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AlertInf is a recently developed model to predict the daily emergence of three important weed species
in maize cropped in northern Italy (common lambsquarters, johnsongrass, and velvetleaf). Its use can
improve the effectiveness and sustainability of weed control, and there has been growing interest from
farmers and advisors. However, there are two important limits to its use: the low number of weed
species included and its applicability only to maize. Consequently, the aim of this study was to
expand the AlertInf weed list and extend its use to soybean. The first objective was to add another two
important weed species for spring-summer crops in Italy, barnyardgrass and large crabgrass. Given
that maize and soybean have different canopy architectures that can influence the interrow
microclimate, the second objective was to compare weed emergence in maize and soybean sown on
the same date. The third objective was to evaluate if AlertInf was transferable to soybean without
recalibration, thus saving time and money. Results showed that predictions made by AlertInf for all
five species simulated in soybean were satisfactory, as shown by the high efficiency index (EF) values,
and acceptable from a practical point of view. The fact that the algorithm used for estimating weed
emergence in maize was also efficient for soybean, at least for crops grown in northeastern Italy with
standard cultural practices, encourages further development of AlertInf and the spread of its use.
Nomenclature: Common lambsquarters, Chenopodium album L., CHEAL; barnyardgrass,
Echinochloa crus-galli (L.) Beauv., ECHCG; johnsongrass, Sorghum halepense (L.) Pers, SORHA;
large crabgrass, Digitaria sanguinalis (L.) Scop., DIGSA; velvetleaf, Abutilon theophrasti Medik.,
ABUTH; maize, Zea mays L.; soybean, Glycine max (L.) Merr.
Key words: Hydrothermal time, modeling, predicting weed emergence dynamics, weed control.

Knowledge on the emergence pattern of the main
weed species in a crop is critical for devising weed
control plans. Because the timing of weed emer-
gence relative to that of the crop strongly influences
crop-weed competition, information on weed
emergence dynamics can be used to optimize the
removal strategies to avoid yield losses (Benjamin
et al. 2010; Grundy 2003). The importance of
knowing and predicting weed emergence has been
recognized for many years and several studies have
been conducted to model weed emergence (Colbach
et al. 2007; Dorado et al. 2009; Myers et al. 2004).
The introduction of such models in decision-
support programs can reduce herbicide use and
weed control costs compared with standard man-
agement practices (Forcella et al. 2000). Proper
timing of weed control is particularly important,
given the increasing frequency of POST control in

maize and especially in soybean. These models
provide the percentage of cumulated emergence
reached every day by weed species, and farmers can
use this information to select the best timing of
mechanical or chemical control (Alvarado and
Bradford 2002; Archer et al. 2001; Chantre et al.
2012; Masin et al. 2011). AlertInf (Masin et al.
2012) is one of these weed emergence predictive
models, and was recently developed for three
important weed species in Italian maize fields:
common lambsquarters, johnsongrass, and velvet-
leaf. The model is based on the hydrothermal time
concept (Bradford 2002; Gummerson 1986), in
which the combination of soil temperature and soil
water potential is the main factor driving germina-
tion and emergence processes. In order to evaluate
the interest in and use of the model by farmers and
advisors, a simplified version of AlertInf (that uses
rainfall instead of soil water potential) has been made
available on the Web site of the ARPAV Agrobio-
meteorology Unit (www.arpa.veneto.it) (Masin et al.
2010a). The high number of recorded visits to the
model Web page (about 2000 hits during the 2010
growing season) suggested a positive response from
the users. Nonetheless, one of the limits to its use
is the low number of weed species included. In
fact, the higher the number of simulated species,

DOI: 10.1614/WS-D-13-00112.1
* First, second, third, and fifth authors: Researcher, Postdoc-

toral Fellow, Ph.D student, and Professor, Department of
Agronomy, Food, Natural Resources, Animals & Environment,
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the more information is provided by the model on
the total field infestation present in the field,
making the model more flexible and useful for
the farmers. Consequently, it is of great interest
to extend the weed species list. Modeling the
emergence dynamics of selected species with
AlertInf requires many years of emergence obser-
vations in the field to estimate the parameters of
the model equation (i.e., a Gompertz function)
and laboratory experiments to estimate the germi-
nation threshold parameters (base temperature and
base water potential for seed germination) for each
species or, more properly, for each ecotype, needed
to calculate the hydrothermal time. Studies on
threshold parameters for germination reported very
different values for populations of the same species
growing in diverse geographic locations, showing
that the thresholds may differ among ecotypes
(Forcella et al. 2000; Gardarin et al. 2010; Loddo
et al. 2013; Steinmaus et al. 2000). Nevertheless, a
recent study (Masin et al. 2010b) reported that
threshold parameters did not differ between two
ecotypes of various weed species collected in two
extreme regions of the main maize-growing area in
Italy. The same values may therefore be adopted
for these parameters throughout the Italian maize-
growing area without estimating specific thresholds
for each ecotype. This conclusion was of some
importance because the laboratory experiments to
obtain the threshold parameters are very time and
resources consuming.

Because the main weed species in maize are also
common in other summer crops in Italy, the same
threshold parameters for weed germination can be
applied. But crops have different spatial arrange-
ments, plant development, canopy structure, and
cultural practices, and this may affect weed recruit-
ment, development, and competition with the crop
differently (Baumann et al. 2001; Hock et al. 2005;
Knezevic et al. 2002; Mohler 1996; Sweeney et al.
2008). Emergence of weeds may be somewhat
inhibited as a crop canopy expands and as the
growing season progresses because of the changing
of the underlying soil microclimate (Forcella et al.
2000). The main factors are soil temperature, soil
water potential, and light quality (Norsworthy
2004). Even if the use of hydrothermal time in
the models accounts for the differences in the soil
temperature and soil water potential, soil thermal
amplitude and light quality have effects that are
difficult to consider in models, also because they are
not well understood (Forcella et al. 2000) and very
variable among weed species. In fact, studies on

effects of light and diurnal temperature fluctuations
on seed germination reported that these parameters
inhibit the germination of some species and are
ineffective, or sometimes even a stimulant, on others
(Batlla et al. 2000; Huarte and Benech Arnold
2003; LeBlanc et al. 2002). As a consequence, it is
necessary to conduct specific experiments in order
to determine whether weed emergence dynamics are
the same in different crops and, if so, to recalibrate
the model for each crop.

The aim of this study was to improve and
generalize AlertInf use by fulfilling three objectives.
Given that the last version of AlertInf included three
weed species (common lambsquarters, johnsongrass,
velvetleaf), the first objective of this study was to
add another two important species for maize in
Italy, barnyardgrass and large crabgrass, by calcu-
lating the biological parameters required by the
model (model extension). In Italy maize and
soybean grow in the late spring and summer, but
maize is traditionally sown about 1 mo before
soybean (in April and in May, respectively). In
addition, as reported by Vina et al. (2011), the two
crops have contrasting canopy architectures (spher-
ical vs. planophile leaf angle distribution) and leaf
structures (monocotyledon vs. dicotyledon). With
these facts taken into consideration, the second
objective of the study was to compare weed
emergence in maize and soybean sown on the same
date between late April and mid-May (comparison
of weed emergence). According to the results of
the comparison experiments, the hypothesis was
advanced that weeds have the same emergence
dynamics in maize and soybean, and consequently
the third objective was to evaluate if AlertInf,
created for weed species in maize, was transferable
to soybean without recalibration, saving time and
money (model validation).

Materials and Methods

Model Extension for Barnyardgrass and Large
Crabgrass in Maize. Field experiments were
conducted from 2005 to 2012 in three localities
in the northeastern Po Valley (northeast Italy): at
Montemerlo (2005), Carbonara (2007 and 2012),
and Legnaro (from 2006 to 2010 and 2012)
(Table 1, extension data set in maize) in different
soil types (Table 2). The sites are less than 50 km
apart and have almost the same subhumid climatic
conditions. Average annual temperature of the area
is 12.2 C, with temperature increases from January
(average minimum: 21.5 C) to July (average
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maximum: 27.2 C). Annual rainfall is about
850 mm and uniformly distributed throughout
the year.

In all the experimental sites, seedbed preparation
was done according to local practices: Primary
tillage consisted of fall moldboard plowing and
spring harrowing. Maize was sown on different
dates from March to May in rows spaced 0.75 m
apart. The crop was irrigated if required to avoid
yield losses (irrigation timing and amounts were
considered in the model).

Weed emergence was monitored in each exper-
iment in 33 fixed sampling areas (0.3 3 0.3 m)
placed at random in the interrows (avoiding passing
tractor wheels) in an area of the field of about

500 m2. Weed seedlings in these areas were counted,
classified, and removed every 4 to 6 d until the end of
the growing season. The emergence data obtained from
each of the 33 areas were summed for each sampling
date and cumulated to obtain the emergence dynamics.

The emergence data were used to estimate the
parameters of the AlertInf equations for barnyard-
grass and large crabgrass. AlertInf simulates emer-
gence dynamics as a function of hydrothermal time
(HT). There are various methods to calculate the
HT. In AlertInf, it is considered that all species
accumulate HT in proportion to soil temperature
only when soil water potential is above a base value.
This base value of water potential increases linearly
as soil temperature rises above the optimum

Table 1. Observed densities (plants m22) of the five species considered by AlertInf in all the experiments, in maize and soybean.

Experiments: data sets, crops, and sites Sowing date ABUTH CHEAL DIGSA ECHCG SORHA

Extension data set in maize

Montemerlo 2005 March 13 – 11.1
Carbonara 2007 March 14 – 17.0
Carbonara 2012 April 26 – 23.3
Legnaro 2006aa April 13 – 52.5
Legnaro 2006b April 13 – 56.6
Legnaro 2007a March 22 127.2 –
Legnaro 2007b May 11 135.4 –
Legnaro 2008 April 28 18.9 –
Legnaro 2009 May 12 7.3 12.0
Legnaro 2010 April 13 21.2 –
Legnaro 2012 May 3 56.0 33.0

Comparison data set in maize and soybean

Albettone 2012, maize April 26 66.7 250.0
Albettone 2012, soybean April 26 61.1 236.1
Carbonara 2012, maize April 26 458.3
Carbonara 2012, soybean April 26 397.2
Pozzoveggiani 2012, maize May 4 13.0
Pozzoveggiani 2012, soybean May 4 11.0

Validation data set in soybean

Carbonara 2012 April 26 397.2
Legnaro 2011 May 5 7.7
Legnaro 2011 May 20 8.0 60.0 73.3
Legnaro 2012 April 19 9.0 15.5 110 75.5 35.0

a a, b 5 two different fields.

Table 2. Main soil characteristics of the experimental sites.

Description Unit Albettone Carbonara Legnaro Montemerlo Pozzoveggiani

Sand % 34 28 16 21 17
Silt % 42 45 65 36 61
Clay % 24 27 19 43 22
Texture (U.S. Department of Agriculture)a Class L CL SL C SL
pH Unit 8 7.61 8.04 7.2 8.06
Organic matter % 2.1 2.0 1.8 2.7 2.5
Cation-exchange capacity mEq/100 g 17.8 20.4 14.8 22.4 14.2

a L 5 loam; C 5 clay, CL 5 clay loam; SL 5 silt loam.
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temperature until it reaches 0 MPa at a temperature
defined as the ceiling temperature. HT is calculated
as a combination of soil temperature and soil water
potential, as follows:

HTi~n �max Tsi{Tb,0ð ÞzHTi{1, ½1�
where Tsi , To: n 5 0 if Ysi # Yb, n 5 1 if Ysi .
Yb; and when Tsi . To: n 5 0 if Ysi # Yb + Kt
(Tsi 2 To), n 5 1 if Ysi . Yb + Kt (Tsi 2 To); Tsi
and Ysi are the average daily soil temperature and
water potential at 5-cm depth, Tb and Yb are the
base temperature and base water potential, To is the
optimum temperature and Kt is the slope of the
relationship between Yb and Tsi in the supraopti-
mal temperature range. Base thresholds of barn-
yardgrass and large crabgrass had been calculated
in previous laboratory experiments (Table 3) (for
details see Masin et al. 2010b). Accumulation of
HT starts from the spring tillage date for seedbed
preparation.

Percentage of seedling emergence (cumulated and
normalized to 100%) (CE) is expressed by a
Gompertz function, as follows:

CEi~100 exp {a exp {bHTið Þ½ �, ½2�
where a is related to an HT lag before emergence
starts, and b is related to the slope of the curve.

The values of To and Kt were estimated by
systematically varying in an iterative fashion until
the best simulations were obtained for barnyardgrass
and large crabgrass. Hydrothermal time was
recalculated for different values of To and at first
with Kt 5 0; Kt was then varied incrementally to
find the combination between the values of Kt and
To giving the least-squares best fit.

The calculation of HT used the daily average
values of soil temperature and soil water potential,
which were monitored in all years at Legnaro.
Temperature was measured with four HOBO mini
loggers (Pendant data logger HOBO UA-001-08,
Onset Computer Corporation, Bourne, MA) buried
5 and 10 cm deep. Soil water potential was
monitored with the use of water moisture probes
(253-L Watermark Soil Matric Potential, Campbell

Scientific Inc., Shepshed, U.K.) buried at a depth of
5 cm and connected to an external data logger
(external data logger HOBO 4-Channel U12-008,
Onset Computer Corporation, Bourne, MA). The
data-logger readings of soil temperature and water
potential were taken every 2 h. In the sites where the
soil microclimate was not directly measured (Mon-
temerlo 2005 and Carbonara 2007), the Soil
Temperature and Moisture model (STM2) (Spokas
et al. 2007) was used to simulate soil temperature
and water potential at a depth of 5 cm (Masin et al.
2012), with the use of daily precipitation and air
temperature recorded by ARPA (Regional Environ-
mental Protection Agency of Veneto) meteorolog-
ical stations located near (less than 5 km) each
experimental site. The STM2 model has already
been effectively used for the simulation of soil
microclimate within the seedling recruitment zone
in experimental sites for the simulation of other
weed species emergence in AlertInf (Masin et al.
2012), moreover Royo-Esnal et al. (2010) and
Spokas and Forcella (2009) have successfully used
this model to predict the soil environment for weed
emergence modeling and other applications.

AlertInf performance in predicting weed emer-
gence was evaluated with an efficiency index (EF)
(Loague and Green 1991), calculated as

EF~
Xn

i~1

Oi{�OOð Þ2{
Xn

i~1

Pi{Oið Þ2
" #,Xn

i~1

Oi{�OOð Þ2, ½3�

where Pi is the predicted value, Oi the observed
value, and the mean of observed values. EF ranges
from 1 to negative value. An EF 5 1 indicates exact
predictions, and EF 5 0 indicates a model of poor
fit where the average value would model the
relationship as well. An efficiency of lower than
zero indicates that the mean value of the observed
values would have been a better predictor than the
model. Nevertheless, Ramanarayanan et al. (1997)
suggested 0.5 as the lower range value for acceptable
model prediction. Parameters of AlertInf for
barnyardgrass and large crabgrass in maize (exten-
sion dataset in maize) are in Table 3.

Table 3. Model creation and AlertInf performance for barnyardgrass and large crabgrass in maize (extension data set in maize):
biological parameters (Tb, To, Yb, and Kt) for the calculation of the hydrothermal time (Tb and Yb estimated by Masin et al. 2010b),
Gompertz coefficients (a and b) for modeling the cumulated emergence, and model efficiency (EF).

Tb To Yb Kt Gompertz coefficient

Species (C) (C) (MPa) (slope) a b EF

DIGSA 10.3 29 20.74 0.10 6.49 0.01 0.96
ECHCG 11.7 26 20.97 0.10 4.17 0.02 0.91
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Comparison of Weed Emergence in Maize
and Soybean. In order to compare weed emergence
under different canopy conditions, emergence
dynamics of the five weed species simulated by
AlertInf were studied in experiments where maize
and soybean were sown in contiguous plots on the
same date in each site (Table 1). The experiments
were conducted in 2012 at Carbonara, Albettone,
and Pozzoveggiani. The three sites are 20 to 30 km
from Padova and have different soil types (Table 2).
The experiments followed the same method as
described above for the model extension in maize.
For soil preparation, conventional tillage was used
on both maize and soybean, consisting of fall
moldboard plowing and spring harrowing. Crops
were sown from late April to mid-May. Maize was
sown with the same interrow as in the experiments
for model extension, whereas soybean was sown in
rows spaced 0.45 m apart. Nitrogen fertilizer was
applied only in maize at rates of 200 kg/ha of urea
nitrogen.

Daily average values of soil temperature and soil
water potential were recorded at a depth of 5 cm
during the crop-growing season. Weed emergence
was monitored with the use of fixed sampling areas
(0.3 3 0.3 m) placed on the soil in the interrow, as
described above. The emergence data obtained from
these three experiments were used to compare the
emergence dynamics of the five species simulated by
AlertInf in maize and in soybean.

Model Validation with Independent Data Set
in Soybean. In order to verify the transferability of
the model from maize to soybean, four experiments
were conducted in Carbonara (2012) and Legnaro
(2011 to 2012) in soybean fields with sowing
dates ranging from April 19 to May 20 (Table 1,
validation data set in soybean). Weed emergence
dynamics of the five weed species simulated by
AlertInf were monitored as previously described for
the other experiments (extension data set and
comparison data set).

The daily average values of soil temperature and
soil water potential were recorded in all the
experiments. To verify if the same biological
parameters (Tb, To, Yb, and Kt) and Gompertz
coefficients (a and b) estimated in maize were usable
in soybean, emergence percentage of the five weed
species for all experiments was simulated with the
use of AlertInf and the predictions were compared
with observations. Overall AlertInf performance was
evaluated with the use of EF and the mean bias error
(MBE) (Willmott 1982). The MBE is related to

magnitude of values under investigation and is an
indication of the average deviation of the predicted
from the observed values. It is calculated as

MBE~ 1=Nð Þ
XN

i~1

Pi{Oið Þ, ½4�

where N is the number of observations. When the
model, on average, underestimates the observed
values, MBE is negative; otherwise, it is positive
(Wallach 2006).

For a detailed predicted vs. observed analysis,
linear regression and correlation analyses (Pearson’s
r and Spearman correlation) were performed
(StatSoft Inc. 2011) and a graphical comparison
was also used to identify general agreement and
trends.

Results and Discussion

Model Extension for Barnyardgrass and Large
Crabgrass in Maize. The densities of barnyardgrass
and large crabgrass in the sites used for the
emergence model extension were very different
among experiments (Table 1, extension data set).
Large crabgrass density ranged from 7.3 plants m22

in Legnaro 2009 to 135.4 plants m22 in Legnaro
2007b, whereas the highest density observed for
barnyardgrass was 56.6 plants m22. These data were
used to estimate the optimal temperature for emer-
gence of the two species. The optimal temperatures
resulted as 26 and 29 C for barnyardgrass and large
crabgrass, respectively (Table 3). Barnyardgrass
seeds germinate over a wide range of temperatures,
and many different optimal temperatures have been
reported for this species in the literature: A range
between 20 and 30 C was reported by Rahman and
Ungar (1990) and Shipley and Parent (1991), in
agreement with the result of the present study,
whereas Manidool (1992) reported a higher opti-
mum germination temperature range of 32 to 37 C.
The value estimated for large crabgrass was in
agreement with that reported by Zhang et al.
(2012), who observed the best germination perfor-
mance between 25 and 30 C. The model adequately
described the cumulated emergence in the experi-
ments used for its extension as shown by the high
EF values of the simulation (0.91 and 0.96 for
barnyardgrass and large crabgrass, respectively)
(Table 3).

Comparison of Weed Emergence in Maize
and Soybean. The densities of velvetleaf in the
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comparison experiments was unfortunately too low
in all sites to compare the emergence dynamics in
maize and soybean. Therefore, only the results for
barnyardgrass (in Albettone), large crabgrass (in
Albettone), common lambsquarters (in Pozzoveg-
giani), and johnsongrass (in Carbonara) can be used
for comparison (Table 1, comparison data set in
maize and soybean). Results show that the observed
emergence dynamics of these four weeds in maize
and soybean are very similar (Figure 1) and not
affected by the crop canopy differences when the
two crops were sown on the same date and standard
cultural practices followed. This supported the
hypothesis that AlertInf could be directly used to
simulate weed emergence in soybean without
recalibration.

Model Validation with Independent Data Set
in Soybean. The simulations of emergence of the
five species in soybean performed with the use of
AlertInf developed in maize (validation data set)
were in general accurate, with EF index ranging
from 0.93 to 0.99 for the single experiments and
observed vs. predicted correlations always highly
significant (Table 4, Figure 2). Even if velvetleaf
was not found in the maize-soybean comparison
experiments (see comparison data set in Table 1), it
is interesting to see that the simulation of this
species was satisfactory, as shown by the high EF
values (from 0.95 to 0.98). From the graphs
(Figure 3), it can be observed that the real
emergence of velvetleaf in Legnaro in the 2011

second sowing date started 8 to 9 d later than the
simulated emergence. This inaccuracy was observed
for all other weed species in this site and year, i.e.,
barnyardgrass and large crabgrass. It seems that
weeds have suffered a soil water potential below the
threshold for germination, whereas that recorded by
the moisture probes was higher, which was likely
not representative of the soil water potential of
the sampled areas. This could be explained by
the necessity to wet the soil when the probes
are installed (instruction manual of 253-L Soil
Matric Potential Sensors, http://s.campbellsci.com/
documents/ca/manuals/253_257_man.pdf). The conse-
quence was that in the days soon after the soil
preparation for sowing an incorrect measure of the soil
water potential was recorded.

AlertInf simulation of johnsongrass emergence in
soybean was very satisfactory (EF of 0.99) in
Legnaro 2012, whereas in Carbonara 2012 the
model underestimated the beginning of emergence
and overestimated the emergence by over 50%. In
particular, it seemed that the real emergence pattern
was slower with a lower slope. Nevertheless,
following the model simulation, the percentage of
emergence is estimated only some days in advance,
with a maximum of 4 d earlier on May 24, it cannot
be considered a relevant error for the practical use of
the information provided by the model. Further-
more, it is interesting to note that this inaccurate
estimation cannot be imputed to application in
soybean of a model developed in maize, because the
pattern of weed emergence in maize in Carbonara

Figure 1. Observed cumulated weed emergence for four weed species in maize (triangles) and soybean (black circles) sown on the
same date in each site: Pozzoveggiani May 4 (common lambsquarters), Albettone April 26 (large crabgrass and barnyardgrass),
Carbonara April 26 (johnsongrass) (comparison data set).
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2012 was very similar to that in soybean, with
observations almost overlapped (Figure 3, fourth
graph).

The most relevant errors (more than 5 d shift)
were in the simulation of common lambsquarters
and large crabgrass in Legnaro 2012. For common
lambsquarters, AlertInf estimated a cumulated
emergence of 68% 6 d before the real emergence
accumulation. This error could be relevant from a

practical point of view, because it could lead to a
too-early timing for POST control and consequent-
ly a consistent part of weed seedlings would emerge
later and escape the treatment.

For large crabgrass, AlertInf estimated a cumu-
lated emergence of 80% 9 d after the real emergence
accumulation, which at that time actually reached
more than 90% of total emergence. However, even
if the error is bigger than that of common

Table 4. AlertInf performance for the validation data set in soybean for the five weed species: model efficiency (EF), mean bias error
(MBE), Pearson’s r, and Spearman rank order correlation of the observed and predicted cumulated emergence.

Experiment Statistic ABUTH DIGSA CHEAL ECHCG SORHA

Carbonara 2012 No. of paired data 11
EF 0.97
MBE 1.02
Pearson’s r 0.99
Spearman correlation 0.99

Legnaro 2011 No. of paired data 15
First sowing EF 0.95

MBE 1.50
Pearson’s r 0.98
Spearman correlation 0.77

Legnaro 2011 No. of paired data 13 13 13
Second sowing EF 0.97 0.98 0.93

MBE 1.20 21.10 22.13
Pearson’s r 0.98 0.99 0.97
Spearman correlation 0.81 0.95 0.98

Legnaro 2012 No. of paired data 11 17 17 17 17
EF 0.98 0.97 0.96 0.99 0.99
MBE 22.88 23.02 3.09 1.61 1.35
Pearson’s r 0.99 0.98 0.98 0.99 0.99
Spearman correlation 0.86 0.98 0.89 0.98 0.89

All experiments No. of paired data 39 30 17 30 28
EF 0.97 0.97 0.96 0.96 0.98
MBE 0.17 21.90 3.09 20.01 1.22
Pearsons r 0.98 0.98 0.98 0.98 0.99
Spearman correlation 0.80 0.95 0.89 0.91 0.94

All experiments No. of paired data 144
and weeds EF 0.97

MBE 0.06
Pearson’s r 0.98
Spearman correlation 0.89

a All Pearson’s r and Spearman correlations are significant (P , 0.01).

Figure 2. Predicted vs. observed weed cumulated emergence (%) for the five weed species in soybean performed with the use of
AlertInf developed in maize (validation data set). Linear regression line and 95% confidence bands are indicated.
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lambsquarters, it is less important from a practical
point of view. In fact when the estimation error is
at high percentage of emergence (i.e., late in the
season) it should not affect the timing of weed
control suggested by the model, which is supposed

to be done when emergence percentage is around
70% (Otto et al. 2009).

In conclusion, even if simulations were not
completely accurate, emergence prediction made
by AlertInf for all five species was satisfactory in all

Figure 3. Cumulated weed emergence estimated with the use of AlertInf developed in maize (solid line) and emergence observations
(black circles) in soybean of the five weed species in the four experiments conducted in 2011 to 2012 (validation data set).
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sites considered for the validation and, except for
just two cases, acceptable also for practical purposes.
This means that, even in crops such as maize and
soybean, with contrasting leaf structure and canopy
architecture, and different agronomic practices, the
algorithm for weed emergence estimation used by
AlertInf did not require recalibration of parameters,
at least for crops grown in Veneto with standard
cultural practices. These findings are very impor-
tant, considering that recalibration of AlertInf to
simulate weed emergence dynamics in soybean
would require many field experiments, in different
years and localities, for each weed species. Similar
results were reported by Nyamusamba et al. (2008),
who conducted experiments with an analogous
purpose to this study. They found that the time
required for common lambsquarters (as well as for
redroot pigweed [Amaranthus retroflexus L.] and
green foxtail [Setaria viridis (L.) Beauv.]) to reach
50% and 90% of emergence was comparable among
crop species (including maize and soybean), and
concluded that the same hydrothermal coefficients
were adequate to predict weed emergence in several
crops.

The recalibration from maize to soybean is likely
not necessary because most weed species complete
emergence before the different crop canopy charac-
teristics can influence the interrow microclimate
enough to change the processes of soil heating and
water transfer in the seedling recruitment zone. This
encourages further development of AlertInf and
further studies to test its transferability to other
climates and crops [e.g., sunflower (Helianthus
annuus L.) or sugar beet (Beta vulgaris L.)].
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