],
in which the existence, uniqueness and regularity of solutions, together with the
time-asymptotic behaviour of solutions to the Cauchy problem, are established.

It is also interesting to note that (1.1) can be deduced from the compressible
Euler equations with damping, and the singularity and degeneracy in (1.1) then
correspond to the definition of the pressure function and the order of the nonlin-
earity of the damping in the system. More precisely, consider the following system
of Euler equations for isentropic flow with a damping term:

ρt + (ρu)x = 0, (1.2)

(ρu)t + (ρu2 + P (ρ))x = −κ(ρu)α, (1.3)

where ρ, u and P (ρ) denote density, velocity and pressure, respectively, while κ > 0
is the damping coefficient and α > 0 is the order of the nonlinearity in the damping
term. It is known in fluid dynamics that when time t → ∞, the convection term
in equation (1.3), i.e. (ρu)t + (ρu2)x decays faster than the other terms. Thus, to
consider the leading terms in the system, it can be reduced to the following scalar
equation:

ρt =
1
κ

((P (ρ)x)1/α)x. (1.4)

Now it is clear that this is exactly (1.1) when λ = (α + 1)/α. Hence, the linear
damping corresponds to the particular case λ = 2, while superlinear damping cor-
responds to the case when 0 < λ < 2 and sublinear damping to the case when
λ > 2. If 0 < α < 1 and the pressure function satisfies P ′(0) = 0 or P ′(0) = +∞,
then it is clear that (1.4) is degenerate or singular, respectively, at ρ = 0, i.e. in
vacuum states. For the case α = 1, it is well known that the parabolic equation
(1.4) has a class of self-similar solutions, called Barenblatt solutions, which capture
the large-time behaviour of solutions to the Cauchy problem of the Euler equation
with linear damping connecting to vacuum, i.e. P = 0. Therefore, we believe that
our study of the more general case here will be useful for future study of the above
system in a more general setting.

In the first part of the paper, we will consider the self-similar solutions to (1.1)
of the form

u(x, t) = w(ξ), ξ = x(t + 1)−1/λ, −∞ < x < +∞, t > 0.

Direct calculation shows that w = w(ξ) satisfies

− 1
λ

ξw′ = (|(p(w))′|λ−2(p(w))′)′, −∞ < ξ < +∞. (1.5)

For the ordinary differential equation (1.5), we study the infinite two-point bound-
ary-value problem with

w(−∞) = w−, w(+∞) = w+, (1.6)

where w± � 0. Since (1.5) is degenerate at the points where (p(w))′ = 0 and may
be degenerate or singular at the points where w = 0, the classical solution may not
exist. For this reason, the solutions to (1.5) and the infinite two-point boundary-
value problem (1.5), (1.6) are defined as follows.

https://doi.org/10.1017/S0308210505000697 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210505000697


Self-similar solutions and asymptotic behaviour for diffusion equations 583

Definition 1.1. A non-negative function w(ξ) ∈ C(−∞, +∞) is called a solution
of (1.5), if p(w) ∈ C1(−∞, +∞), w and |(p(w))′|λ−2(p(w))′ are absolutely contin-
uous in (−∞, +∞) so that (1.5) holds almost everywhere. Moreover, if

lim
ξ→−∞

w(ξ) = w−, lim
ξ→+∞

w(ξ) = w+,

w(ξ) is called a solution of the infinite two-point boundary-value problem (1.5),
(1.6).

Based on the self-similar solutions and the comparison principle, we will inves-
tigate further the asymptotic behaviour of solutions to the Cauchy problem (1.1)
with the initial data

u(x, t) = u0(x), x ∈ (−∞, +∞), (1.7)

where u0(x) is a monotone, non-negative and bounded function. The solution to
the problem (1.1), (1.7) is defined as follows.

Definition 1.2. A function u(x, t) is called a weak solution of the Cauchy prob-
lem (1.1), (1.7), if

p(u) ∈ Cloc(0, +∞; L2
loc(−∞, +∞)) ∩ Lλ

loc(0, +∞; W 1,λ
loc (−∞, +∞)),

ϕ ∈ C∞
0 ((−∞, +∞) × (0, +∞)),

∫ +∞

0

∫ +∞

−∞
uϕt dxdt =

∫ +∞

0

∫ +∞

−∞
|(p(u))x|λ−2(p(u))xϕx dxdt

and

lim
t→0+

∫ +∞

−∞
p(u(x, t))h(x) dx =

∫ +∞

−∞
p(u0(x))h(x) dx, h ∈ C∞

0 (−∞, +∞).

It will be shown that when the initial data are monotone and decay in the space
variable, then the solution to the Cauchy problem decays in the time variable with
a rate corresponding to the self-similar solution with two end states at ±∞.

The paper is organized as follows. In § 2, we state the main results on self-similar
solutions and derive some basic formulae, while the proof will be given in § 3. Based
on the self-similar solutions, the asymptotic behaviour of solutions to the Cauchy
problem (1.1), (1.7) will be investigated in the final section.

2. Self-similar solutions

We first state the main results on the self-similar solutions. For the proof in § 3, we
will also derive some basic formulae for the self-similar solutions.

Note that if w(ξ) is a solution of the problem (1.5), (1.6), then w̃(ξ) = w(−ξ) is
also a solution of (1.5) with

w(−∞) = w+, w(+∞) = w−.

Thus, in the following discussion, we will assume that 0 � w− � w+ without loss
of generality.
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The main results on the self-similar solutions, namely the solutions to the infinite
two-point boundary-value problem (1.5), (1.6), can be stated as follows.

Theorem 2.1. There exists a unique solution of the problem (1.5), (1.6).

Theorem 2.2. Let w(ξ) be the solution of the problem (1.5), (1.6) with 0 < w− <
w+. There then exist −∞ < ξ∗ < 0 < ξ∗ < +∞, such that w(ξ) is strictly increasing
in (ξ∗, ξ

∗), and

w(ξ) =

{
w−, ξ ∈ (−∞, ξ∗],

w+, ξ ∈ [ξ∗, +∞).

Theorem 2.3. Let w(ξ) be the solution of the problem (1.5), (1.6) with w− = 0
and w+ > 0. There then exists 0 < ξ∗ < +∞ such that

w(ξ)

{
< w+, ξ ∈ (−∞, ξ∗),

= w+, ξ ∈ [ξ∗, +∞).

In addition, set
ξ∗ = inf{ξ ∈ (−∞, +∞) : w(ξ) > 0}.

For ξ∗, we reach the following two conclusions.

(i) If
∫ 1
0 p′(s)s−1/(λ−1) ds < +∞, then −∞ < ξ∗ < 0 and the solution satisfies

d
dξ

( ∫ w(ξ)

0
p′(s)s−1/(λ−1) ds

)∣∣∣∣
ξ=(ξ∗)+

=
(

−ξ∗
λ

)1/(λ−1)

> 0.

Moreover, w(ξ) is strictly increasing in (ξ∗, ξ
∗), while w(ξ) ≡ 0 on (−∞, ξ∗].

(ii) If
∫ 1
0 p′(s)s−1/(λ−1) ds = +∞, then ξ∗ = −∞ and the solution satisfies∫ 0

−∞
w(s) ds < +∞, lim

ξ→−∞
|ξ|w(ξ) = 0.

And w(ξ) is strictly increasing in (−∞, ξ∗).

Remark 2.4. When p(s) = sm, m > 0, the corresponding conclusions on the
behaviour of solutions can be stated as follows, with a clear relation between the
parameter m and λ.

(i) If m > 1/(λ − 1), then −∞ < ξ∗ < 0 and

d
dξ

(wm−1/(λ−1)(ξ))
∣∣∣∣
ξ=(ξ∗)+

=
1
m

(
m − 1

λ − 1

)(
−ξ∗
λ

)1/(λ−1)

> 0.

(ii) If 0 < m � 1/(λ − 1), then ξ∗ = −∞.

Remark 2.5. Consider the Euler equations for a polytropic gas. When P (ρ) =
σ2ργ with γ > 0 the adiabatic constant and σ a constant, the explanation of the
vacuum behaviour from theorem 2.3 can be stated as follows. When γ > α, the
gas can connect to vacuum in finite distance from the origin at any time, with
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the physical vacuum boundary condition being (ργ−α)x �= 0 and bounded at the
vacuum interface. This is consistent with the work done on the Euler equations with
damping when α � 1. On the other hand, when 0 < γ � α, the gas canonically does
not connect to vacuum in finite distance from the origin for any time, but rather
does so at infinity.

To study the large-time behaviour of the solutions to the Cauchy problem (1.1),
(1.7), we need the following comparison result for solutions with small perturbation
at two end points.

Theorem 2.6. Let w1 and w2 be the solutions of (1.5) with the boundary value

w1(−∞) = w−, w1(+∞) = w+

and

w2(−∞) = w− + δ, w2(+∞) = w+ + δ,

respectively, where 0 � w− < w+, δ > 0 and w− + δ < w+.

(i) If p′(s) is an increasing function, then

0 � w2(ξ) − w1(ξ) �
(

1 +
p′(w+ + δ)
p′(w1(0))

)
δ, ξ � 0.

(ii) If p′(s) is a decreasing function, then

0 � w2(ξ) − w1(ξ) �
(

1 +
p′(w−)

p′(w2(0))

)
δ, ξ � 0.

Note that in the above theorem the estimation is on the right state (i.e. ξ > 0)
in the first case and on the left state (i.e. ξ < 0) in the second case.

In the rest of this section, we will derive some basic formulae with basic properties
of the solutions to the problem (1.5), (1.6).

Let v = p(w). Then (1.5) is transformed into

(|v′|λ−2v′)′ = − 1
λ

ξ(q(v))′, −∞ < ξ < +∞ (2.1)

or

(|v′|λ−3v′)′ = − λ − 2
λ(λ − 1)

ξq′(v), −∞ < ξ < +∞, (2.2)

where q(s) = p−1(s) is the inverse function of p, and the boundary data (1.6)
become

v(−∞) = v−, v(+∞) = v+, (2.3)

where v− = p(w−) and v+ = p(w+). From the assumption on the function p(s), we
see that q(s) ∈ C(R(p))∩C1(R+(p)), lims→+∞ q(s) = +∞, q′(s) > 0 for s ∈ R+(p)
and q′(s) = 1/p′(q(s)) is a monotone function in R+(p), where

R(p) = {p(s) : s ∈ [0, +∞)}, R+(p) = {p(s) : s ∈ (0, +∞)}.

Following definition 1.1, we obtain the definition of solutions to (2.1) and the
corresponding problem (2.1), (2.3).
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Definition 2.7. A function v(ξ) ∈ C(I) is called a solution of (2.1) in an interval I
if v(I) ⊂ R(p), v ∈ C1(I), q(v) and |v′|λ−2v′ are absolutely continuous in I so that
(2.1) holds almost everywhere in I. Furthermore, if I = (−∞, +∞) and

lim
ξ→−∞

v(ξ) = v−, lim
ξ→+∞

v(ξ) = v+,

v(ξ) is called a solution of the infinite two-point boundary-value problem (2.1),
(2.3).

According to the uniqueness theorem on ordinary differential equations, it is
straightforward to prove the following proposition.

Proposition 2.8. Assume that I is an interval and that v(ξ), ξ ∈ I, is a solution
of (2.1).

(i) If there exists ξ1 ∈ I ∩ (−∞, 0] such that v′(ξ1) = 0, then

v′(ξ) = 0, ξ ∈ I ∩ (−∞, ξ1].

(ii) If there exists ξ2 ∈ I ∩ [0, +∞) such that v′(ξ2) = 0, then

v′(ξ) = 0, ξ ∈ I ∩ [ξ2, +∞).

As an immediate consequence of proposition 2.8, the problem (2.1), (2.3) has a
unique solution when v− = v+. Therefore, we need to study only the non-trivial
solution, namely the case v− < v+.

Lemma 2.9. Assume that v(ξ) is a local solution of (2.1) with v(0) ⊂ R+(p) and
v′(0) > 0. There then exists 0 < ξ∗ < +∞, such that v′(ξ∗) = 0 and

v′(ξ) > 0, 0 < ξ < ξ∗.

Proof. We prove this by contradiction. Assume the conclusion of the lemma is not
true. By (2.1) and the extension theorem, v(ξ) can be extended to +∞ by

v′(ξ) > 0, v′′(ξ) < 0, ξ > 0.

Thus,

(v′λ−1(ξ))′ = − 1
λ

ξ(q(v(ξ)))′, ξ > 0. (2.4)

For ξ > 1, integrating the above equation from 1 to ξ yields

−v′λ−1(1) < v′λ−1(ξ) − v′λ−1(1) = − 1
λ

∫ ξ

1
s(q(v(s)))′ ds � − 1

λ
(q(v(ξ)) − q(v(1))).

Since v′(ξ) > 0 for any ξ > 0 and lims→+∞ q(s) = +∞, limξ→+∞ v(ξ) exists and is
bounded. Hence,

a = v(0) < v(ξ) < lim
ξ→+∞

v(ξ) = b < +∞, ξ > 1.

By the monotonicity of q′(s),

q′(v(ξ)) � min{q′(a), q′(b)} = δ > 0, ξ > 1.

https://doi.org/10.1017/S0308210505000697 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210505000697


Self-similar solutions and asymptotic behaviour for diffusion equations 587

Then (2.4) implies that

(v′λ−2(ξ))′ = − λ − 2
λ(λ − 1)

ξq′(v(ξ)) � − δ(λ − 2)
λ(λ − 1)

ξ, ξ > 1,

which contradicts the notion that v′(ξ) > 0 for any ξ > 0, and this completes the
proof.

Lemma 2.10. Let v1(ξ), v2(ξ) be two strictly increasing solutions of (2.1) in an
interval I and let v1(I), v2(I) ⊂ R+(p). Then we have the following two cases.

(i) If q′(s) is monotone decreasing and there exists ξ0 ∈ I such that

v1(ξ0) � v2(ξ0),

v′λ−1
1 (ξ0) − v′λ−1

2 (ξ0) > max
{

0,− 1
λ

ξ0(q(v1(ξ0)) − q(v2(ξ0)))
}

,

then
v′
1(ξ) > v′

2(ξ), ξ ∈ [ξ0, +∞) ∩ I.

In particular, if there exist ξ01, ξ02 ∈ (−∞, 0] ∩ I with ξ01 < ξ02 such that

v1(ξ01) = v2(ξ02), v′
1(ξ01) = v′

2(ξ02), (2.5)

then
v′
1(ξ) > v′

2(ξ), ξ ∈ [ξ02, +∞) ∩ I. (2.6)

(ii) If q′(s) is monotone increasing and there exists ξ0 ∈ I such that

v1(ξ0) � v2(ξ0), v′
1(ξ0) > v′

2(ξ0),

then
v1(ξ) > v2(ξ), ξ ∈ [ξ0, +∞) ∩ I.

Proof. We prove these two cases by contradiction, as follows.
(i) Assume the conclusion is not true. Let

ξ1 = inf{ξ ∈ [ξ0, +∞) ∩ I : v′
1(ξ) � v′

2(ξ)}.

Then ξ0 < ξ1, v′
1(ξ1) = v′

2(ξ1) and v′
1(ξ) > v′

2(ξ) for any ξ0 < ξ < ξ1. We have the
following two subcases.

(a) When ξ1 � 0, integrating (2.1) from ξ0 to ξ1 yields

v′λ−1∣∣ξ1

ξ0
= − 1

λ

∫ ξ1

ξ0

ξ(q(v))′ dξ =
1
λ

∫ ξ1

ξ0

q(v) dξ − 1
λ

ξq(v)
∣∣∣∣
ξ1

ξ0

.

Therefore,

v′λ−1
2 (ξ0) − v′λ−1

1 (ξ0) =
1
λ

∫ ξ1

ξ0

(q(v1) − q(v2)) dξ

− 1
λ

ξ1(q(v1(ξ1)) − q(v2(ξ1))) +
1
λ

ξ0(q(v1(ξ0)) − q(v2(ξ0))).
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Because ξ1 � 0, q(v1(ξ1)) − q(v2(ξ1)) > 0 and
∫ ξ1

ξ0
(q(v1) − q(v2)) dξ > 0, we get

v′λ−1
2 (ξ0) − v′λ−1

1 (ξ0) >
1
λ

ξ0(q(v1(ξ0)) − q(v2(ξ0))),

which contradicts the assumption.

(b) When ξ1 > 0, since v1(ξ1) > v2(ξ1) and q′(s) is monotone decreasing,

q′(v1(ξ1)) < q′(v2(ξ1)).

From (2.2) and ξ1 > 0, we get

(v′
1
λ−1)′|ξ1 > (v′

2
λ−1)′|ξ1 ,

which contradicts the notion that v′
1(ξ1) = v′

2(ξ1) and v′
1(ξ) > v′

2(ξ) for any ξ0 <
ξ < ξ1.

Now assume that (2.5) holds. Integrating this equation with respect to v1 from
ξ01 to ξ02 and using (2.5) give

v′λ−1
1 (ξ02) − v′λ−1

2 (ξ02)

= v′λ−1
1

∣∣ξ02

ξ01
= − 1

λ

∫ ξ02

ξ01

ξ(q(v1))′ dξ

=
1
λ

∫ ξ02

ξ01

q(v1) dξ − 1
λ

ξq(v1)
∣∣∣∣
ξ02

ξ01

>
1
λ

(ξ02 − ξ01)q(v1(ξ01)) − 1
λ

ξ02q(v1(ξ02)) +
1
λ

ξ01q(v1(ξ01))

= − 1
λ

ξ02(q(v1(ξ02)) − q(v2(ξ02))) > 0.

Hence, (2.6) follows according to conclusion (i).

(ii) The proof is also divided into two subcases.
(a) When ξ0 � 0, if the conclusion of the lemma is not true, then we can let

ξ2 = inf{ξ ∈ (ξ0, +∞) ∩ I : v1(ξ) � v2(ξ)}.

Thus, 0 � ξ0 < ξ2, v1(ξ2) = v2(ξ2) and v1(ξ) > v2(ξ) for any ξ0 < ξ < ξ2.
Integrating (2.1) from ξ0 to ξ2 yields

v′λ−1∣∣ξ2

ξ0
= − 1

λ

∫ ξ2

ξ0

ξ(q(v))′ dξ =
1
λ

∫ ξ2

ξ0

q(v) dξ − 1
λ

ξq(v)
∣∣∣∣
ξ2

ξ0

.

Hence,

(v′λ−1
1 (ξ2) − v′λ−1

2 (ξ2)) + (v′λ−1
2 (ξ0) − v′λ−1

1 (ξ0))

=
1
λ

∫ ξ2

ξ0

(q(v1) − q(v2)) dξ +
1
λ

ξ0(q(v1(ξ0)) − q(v2(ξ0))).
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By
∫ ξ2

ξ0
(q(v1) − q(v2)) dξ > 0, ξ0 � 0, v1(ξ0) � v2(ξ0) and v′

1(ξ0) > v′
2(ξ0), we get

v′λ−1
1 (ξ2) − v′λ−1

2 (ξ2) > 0,

which contradicts the notion that v1(ξ2) = v2(ξ2) and v1(ξ) > v2(ξ) for any ξ0 <
ξ < ξ2.

(b) When ξ0 < 0, we will show that

v′
1(ξ) > v′

2(ξ), ξ ∈ [ξ0, 0) ∩ I. (2.7)

If this condition does not apply, let

ξ3 = inf{x ∈ [ξ0, 0] ∩ I : v′
1(ξ) � v′

2(ξ)}.

Then ξ0 < ξ3 < 0, v′
1(ξ3) = v′

2(ξ3) and v′
1(ξ) > v′

2(ξ) for any ξ0 < ξ < ξ3. Since
v1(ξ0) � v2(ξ0) and q′(s) is monotone increasing, q′(v1(ξ3)) > q′(v2(ξ3)). By (2.2)
and ξ3 < 0, we get

(v′
1
λ−1)′|ξ3 > (v′

2
λ−1)′|ξ3 ,

which contradicts the notion that v′
1(ξ3) = v′

2(ξ3) and v′
1(ξ) > v′

2(ξ) for any ξ0 <
ξ < ξ3. Therefore, (2.7) holds and this completes the proof of the lemma.

Lemma 2.11. Assume v− < v+ and v is a solution of the problem (2.1), (2.3). Set

ξ∗ = inf{ξ ∈ (−∞, +∞) : v(ξ) > v−}.

Then v is monotone increasing in (−∞, +∞) and −∞ � ξ∗ < 0. Moreover, we
have the following two conclusions on ξ∗.

(i) If ξ∗ > −∞, then ∫ v−+1

v−

(q(s) − q(v−))−1/(λ−1) ds < +∞.

Furthermore, if in addition, v− = p(0), then

d
dξ

( ∫ v(ξ)

v−

q−1/(λ−1)(s) ds

)∣∣∣∣
ξ=(ξ∗)+

=
(

−ξ∗
λ

)1/(λ−1)

> 0. (2.8)

(ii) If ξ∗ = −∞, then ∫ v−+1

v−

(q(s) − q(v−))−1/(λ−1) ds = +∞.

Proof. From (2.2) and proposition 2.8, v is monotone increasing and v′(ξ) � v′(0)
for all ξ ∈ (−∞, +∞). Hence, ξ∗ < 0. The two cases on ξ∗ can be discussed as
follows.

Case 1 (ξ∗ > −∞). For any ξ∗ < ξ < 0, integrating (2.1) from ξ∗ to ξ yields

v′λ−1∣∣ξ
ξ∗

= − 1
λ

∫ ξ

ξ∗

s(q(v(s)))′ ds.
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Then,

v′λ−1(ξ) = − 1
λ

∫ ξ

ξ∗

s(q(v(s)))′ ds

� |ξ∗|
λ

∫ ξ

ξ∗

|(q(v(s)))′| ds =
|ξ∗|
λ

∫ ξ

ξ∗

(q(v(s)))′ ds =
|ξ∗|
λ

(q(v(ξ)) − q(v−)).

Thus,

(q(v(ξ)) − q(v−))−1/(λ−1)v′(ξ) �
(

|ξ∗|
λ

)1/(λ−1)

, ξ ∈ (ξ∗, 0).

Integrating the above inequality from ξ∗ to 0, we get∫ v(0)

v−

(q(s) − q(v−))−1/(λ−1) ds =
∫ 0

ξ∗

(q(v(ξ)) − q(v−))−1/(λ−1)v′(ξ) dξ

�
(

|ξ∗|
λ

)1/(λ−1)

|ξ∗|,

which implies that ∫ v−+1

v−

(q(s) − q(v−))−1/(λ−1) ds < +∞.

For (2.8), we integrate (2.1) from ξ∗ to ξ > ξ∗ to obtain

v′λ−1∣∣ξ
ξ∗

= − 1
λ

∫ ξ

ξ∗

s(q(v(s)))′ ds =
1
λ

∫ ξ

ξ∗

q(v(s)) ds − 1
λ

sq(v(s))
∣∣∣∣
ξ

ξ∗

.

Owing to v′(ξ∗) = 0 and q(v(ξ∗)) = q(v−) = 0,

v′λ−1(ξ) =
1
λ

∫ ξ

ξ∗

q(v(s)) ds − 1
λ

ξq(v(ξ)), ξ > ξ∗.

Hence,
v′(ξ)

q1/(λ−1)(v(ξ))
=

(
1
λ

∫ ξ

ξ∗

q(v(s))
q(v(ξ))

ds − 1
λ

ξ

)1/(λ−1)

, ξ > ξ∗.

By letting ξ → (ξ∗)+ and noticing that q(v(s)) < q(v(ξ)) for all ξ∗ < s < ξ, we
achieve (2.8).

Case 2 (ξ∗ = −∞). For any ξ1 < ξ < 0, integrating (2.1) from ξ1 to ξ gives

v′λ−1∣∣ξ
ξ1

= − 1
λ

∫ ξ

ξ1

s(q(v(s)))′ ds.

By letting ξ1 → −∞, we get

v′λ−1(ξ) = − 1
λ

∫ ξ

−∞
s(q(v(s)))′ ds = − 1

λ

∫ ξ

−∞
s|(q(v(s)))′| ds

� |ξ|
λ

∫ ξ

−∞
(q(v(s)))′ ds =

|ξ|
λ

(q(v(ξ)) − q(v−)).
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Hence,

(q(v(ξ)) − q(v−))−1/(λ−1)v′(ξ) �
(

|ξ|
λ

)1/(λ−1)

, ξ < 0.

Integrating the above inequality from −∞ to 0 yields∫ v(0)

v−

(q(s) − q(v−))−1/(λ−1) ds =
∫ 0

−∞
(q(v(ξ)) − q(v−))−1/(λ−1)v′(ξ) dξ

�
∫ 0

−∞

(
|ξ|
λ

)1/(λ−1)

dξ

= +∞.

Therefore, ∫ v−+1

v−

(q(s) − q(v−))−1/(λ−1) ds = +∞.

The proof of the lemma is complete.

Corollary 2.12. Under the assumption of lemma 2.11, if v− > 0 additionally,
then −∞ < ξ∗ < 0.

Proof. From the monotonicity property of q′(s) and v− > 0, we have

(q(s) − q(v−)) � δ(s − v−), v− < s < v− + 1,

where
δ = min{q′(v−), q′(v− + 1)} > 0.

Thus,

(q(s) − q(v−))−1/(λ−1) � δ−1/(λ−1)(s − v−)−1/(λ−1), v− < s < v− + 1.

As λ > 2, ∫ v−+1

v−

(q(s) − q(v−))−1/(λ−1) ds < +∞.

By lemma 2.11, −∞ < ξ∗ < 0, which completes the proof.

3. Proofs of theorems on self-similar solutions

This section is devoted to the proofs of theorems 2.1–2.3 and 2.6, which are based on
the following lemmas and propositions. We first consider the case without degener-
acy, namely v± ∈ R+(p) and v− < v+. Noting that λ > 2 in (2.2), by the extension
theorem and uniqueness theorem for the initial-value problem in ordinary differen-
tial equations, lemma 2.9 implies the following lemma.

Lemma 3.1. Assume that ξ0 < 0 and v− ∈ R+(p). Then (2.1) with the initial
conditions

v(ξ0) = v−, v′(ξ0) = 0 (3.1)

admits a unique solution in (0, +∞). Moreover, there exists 0 < ξ∗ < +∞, such
that v′(ξ) > 0 in (ξ0, ξ

∗) and v′(ξ) = 0 on [ξ∗, +∞).
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Proposition 3.2. Assume that v± ∈ R+(p) and v− < v+. There then exists a
unique solution of the problem (2.1), (2.3).

Proof. For ξ0 < 0, we denote v(ξ; ξ0) the solution of (2.1) with the initial data (3.1).
Set

ξ∗(ξ0) = sup{ξ > ξ0 : v′(ξ; ξ0) > 0}.

For any fixed ξ01 < ξ02 < 0, lemma 2.10 implies that

v(ξ; ξ01) > v(ξ; ξ02), ξ > ξ02.

Thus,
v(ξ∗(ξ01); ξ01) > v(ξ∗(ξ02); ξ02),

namely, v(ξ∗(ξ0); ξ0) is strictly decreasing in ξ0 ∈ (−∞, 0). Therefore,

lim
ξ0→0−

v(ξ∗(ξ0); ξ0) = 0, lim
ξ0→−∞

v(ξ∗(ξ0); ξ0) = +∞.

By the continuous dependence of the solutions on the initial data, we obtain
the existence. The uniqueness follows from the strictly monotonicity property of
v(ξ∗(ξ0); ξ0) and corollary 2.12.

Now we consider the case that may contain degeneracy, that is, v− = p(0) and
v+ ∈ R+(p).

Proposition 3.3. Assume that v− = p(0) and v+ ∈ R+(p). There then exists at
least one solution of the problem (2.1), (2.3).

Proof. We denote by vn(ξ) the solution of (2.1) with the boundary value

v(−∞) = v− +
1
n

, v(+∞) = v+,

where n is a positive integer. By proposition 3.2 and lemma 2.10, vn exists and

0 < ξ∗
n � ξ∗

n+1, v− � vn+1(ξ) � vn(ξ) � v+, ξ ∈ (−∞, +∞), n = 1, 2, . . . ,

where ξ∗
n = sup{ξ ∈ (−∞, +∞) : v′

n(ξ) > 0}. Let

ξ∗ = lim
n→∞

ξ∗
n, v(ξ) = lim

n→∞
vn(ξ), ξ ∈ (−∞, +∞).

Integrating the equation for vn from 0 to ξ∗
n gives

v′
n

λ−1|ξ
∗
n

0 = − 1
λ

∫ ξ∗
n

0
ξ(q(vn))′ dξ =

1
λ

∫ ξ∗
n

0
q(vn) dξ − 1

λ
ξq(vn)

∣∣∣∣
ξ∗

n

0
.

Thus,

v′
n

λ−1(0) +
1
λ

∫ ξ∗
n

0
q(vn) dξ =

1
λ

ξ∗
nq(v+) � 1

λ
ξ∗
1q(v+) > 0, n = 1, 2, . . . ,

which implies that v �≡ v− in (−∞, +∞). It is standard to show that v is a solution
of the problem (2.1), (2.3) and this completes the proof.
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Proposition 3.4. Assume that∫ v−+1

v−

q−1/(λ−1)(s) ds = +∞

and that v is a solution to the problem (2.1), (2.3) with v− = p(0) and v+ ∈ R+(p).
Then ∫ 0

−∞
q(v(s)) ds < +∞, lim

ξ→−∞
ξq(v(ξ)) = 0.

Proof. From lemma 2.11, we have ξ∗ = −∞, where

ξ∗ = inf{ξ ∈ (−∞, +∞) : v(ξ) > v−}.

Integrating (2.1) and (2.2) from −∞ to 0 yields

v′λ−1(0) = − 1
λ

∫ 0

−∞
s(q(v(s)))′ ds, v′λ−2(0) = − λ − 2

λ(λ − 1)

∫ 0

−∞
sq′(v(s)) ds. (3.2)

Due to ∫ v−+1

v−

q−1/(λ−1)(s) ds = +∞

and the monotonicity property of q′(s), q(v−) = 0 and q′(s) is increasing. Moreover,
for any s ∈ (−∞,−1],

|s|q(v(s)) = |s|(q(v(s)) − q(v−)) � |s|q′(v(s))(v(s) − v−) � −sq′(v(s))(v+ − v−).

From (3.2), we get∫ 0

−∞
|s|q(v(s)) ds < +∞,

∫ 0

−∞
q(v(s)) ds < +∞

and

v′λ−1(0) =
1
λ

lim
ξ→−∞

ξq(v(ξ)) +
1
λ

∫ 0

−∞
q(v(s)) ds.

Thus, limξ→−∞ ξq(v(ξ)) exists and the limit is zero by∫ 0

−∞
|s|q(v(s)) ds < +∞.

Proposition 3.5. The problem (2.1), (2.3) admits at most one solution.

Proof. Assume that v1 and v2 are two solutions to the problem (2.1), (2.3). From
lemmas 2.9 and 2.10, we may assume that

v1(ξ) � v2(ξ), ξ ∈ (−∞, +∞). (3.3)

For any ξ1 < 0 < ξ2, integrating (2.1) from ξ1 to ξ2 gives

v′
i
λ−1|ξ2

ξ1
= − 1

λ

∫ ξ2

ξ1

ξ(q(vi))′ dξ = − 1
λ

ξq(vi)
∣∣∣∣
ξ2

ξ1

+
1
λ

∫ ξ2

ξ1

q(vi) dξ, i = 1, 2. (3.4)

Based on (3.4), we have the following two cases.
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(i) If
∫ 1
0 q−1/(λ−1)(s) ds < +∞, then from lemmas 2.11, 2.9 and 2.10, there exist

−∞ < ξ∗ < 0 < ξ∗ < +∞ such that

v1(ξ∗) = v2(ξ∗) = v−, v1(ξ∗) = v2(ξ∗) = v+

and
v′
1(ξ∗) = v′

2(ξ∗) = v′
1(ξ

∗) = v′
2(ξ

∗) = 0.

Choosing ξ1 = ξ∗ and ξ2 = ξ∗ in (3.4) yields
∫ ξ∗

ξ∗

q(v1) dξ =
∫ ξ∗

ξ∗

q(v2) dξ.

Due to the monotonicity of q(s), (3.3) leads to v1 ≡ v2.

(ii) If
∫ 1
0 q−1/(λ−1)(s) ds = +∞, then from lemmas 2.11, 2.9 and 2.10 and proposi-

tion 3.4, there exists 0 < ξ∗ < +∞ such that

v1(ξ∗) = v2(ξ∗) = v+, v′
1(ξ

∗) = v′
2(ξ

∗) = 0,

and
lim

ξ→−∞
ξq(v1(ξ)) = lim

ξ→−∞
ξq(v2(ξ)) = 0.

By choosing ξ2 = ξ∗ in (3.4) and letting ξ1 → −∞, we get
∫ ξ∗

−∞
q(v1) dξ =

∫ ξ∗

−∞
q(v2) dξ.

Due to the monotonicity of q(s), (3.3) and proposition 3.4 imply that v1 ≡ v2. It
then completes the proof.

Since the problem (1.5), (1.6) is equivalent to the problem (2.1), (2.3), the case
when 0 < w− < w+ in theorems 2.1 and 2.2 follows from proposition 3.2, lem-
mas 2.9, 2.11 and corollary 2.12 directly. The case when 0 = w− < w+ in theo-
rems 2.1 and 2.3 then follows from propositions 3.3–3.5 and lemmas 2.9 and 2.11
directly. Therefore, we have completed the proofs for theorems 2.1–2.3.

Finally, we prove theorem 2.6, which can be restated as follows.

Proposition 3.6. Let v1 and v2 be the solutions of (2.1) with the boundary value

v1(−∞) = v−, v1(+∞) = v+,

and let
q(v2(−∞)) = q(v−) + δ, q(v2(+∞)) = q(v+) + δ,

respectively, where v± ∈ R(p) and q(v−) < q(v−) + δ < q(v+). Then we have the
following two cases.

(i) If q′(s) is a decreasing function, then

0 � q(v2(ξ)) − q(v1(ξ)) � (1 + q′(v1(0))p′(q(v+) + δ))δ, ξ � 0. (3.5)
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(ii) If q′(s) is an increasing function, then

0 � q(v2(ξ)) − q(v1(ξ)) � (1 + q′(v2(0))p′(q(v−)))δ, ξ � 0. (3.6)

Proof. Denote by v0 the solution of (2.1) with the boundary value

q(v0(−∞)) = q(v−) + δ, v0(+∞) = v+.

Then, by lemma 2.10, we have v1(0) < v0(0) < v2(0) and

v1(ξ) � v0(ξ) � v2(ξ), ξ ∈ (−∞, +∞).

Now we discuss the two cases separately.

(i) If q′(s) is a decreasing function, then we will show that

q(v0(ξ)) − q(v1(ξ)) � δ, ξ � 0 (3.7)

and
v′
2(ξ) − v′

0(ξ) � 0, ξ ∈ (−∞, +∞). (3.8)

In fact, from (3.8), we see that, for any ξ � 0,

q(v2(ξ)) − q(v0(ξ)) � q′(v0(ξ))(v2(ξ) − v0(ξ))
� q′(v0(ξ))(p(q(v+) + δ) − v+)
� q′(v1(0))p′(q(v+) + δ)δ.

This, together with (3.7), implies (3.5).
By lemma 2.10, (3.8) holds and

v′
1(ξ) − v′

0(ξ) � 0, ξ � 0. (3.9)

Define
h1(ξ) = q(v0(ξ)) − q(v1(ξ)), ξ ∈ (−∞, +∞).

Since q′(s) is a decreasing function, from (3.9), we have

h1(ξ) � h1(0), ξ � 0.

Now if (3.7) is not true, then

h1(0) > δ = h1(−∞).

Let
ξ1 = sup{ξ < 0 : h1(ξ) � h1(0)}.

Due to h′
1(0) < 0 and h1(0) > h1(−∞), ξ1 exists with ξ1 < 0. Moreover, h′

1(ξ1) � 0,
h1(ξ1) = h1(0) and

h1(ξ) > h1(0), ξ ∈ (ξ1, 0).

Integrating (2.1) from ξ1 to 0 gives

v′
i
λ−1∣∣0

ξ1
= − 1

λ

∫ 0

ξ1

ξ(q(vi))′ dξ = − 1
λ

ξq(vi)
∣∣∣∣
0

ξ1

+
1
λ

∫ 0

ξ1

q(vi) dξ, i = 0, 1.
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Thus,

v′
1
λ−1(ξ1) − v′

0
λ−1(ξ1) = v′

1
λ−1(0) − v′

0
λ−1(0) +

1
λ

ξ1h1(ξ1) +
1
λ

∫ 0

ξ1

h1(ξ) dξ > 0.

This implies that v′
1(ξ1) > v′

0(ξ1), which leads to h′
1(ξ1) < 0. Hence, this contradicts

h′
1(ξ1) � 0 so that (3.7) holds.

(ii) Similarly, if q′(s) is increasing, we will then show that

v′
1(ξ) − v′

0(ξ) � 0, ξ ∈ (−∞, +∞) (3.10)

and
q(v2(ξ)) − q(v0(ξ)) � δ, ξ � 0. (3.11)

In fact, from (3.10), we see that, for any ξ � 0,

q(v0(ξ)) − q(v1(ξ)) � q′(v0(ξ))(v0(ξ) − v1(ξ))
� q′(v0(ξ))(p(q(v−) + δ) − v−)
� q′(v2(0))p′(q(v−))δ.

This, together with (3.11), implies (3.6).
By lemmas 2.10, 2.9, and (2.7), we achieve (3.10) and

v′
2(ξ) − v′

0(ξ) � 0, ξ � 0. (3.12)

Define
h2(ξ) = q(v2(ξ)) − q(v0(ξ)), ξ ∈ (−∞, +∞).

Since q′(s) is increasing, (3.12) leads to

h2(ξ) � h2(0), ξ � 0.

Again, assume (3.11) is not true. Then

h2(0) > δ = h2(+∞).

Let
ξ2 = inf{ξ > 0 : h2(ξ) � h2(0)}.

As h′
2(0) > 0 and h2(0) > h2(+∞), we have ξ2 > 0 satisfying h′

2(ξ2) � 0, h2(ξ2) =
h2(0) and

h2(ξ) > h2(0), ξ ∈ (0, ξ2).

Integrating (2.1) from 0 to ξ2 yields

v′
i
λ−1∣∣ξ2

0 = − 1
λ

∫ ξ2

0
ξ(q(vi))′ dξ = − 1

λ
ξq(vi)

∣∣∣∣
ξ2

0
+

1
λ

∫ ξ2

0
q(vi) dξ, i = 0, 2.

Hence,

v′
2
λ−1(ξ2) − v′

0
λ−1(ξ2) = v′

2
λ−1(0) − v′

0
λ−1(0) − 1

λ
ξ2h2(ξ2) +

1
λ

∫ 0

ξ2

h2(ξ) dξ > 0.

This implies that v′
2(ξ2) > v′

0(ξ2), which leads to h′
2(ξ2) > 0. Thus, it contradicts

h′
2(ξ2) � 0 so that (3.11) holds. The proof of the proposition is then complete.

https://doi.org/10.1017/S0308210505000697 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210505000697


Self-similar solutions and asymptotic behaviour for diffusion equations 597

4. Asymptotic behaviour of solutions

Finally, in this section, we will investigate the asymptotic behaviour of solutions to
the Cauchy problem (1.1), (1.7) based on the properties of the self-similar solutions
proved in the previous sections.

Similar to the non-Newtonian filtration equation or non-Newtonian polytropic
filtration equation (see, for example, [11, 27]), the following existence theorem and
the comparison principle hold. We state them here without proof for brevity.

Theorem 4.1 (existence theorem). Assume that 0 � u0(x) ∈ L∞(−∞, +∞), and
that u0(x) is a monotone function. Then the Cauchy problem (1.1), (1.7) admits a
unique weak solution.

Theorem 4.2 (comparison principle). Assume that u1 and u2 are two weak solu-
tions to (1.1) satisfying

0 � u1(x, 0) � u2(x, 0), x ∈ (−∞, +∞),

with u2(x, 0) ∈ L∞(−∞, +∞), and u01(x) and u02(x) being monotone. Then

u1(x, t) � u2(x, t), x ∈ (−∞, +∞), t > 0.

The asymptotic behaviour of solutions to the Cauchy problem (1.1), (1.7) is given
by the following two theorems.

Theorem 4.3. Assume that 0 � u0(x) ∈ L∞(−∞, +∞), and that u0(x) is a mono-
tone function. Let u(x, t) be the solution of the Cauchy problem (1.1), (1.7). Then,
for any l > 0,

lim
t→+∞

sup
−l<x<l

|u(x, t) − w(xt−1/λ)| = 0, (4.1)

where w is the solution to the infinite two-point boundary-value problem (1.5), (1.6)
with

w− = lim
x→−∞

u0(x), w+ = lim
x→+∞

u0(x).

Proof. Without loss of generality, we may assume that u0 is increasing and that
0 � w− < w+. For any 0 < ε < w+ − w−, there exists L > l such that

u0(−L) < w− + ε, u0(L) > w+ − ε.

Let w1 and w2 be the solutions of (1.5) with the boundary conditions

w1(−∞) = w−, w1(+∞) = w+ − ε,

and

w2(−∞) = w− + ε, w(+∞) = w+.

Then, from lemma 2.10,

w1(ξ) � w(ξ) � w2(ξ), ξ ∈ (−∞, +∞). (4.2)

Define

u1(x, t) = w1((x−L)t−1/λ), u2(x, t) = w2((x+L)t−1/λ), x ∈ (−∞, +∞), t > 0.

https://doi.org/10.1017/S0308210505000697 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210505000697


598 C. P. Wang, T. Yang and J. X. Yin

Then, u1 and u2 are the two solutions of (1.1) with the following initial data,
respectively,

u1(x, 0) =

{
w−, x < L,

w+ − ε, x > L,
u2(x, 0) =

{
w− + ε, x < −L,

w+, x > −L.

By the comparison principle,

u1(x, t) � u(x, t) � u2(x, t), x ∈ (−∞, +∞), t > 0. (4.3)

We then need to discuss the following two cases.

(i) If p′(s) is an increasing function, then

u2(x, t) − u1(x, t) = w2((x + L)t−1/λ) − w1((x − L)t−1/λ)

� |w2((x + L)t−1/λ) − w1((x + L)t−1/λ)|
+ |w1((x + L)t−1/λ) − w1((x − L)t−1/λ)|.

By theorem 2.6,

|w2((x + L)t−1/λ) − w1((x + L)t−1/λ)| � C1ε, −l < x < l, t > 0,

and, by the mean value theorem,

|w1((x + L)t−1/λ) − w1((x − L)t−1/λ)| � 2w′
1(0)Lt−1/λ, x ∈ (−∞, +∞), t > 0.

(ii) If p′(s) is a decreasing function, then

u2(x, t) − u1(x, t) = w2((x + L)t−1/λ) − w1((x − L)t−1/λ)

� |w2((x + L)t−1/λ) − w2((x − L)t−1/λ)|
+ |w2((x − L)t−1/λ) − w1((x − L)t−1/λ)|.

By theorem 2.6,

|w2((x − L)t−1/λ) − w1((x − L)t−1/λ)| � C2ε, −l < x < l, t > 0.

On the other hand, by the mean value theorem,

|w2((x + L)t−1/λ) − w2((x − L)t−1/λ)| � 2w′
2(0)Lt−1/λ, x ∈ (−∞, +∞), t > 0.

In summary, we have

u2(x, t) − u1(x, t) � C(ε + Lt−1/λ), −l < x < l, t > 0,

where C > 0 is a constant independent of ε and L. Therefore, (4.2) and (4.3) imply
that

|u(x, t) − w(xt−1/λ)| � u2(x, t) − u1(x, t) � C(ε + Lt−1/λ), −l < x < l, t > 0,

which leads to (4.1) and completes the proof.

The following theorem shows that if we know the spatial decay rate of the initial
data, then we will have the convergence rate of the solution to the corresponding
self-similar solution.
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Theorem 4.4. Assume that 0 � u0(x) ∈ L∞(−∞, +∞), that u0(x) is a monotone
function and that

lim sup
x→−∞

|x|β |u0(x) − w−| < +∞, lim sup
x→+∞

|x|β |u0(x) − w+| < +∞, (4.4)

with β > 0 being a constant. Here,

w− = lim
x→−∞

u0(x), w+ = lim
x→+∞

u0(x).

Let u(x, t) be the solution of the Cauchy problem (1.1), (1.7). Then, for any l > 0,

sup
−L(t)<x<L(t)

|u(x, t) − w(xt−1/λ)| � C(l + l−β)t−β/((1+β)λ), t > 0, (4.5)

where
L(t) = lt1/((1+β)λ), t > 0,

and w is the solution of the infinite two-point boundary-value problem (1.5), (1.6),
while 0 < C < +∞ is a constant independent of t and l.

Proof. Without loss of generality, we may assume that u0 is increasing and that
0 � w− < w+. From (4.4), there exist L0 > 0 and C0 > 0 such that 2C0L

−β
0 <

w+ − w− and

w− � u0(x) � w− + C0|x|−β , x � −L0,

w+ − C0|x|−β � u0(x) � w+, x � L0.

Let s0 = (L0/l)(1+β)λ. Then, for any fixed s � s0, we have

w− � u0(x) � w− + C0L
−β(s), x � −L(s),

w+ − C0L
−β(s) � u0(x) � w+, x � L(s).

Let w1 and w2 be the solutions of (1.5) with the boundary data

w1(−∞) = w−, w1(+∞) = w+ − L−β(s)

and
w2(−∞) = w− + L−β(s), w(+∞) = w+,

respectively. Then, from lemma 2.10,

w1(ξ) � w(ξ) � w2(ξ), ξ ∈ (−∞, +∞). (4.6)

Define

u1(x, t) = w1((x − L(s))t−1/λ), x ∈ (−∞, +∞), t > 0,

u2(x, t) = w2((x + L(s))t−1/λ), x ∈ (−∞, +∞), t > 0.

Then, u1 and u2 are the solutions of (1.1) with the initial values

u1(x, 0) =

{
w−, x < L(s),
w+ − L−β(s), x > L(s),

u2(x, 0) =

{
w− + L−β(s), x < −L(s),
w+, x > −L(s),
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respectively. By the comparison principle,

u1(x, t) � u(x, t) � u2(x, t), x ∈ (−∞, +∞), t > 0. (4.7)

Again, we need to discuss the following two cases.

(i) If p′ is increasing, then

u2(x, s) − u1(x, s) = w2((x + L(s))s−1/λ) − w1((x − L(s))s−1/λ)

� |w2((x + L(s))s−1/λ) − w1((x + L(s))s−1/λ)|
+ |w1((x + L(s))s−1/λ) − w1((x − L(s))s−1/λ)|.

Theorem 2.6 implies that

|w2((x + L(s))s−1/λ) − w1((x + L(s))s−1/λ)|
� C1L

−β(s) = C1l
−βs−β/((1+β)λ), −L(s) < x < L(s).

On the other hand, the mean value theorem gives

|w1((x + L(s))s−1/λ) − w1((x − L(s))s−1/λ)|
� 2w′

1(0)L(s)s−1/λ = 2w′
1(0)ls−β/((1+β)λ), x ∈ (−∞, +∞).

(ii) If p′ is decreasing, then

u2(x, s) − u1(x, s) = w2((x + L(s))s−1/λ) − w1((x − L(s))s−1/λ)

� |w2((x + L(s))s−1/λ) − w2((x − L(s))s−1/λ)|
+ |w2((x − L(s))s−1/λ) − w1((x − L(s))s−1/λ)|.

Theorem 2.6 yields

|w2((x − L(s))s−1/λ) − w1((x − L(s))s−1/λ)|
� C2L

−β(s) = C2l
−βs−β/((1+β)λ), −L(s) < x < L(s),

and the mean value theorem leads to

|w2((x + L(s))s−1/λ) − w2((x − L(s))s−1/λ)|
� 2w′

2(0)L(s)s−1/λ = 2w′
2(0)ls−β/((1+β)λ), x ∈ (−∞, +∞).

We combine these two cases to obtain

u2(x, s) − u1(x, s) � C(l + l−β)s−β/((1+β)λ), −L(s) < x < L(s),

where C > 0 is a constant independent of s and l. By (4.6) and (4.7), we then have

|u(x, s) − w(xs−1/λ)| � u2(x, s) − u1(x, s)

� C(l + l−β)s−β/((1+β)λ), −L(s) < x < L(s), s > s0,

which implies (4.5) and completes the proof.
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