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In Taylor–Couette systems, waves, e.g. spirals and wavy vortex flow, typically rotate
in the same direction as the azimuthal mean flow of the basic flow which is mainly
determined by the rotation of the inner cylinder. In a combined experimental and
numerical study we analysed a rotating wave of a one-vortex state in small-aspect-
ratio Taylor–Couette flow which propagates either progradely or retrogradely in the
inertial (laboratory) frame, i.e. in the same or opposite direction as the inner cylinder.
The direction reversal from prograde to retrograde can occur at a distinct parameter
value where the propagation speed vanishes. Owing to small imperfections of the
rotational invariance, the curves of vanishing rotation speed can broaden to ribbons
caused by coupling between the end plates and the rotating wave. The bifurcation
event underlying the direction reversal is of higher codimension and is unfolded
experimentally by three control parameters, i.e. the Reynolds number, the aspect
ratio, and the rotation rate of the end plates.

1. Introduction
Rotating waves are a generic flow state that appears in many rotating fluid flow

systems, such as in rotating shear flows and rotating convection (see e.g. Swinney &
Gollub 1981; Mullin 1994; Egbers & Pfister 2000), with widespread relevance to
applications, e.g. in atmospheric flows (Gill 1982). Often, rotating waves appear from
a hydrodynamic instability of rotationally invariant basic flow, i.e. the flow undergoes
a Hopf bifurcation breaking the SO(2) symmetry. Owing to the rotational invariance
of the underlying fluid dynamical system, rotating waves appear steady in a certain
co-rotating frame and are thus also referred to as ‘relative equilibria’, as discussed,
e.g. in Golubitsky, Stewart & Schaeffer (1988).

In flows with an additional reflection symmetry, e.g. the van Kármán flow
between exactly counter-rotating disks (Nore, Tuckerman, Daube & Xin 2003), the
resulting O(2) symmetry gives rise to two oppositely rotating waves to appear from
a symmetry-breaking Hopf bifurcation (Golubitsky et al. 1988). An additionally
imposed (rotational) mean flow breaks the reflection symmetry and the appearance of
the prograde rotating wave is enhanced; but the retrograde wave also results naturally
from a Hopf bifurcation with broken O(2) symmetry (van Gils & Mallet-Paret 1986;
Crawford & Knobloch 1988; Knobloch 1996; see also Abshagen et al. 2007 for the
case of propagating instead of rotating waves).

Many rotating flows have only SO(2) instead of broken O(2) symmetry and thus, a
Hopf bifurcation breaking rotational invariance leads only to a single rotating wave.
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Such states arise from cylindrical flows between rotating disks (Serre, Crespo del
Arco & Bontoux 2001; Marques, Lopez & Shen 2002; and Moisy et al. 2004) or
rotating spheres (Marcus & Tuckerman 1987) (see also Egbers & Pfister 2000). One
of the most famous rotating waves in a shear flow is the so-called wavy vortex flow,
that occurs in the viscous fluid in the gap between two concentric rotating cylinders,
i.e. in the Taylor–Couette system (Coles 1965; Mullin & Benjamin 1980; Jones 1981;
Ahlers, Cannell & Dominguez Lerma 1983; Marcus 1984; Mullin 1985; Nagata 1988;
Edwards, Beane & Varme 1991). Other types of rotating waves in this flow system,
differing in azimuthal wave speed and number as well as in axial symmetry, such
as axially sub-harmonic modes, are found by Jones (1985) and Iooss (1985). These
modes have been investigated in detail (e.g. DiPrima & Swinney 1981; Andereck,
Lui & Swinney 1986; Gerdts et al. 1994; Egbers & Pfister 2000).

Common to all types of rotating waves found so far in Taylor–Couette flow is that
they propagate in the prograde direction in the inertial (laboratory) frame, but in the
retrograde direction in the frame rotating with the inner cylinder. Retrograde waves in
the rotating frame appear also among others in rotating convection (Zhong, Ecke &
Steinberg 1991; Goldstein et al. 1993; Marques et al. 2007) and in atmospheric flow
where large planetary waves can propagate westwards in the mid latitudes while the
mean flow is eastwards (Gill 1982). However, these examples of retrograde waves are
all rotating progradely in the inertial frame.

In small-aspect-ratio Taylor–Couette flow, Pfister, Schulz & Lensch (1991)
discovered experimentally a rotating-wave regime that is separated by a finite control
parameter interval of zero oscillation frequency. Marques & Lopez (2006) have
confirmed numerically the experimental results from Pfister et al. (1991) for a single
aspect ratio including the azimuthal wavenumber m = 2 and a slightly subcritical
Hopf bifurcation.

In our experimental study, we expand the control parameter space by an additional
control parameter, namely the rotation frequency of the end plates, and additionally
performed numerical simulations of the Navier–Stokes equations in order to show
that the rotating wave undergoes a direction reversal between prograde and retrograde
propagation in the inertial (laboratory) frame, which is organized by a bifurcation of
higher codimension. In particular, a strong influence of (unavoidable) experimental
imperfections of the rotational invariance on this bifurcation in some parameter
regimes seems to be responsible for the appearance of finite intervals (ribbons) with
zero frequency.

2. Experimental set-up and numerical methods
The measurements were performed in two different Taylor–Couette set-ups – both

with a rotating inner and a non-rotating outer cylinder. The inner cylinder is machined
from stainless steel having a radius of ri = (12.50 ± 0.01) mm, while the outer one is
made from optically polished glass with a radius of ro = (25.00 ± 0.01) mm. At top
and bottom, the fluid is confined by end plates which can rotate synchronously
and independently from the inner cylinder with a frequency fend in one of the two
apparatuses. The tilt of each rotating end plate is better that 0.03 mm at the outer
diameter. In the other set-up, the end plates are held fixed in the laboratory frame.
The distance between these plates defines the axial height L of the flow and is
adjustable within an accuracy of 0.01 mm up to a maximal height of 300.00 mm. In
order to investigate the influence of the above mentioned imperfections systematically,
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Figure 1. Snapshot of the velocity field over the (r, z)-plane depicting oscillatory single-cell
flow at Γ = 1.25 and fend = 0 from (a) numerical simulation (contours represent vϕ = const)
for Rei = 1190 and (b) photograph of a laser light sheet for Rei = 1200.

an additional well-defined tilt of the upper end plate can be applied in the set-up
with non-rotating end plates.

Geometric parameters of the Taylor–Couette flow are the aspect ratio Γ = L/d ,
with the gap width d = ro − ri , and the radius ratio η = ri/ro which is held fixed at
η = 0.5 for all measurements. Within the gap between the two concentric cylinders,
silicone oil with two different kinematic viscosities ν = (5.7±0.1) cS and (ν = 10.9±0.1)
cS is used as the working fluid. The inner cylinder Reynolds number Rei = 2πfirid/ν

with fi denoting the rotation frequency of the inner cylinder, serves as one control
parameter. The rotation frequency of the end plates fend (given in units of diffusion
time τ = d2/ν) serves as a further control parameter. With a PLL-control, an accuracy
of �f/f = 10−4 in the short-term and �f/f = 10−7 in the long-term average is
achieved for the rotating frequency of both the inner cylinder and the end plates.
We use laser-Doppler velocimetry (LDV) for contact-free measurements of the axial
component of the local flow velocity.

The flow is described by the Navier–Stokes equations for incompressible fluids.
Using cylindrical coordinates, we decompose the velocity field u = vr er + vϕ eϕ + vz ez

into a radial component vr , an azimuthal one vϕ , and an axial one vz. For numerical
calculations, we used a combined Galerkin and finite-differences code in the axial
and the radial direction considering homogeneous grids with discretization lengths
�r = �z = 0.025d which have been shown to be more accurate than non-homogeneous
grids. In the azimuthal direction, eight Fourier modes are used. At the axial end plates,
finite boundary conditions were imposed by rigid rotating lids. Staggered grids are
chosen in order to avoid discontinuities in the corners and to minimize phase errors.
Time steps are �t < 1/70000τ , where τ = d2/ν is the diffusion time (see Hoffmann,
Lücke & Pinter 2005 for further details).

3. Results
A snapshot of the velocity field in the (r, z)-plane taken from a time-periodic single

cell flow is depicted in figure 1. Both the numerically calculated flow field (figure 1a)
and a photograph from a laser light sheet (figure 1b) display a large vortex with an
outward directed flow close to the lower and an inward directed one close to the upper
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Figure 2. Numerically calculated radial velocity field vr (greycode: inflow = black, outflow =
white) on a cylindrical surface with r = ri + 0.25d Rei = 800 and fend = −4 for (a) Γ = 1.10
and (b) Γ = 1.15. The white arrows indicate the propagation direction of the whole structure.

end plate. Thus, the flow is directed downwards in the vicinity of the inner cylinder.
Here, a smaller, counter-rotating vortex can be seen in figure 1 near the mid-height of
the system. The structure rotates as a whole, e.g. showing a time-periodic cycle when
viewed from a ϕ = const plane: the small vortex first moves downwards from top to
bottom, then seems to disappear close to the lower lid, and reappears close to the
upper end. The apparent axial propagation of the small vortex in a ϕ = const plane
results from the three-dimensional flow structure which has the form of a rotating
wave with azimuthal wavenumber m = 2 (Pfister et al. 1991; Marques & Lopez 2006)
and is also confirmed in our numerical simulations. Note, that a similar time-periodic
one-cell state exists for comparable control parameter values on the other asymmetric
branch (Pfister et al. 1991).

Visualizations of the time-periodic one-cell flow in another parameter regime
(Rei = 800 and fend = −4) for two different aspect ratios are given in figure 2. Each
plot represents the numerically calculated, radial velocity field vr on a (z, ϕ)-cylinder
surface at r = ri + 0.25d .

The structures of both flow states presented in figure 2 are almost identical, though
they differ in Γ . The rotating wave is anharmonic, particularly close to the inner
cylinder which gives rise to the apparent propagation of the small vortex in the
ϕ = const plane, as described above and shown in figure 1. The two flow states
depicted in figure 2 differ in their propagation velocity and propagation direction.
The rotating wave at Γ = 1.10 propagates retrogradely as indicated by the white
arrow in figure 2(a). At larger Γ , the direction reverses and the wave propagates
progradely. This behaviour is shown for Γ = 1.15 in figure 2(b). The propagation
velocity of the rotating wave depends continuously on the aspect ratio, and direction
reversal occurs at a distinct Γ with almost no change in the flow structure.

The process of direction reversal in an experimental system can be seen in the
stability diagram (figure 3a) of a single-cell flow. In this diagram, the Reynolds number
is held fixed at Rei = 800 and Γ is plotted versus |fend|, whereas the end plates rotate in
the opposite direction as the inner cylinder. The fundamental frequency f = mc/(2π),
with the wavenumber m and the angular velocity c of a rotating wave, reflects the
dynamics in the laboratory frame. Note, that c can be either positive or negative and
this also holds for the fundamental frequency. Throughout this paper, frequencies are
always scaled by the diffusion time τ = d2/ν.

For Γ � 1.125, we observe that by increasing |fend|, the steady single-cell flow
undergoes a supercritical Hopf bifurcation at |fend| ≈ 3 (solid line in figure 3a) towards
a rotating wave, such as the one displayed in figure 2(b). The positive frequency (f > 0)
of the rotating wave above the Hopf bifurcation threshold in figure 3(a) indicates a
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Figure 3. (a) Experimental stability diagram of single-cell flow at Rei = 800: super- (f > 0)
and subcritical (f < 0) Hopf bifurcation (solid curve) to rotating wave, disappearance
of rotating wave from finite-amplitude (dashed curve), f = 0 curve (dash-dotted curve),
(b) oscillation frequency (�) of rotating wave at onset (f > 0) and decay from finite-amplitude
(f < 0) (dashed curve), linear fit within the f > 0 regime (solid curve).

prograde propagation. For Γ � 1.12, we found a retrograde propagation, such as the
one displayed in figure 2(a) emerging out of the steady single-cell flow as |fend| is
increased beyond a critical value (solid line in figure 3a). This is indicated by f < 0.
In this regime, a time-dependent flow occurs via a subcritical Hopf bifurcation. The
rotating wave appears with finite-amplitude above the solid line and disappears from
finite-amplitude below the dashed line at the critical |fend|. The region of hysteresis
becomes larger for smaller aspect ratios.

The frequency close to the Hopf bifurcation onset is shown in figure 3(b) as a
function of the aspect ratio Γ . In the supercritical regime (Γ � 1.125), the frequency
is measured at the onset of the rotating wave whereas in the subcritical regime
(Γ � 1.12), the frequency of a finite-amplitude rotating wave is determined at the
lowest border of hysteresis. We found an almost linear dependence in the supercritical
regime (solid line). The value of aspect ratio where the frequency changes its sign from
positive to negative is determined by a linear fit. Note that the negative frequencies
in the subcritical regime refer to finite-amplitude rotating waves.

The dash-dotted line in figure 3(a) separates regions of different signs in the
frequency, i.e. different propagation directions. This curve merges with the bifurcation
curve within the interval 1.12 <Γ < 1.125, i.e. between the experimentally determined
borders of sub- and supercritical Hopf bifurcation regime.

In order to understand a symmetry-breaking bifurcation in a fluid flow, it is
necessary to study the role of symmetry-breaking imperfections. Here, the rotational
invariance, i.e. SO(2), of the system is broken via a Hopf bifurcation. Small and
unavoidable imperfections of the rotational invariance are always present in an
experimental realization of Taylor–Couette flow and can have a strong effect on the
dynamics of the flow.
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Figure 4. Reynolds number scan for Γ = 1.25 and fend = 0 with (a) a 0◦ and (b) a 0.08◦

additional tilt of the upper end plate. A movie of a simulation of direction reversal of the
rotating wave in the absence of azimuthal imperfections in available with the online version
of the paper.

The time series depicted in figure 4 are recorded at Γ = 1.25 and fend = 0 while
the Reynolds number is increased quasi-statically from Rei = 1170.0 to Rei = 1320.0
within approx. 10 h (approx. 2400 diffusion times). This measurement technique
of Reynolds-number scans allows us to distinguish between time-dependent and
stationary regimes which appear in the scan as oscillations and noisy curves,
respectively. It can be seen in figure 4(a) that within the interval 1190.0 < Rei < 1290.0,
i.e. �Rei = 100, the oscillation disappears and the flow becomes stationary.

We have also performed experiments with an additional (small) tilt of the upper
end plate. A very small tilt angle of 0.08◦ results, for example, in a shift of the
interval of about �Rei = 15 and an enlargement of about �Rei = 10. Larger tilt
angles are found to have a much stronger effect, but even very small imperfections
of the rotational invariance produce a significant effect on the location and the size
of the interval. Measurements of the zero frequency interval in different apparatuses
with a comparable accuracy show significant differences in the width of this interval
for the same aspect ratio. This provides further evidence for the sensitivity of the
effect on small imperfections. Note that the additional (very small) breaking of the
reflection symmetry is unlikely to be the cause for such a significant effect owing to
the strong asymmetric nature of the single-cell flow.

In figure 4, two Reynolds-number scans for Γ = 1.25 and fend = 0, showing the
interval of stationary flow are depicted. A similar sequence is shown in figure 5(a)
measured for Γ = 1.16 also for the case of non-rotating end plates. The corres-
ponding experimentally and numerically obtained oscillation frequencies are given
in figure 5(c). The steady single-cell flow undergoes a supercritical Hopf bifurcation
to a prograde rotating wave. This is indicated by the appearance of a broad black
band in the scan which contains oscillations, such as those in figure 4, but these
oscillations are not resolved on this scale. Increasing Rei results in a decrease of
the oscillation frequency which tends to zero at the lower border of the interval and
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Figure 5. Reynolds-number scan at Γ = 1.16 for (a) stationary and (b) slowly rotating end
plates (fend = 0.3). The corresponding oscillation frequencies of these experimental scans are
plotted in (c) and (d) (◦). The numerically determined values are additionally depicted as a
solid line in (c) and for the case of slowly rotating end plates, the rotation frequency of the
end plates is indicated as a dashed line in (d).

decreases further beyond the upper border towards more and more negative values.
Within this interval, the frequency vanishes and the rotating wave is stationary.
These experimental observations (◦) differ from the numerically obtained frequencies
(solid line) where the frequency varies smoothly with the control parameter showing
a distinct zero inside the experimentally determined band. Note that the numerically
determined critical points of the rotating wave Rei,c are scaled to fit the difference
(approx. 2%) between the numerical and experimental onsets.

The results depicted in the figures 4 and 5 (a, c) suggest that experimental imper-
fections are important in the case of non-rotating end plates which are absent in
the numerical simulations. More evidence for the influence of these imperfections
is provided by measurements with slowly rotating end plates. A Reynolds-number
scan for the same aspect ratio but with very slowly rotating end plates (fend = 0.1) is
depicted in figure 5(b). A small shift in Rei for the onset of rotating waves can be seen
and the Rei-interval of zero frequency has disappeared. Furthermore, the black band
within the scan appears more inhomogeneous than in figure 5(a) and the frequency
of the end plates is clearly visible as a modulation of the scan, even below onset.

The corresponding frequencies are depicted in figure 5(d). A similar behaviour
can be found in these experiments compared to figure 5(c) but with one qualitative
difference: the plateau appears not at zero frequency, as for non-rotating end plates,
but exactly at the frequency of the end plates (indicated by a horizontal dashed line in
figure 5d). This observation leads to the conclusion that the rotating wave is coupled
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Figure 6. (a) Experimental stability diagram of the single-cell flow with stationary end plates.
(b) Oscillation frequencies of rotating wave (◦) at onset (f � 0) and at lower stability border
of the hysteresis (f < 0). Linear fit (solid line) close to the point of direction reversal. Dashed
lines are added to guide the eyes.

to the imperfect end plates. Note that owing to the azimuthal wavenumber m = 2, the
rotation rates of the wave and the end plates differ by a factor of two.

The influence of imperfections on the bifurcation structure can be seen from
the stability diagram of the one-cell flow with non-rotating end plates (figure 6a).
For Γ > 1.15, the steady single-cell flow undergoes a supercritical Hopf bifurcation at
about Rei ≈ 900 (solid line) towards the prograde rotating wave (f > 0). For Γ < 1.09,
the retrograde propagating wave (f < 0) appears above a critical Reynolds number
(solid line) but with hysteresis, i.e. from a subcritical Hopf bifurcation. This part of
the bifurcation behaviour is qualitatively similar to that shown in figure 3(a); but
here the prograde and the retrograde regimes are separated by a finite interval of
zero frequency instead of a single curve in the (Rei, Γ )-plane. The results shown
in figure 5 suggest that the rotating wave does not disappear within this band,
but remains stationary in the laboratory frame. In the vicinity of direction reversal
(1.09 � Γ � 1.15), the rotating wave is found to appear supercritically in the flow as
indicated by the lower line bounding the f = 0-interval in figure 6(a). This behaviour
can also be seen from the dependence of frequency at the onset (or decay from
finite-amplitude) on the aspect ratio in figure 6(b).

4. Conclusions
We found that a wave can change its direction of rotating from prograde to

retrograde in the inertial frame. This is in contrast to other types of rotating waves in
Taylor–Couette flow, such as the classical wavy vortex flow, which always propagate
progradely in the inertial frame. The frequency of this rotating wave is found to
depend continuously on the control parameters (Re, Γ, fend ) and the reversal of
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direction occurs at a distinct point (if only one parameter is varied and the other two
are kept fixed) without almost any change in the flow structure. This behaviour is
studied experimentally and confirmed by numerical three-dimensional Navier–Stokes
simulations. At onset, the point of direction reversal is accompanied with a change
of the Hopf bifurcation from super- to subcritical. Such changes have been referred
to as a generalized Hopf bifurcation (Guckenheimer & Holmes 1983) or a tricritical
phenomena (Aitta, Ahlers & Cannell 1985).

We found that small imperfections of the rotational invariance have a crucial
influence on this bifurcation. Phase locking between the rotating wave and imperfect
rotating and non-rotating end plates within a finite interval in the control parameter
space can occur for comparable frequencies. Since symmetry-breaking imperfections
are an integral part of the description of a bifurcation event, a third control parameter
is required in order to unfold the bifurcation structure underlying direction reversal.

Though in principle, a rotating wave can always be considered as steady flow in a
certain co-rotating frame, the reversal of direction in the inertial (laboratory) frame
is organized in a bifurcation of higher codimension.

This provides an explanation for the zero frequency interval within a rotating wave
regime in small-aspect-ratio Taylor–Couette flow. Our results therefore highlight the
crucial role of symmetry-breaking imperfections as an integral part of a complete
description of bifurcation in fluid dynamics.

We acknowledge support from the Deutsche Forschungsgemeinschaft.
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