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The interaction of skewed vortex pairs: a model
for blow-up of the Navier–Stokes equations
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20 Clarkson Road, Cambridge CB3 0EH, UK

(Received 24 February 1999 and in revised form 30 October 1999)

The interaction of two propagating vortex pairs is considered, each pair being initially
aligned along the positive principal axis of strain associated with the other. As a
preliminary, the action of accelerating strain on a Burgers vortex is considered and the
conditions for a finite-time singularity (or ‘blow-up’) are determined. The asymptotic
high Reynolds number behaviour of such a vortex under non-axisymmetric strain,
and the corresponding behaviour of a vortex pair, are described. This leads naturally
to consideration of the interaction of the two vortex pairs, and identifies a mechanism
by which blow-up may occur through self-similar evolution in an interaction zone
where scale decreases in proportion to (t∗ − t)1/2, where t∗ is the singularity time. The
relevance of Leray scaling in this interaction zone is discussed.

1. Introduction
This paper contributes to the continuing debate concerning the possibility of ‘blow-

up’ of solutions of the Euler and/or Navier–Stokes equations, i.e. the development
of a singularity of vorticity at finite time, starting from smooth initial conditions.
This problem, relating as it does to the regularity of solutions of these equations, is
of fundamental importance for fluid dynamics. It assumes particular prominence in
the context of turbulence, for if the development of a singularity at finite time is a
generic feature of any fully three-dimensional time-dependent flow, then the spatial
structure of this singularity may be expected to have an important bearing on, if not
to govern, the well-known intermittency of turbulent flow.

The problem of blow-up was first identified by Leray (1934), who recognised
the important possibility of self-similar collapse towards a singularity at time t∗
say, with all length scales decreasing in proportion to (t∗ − t)1/2, and velocity in
the neighbourhood of the singular point increasing like (t∗ − t)−1/2. Leray however
admitted his inability to make progress in establishing the existence of any solution of
the reduced Navier–Stokes equation (or ‘Leray’ equation) having finite total energy.
We shall in this paper encounter the same equation (see § 7), but all the arguments
that precede this will suggest that what we should look for is a solution of the
Leray equation valid in an inner region and matching in an appropriate way to
a non-singular solution of the Navier–Stokes equation in an outer region. It is
interesting to note that recent numerical work involving the interaction of vortices in
various configurations provides accumulating evidence for the validity of the Leray
scaling. This is particularly clear in the recent important paper of Pelz (1997) who
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52 H. K. Moffatt

considers the implosion of six vortex pairs in a configuration with cubic symmetry.
The numerical scheme, employing a vortex filament model, is relevant primarily to
the Euler equations (as in previous investigations of Pumir & Siggia 1990; Kerr
1993; Boratav & Pelz 1994; and others). Evidence for the Leray scaling appears quite
compelling in this study. The associated vorticity field ω(x, t) scales like (t∗ − t)−1

near the point of singularity, a behaviour that is compatible with the theorem of
Beale, Kato & Majda (1984) which states that if a singularity of the Euler equations
occurs, then the time-integral of the maximum of |ω| diverges as t ↑ t∗. Conservation
of circulation implies that any vortex core radius decreases to zero like (t∗ − t)1/2, a
behaviour associated with an axial strain that scales like (t∗ − t)−1 (like the vorticity).

A singularity of vorticity can be best visualized as the result of vortex stretching
in which the applied rate of strain γ keeps in step (in some mysterious way) with the
maximum vorticity ωm; in simple terms, we then have

dωm
dt

= γωm, γ = Aωm, (1.1)

where A is a positive constant. This integrates simply to give

ωm(t) =
1

A(t∗ − t) (1.2)

where

t∗ = (Aωm(0))−1. (1.3)

The key question here however is precisely how it is that γ can keep in step with
ωm. If we think in terms of a Burgers-type stretched vortex, then the strain rate γ is
produced by other vortices in the turbulent flow and is presumably determined by
their circulations and their geometrical distribution relative to the stretched vortex
on which we focus. The circulations are constant in Euler flow (and, if anything,
decreasing through viscous reconnection processes in Navier–Stokes flow); so it is to
the changing geometrical structure that we must look in order to identify the required
mechanism.

We start this investigation by revisiting (in § 2) the Burgers vortex, but allowing the
applied strain field γ(t) to increase in step with ωm in the manner indicated in (1.1). It
is perhaps obvious that, if the fluid is inviscid, then the vorticity will become singular
(cf. (1.2)) at finite time t∗; but, what is perhaps less obvious, we find that viscosity
cannot prevent the blow-up process, despite the decreasing length scale (to zero) of
the vortex core, provided merely that the initial conditions are such that γ(0) exceeds
a critical value γs equal to the strain rate required to maintain a steady Burgers vortex
at the initial core radius δ0.

The treatment of § 2 involves an axisymmetric strain field, for which the solution of
the Navier–Stokes equation is exact. The main model of vortex interaction developed
in § 6 of the paper requires a modification of this solution in which the strain field is
locally two-dimensional rather than axisymmetric, with positive axis of strain aligned
along the vortex. An exact solution of the Navier–Stokes equation is no longer
available in this situation; however a high Reynolds number asymptotic solution may
be obtained by the technique of Moffatt, Kida & Ohkitani (1994, hereafter referred
to as MKO’94). This is obtained in § 3, and in § 4 we discuss the remarkable fact
that the solution applies equally to a strained vortex pair (and indeed to any other
distribution of vortices), under circumstances in which the ratio of core size to vortex
separation either tends to zero or remains constant as t→ t∗. In § 5, we describe, as a
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The interaction of skewed vortex pairs 53

necessary preliminary to § 6, the structure of the strain field associated with a vortex
pair ±Γ located instantaneously at (0,±b0). This is an elementary calculation, which
nevertheless presents some interesting features.

The model developed in § 6 builds on the insights developed in the preceding
sections. We consider the problem of two vortex pairs, one aligned with the z-axis,
the other with the y-axis, and propagating towards each other in the ±x-directions
(see figure 2a). Here, ‘vortex pair’ can mean either a well-separated pair of vortices
of strengths ±Γ with diffusing vortex cores; or it may mean any other nearly
inviscid two-dimensional vorticity distribution of initial (and subsequently conserved)
momentum 2Γb0 per unit length. In either case, it is clear that a strong interaction
must develop between the vortex pairs as they approach the plane of (skew) symmetry
x = 0. Each vortex pair is initially aligned along the principal axis of positive rate
of strain induced by the other pair; hence conditions are propitious for the mutual
intensification of vorticity at a rate which increases because the minimum separation
of the vortex pairs decreases. If a self-similar evolution is established in the interaction
zone, in which all length scales decrease in proportion to this minimum separation,
then the analysis of the ‘singularly stretched’ vortex pairs developed in the previous
sections is applicable, indicating the manner in which a singularity of vorticity may
appear at x = 0 at finite time t = t∗. The key question that remains is: is the
assumption of self-similarity in some inner interaction zone valid? This brings us
back (in § 7 and § 8) to the Leray (1934) transformation which, applied to vorticity,
takes the form

ω(x, t) =
1

t∗ − tΩ(X ), (1.4)

where

X = x/(Γ (t∗ − t))1/2, (1.5)

and where Γ is some measure of (conserved) circulation. This type of solution of
the Navier–Stokes equation, if it exists, can be valid only in an inner region where
|X | = O(1), and must match to an outer non-singular solution (e.g. that describing
the vortex pairs of § 6) as |X | → ∞. The description is entirely compatible with the
model of Pelz (1997), and suggests moreover that if a singularity of the above type
forms under Euler evolution, then this type of blow-up will not be prevented by the
inclusion of weak viscosity.

2. A singularly stretched vortex
Consider first the following simple modification of the familiar stretched Burger’s

vortex, illustrating one possible mechanism through which a singularity of vorticity
may appear within a finite time. Using cylindrical polar coordinates (r, θ, z), suppose
that the unsteady axisymmetric strain field

U = (− 1
2
γ(t)r, 0, γ(t)z), (2.1)

with γ(t) > 0, acts upon a vorticity distribution aligned with the z-axis,

ω = (0, 0, ω(r, t)). (2.2)

Such a (uniform) strain field of course has infinite energy; we must regard this merely
as an idealized model which provides a convenient starting point for subsequent
discussion. The additional velocity associated with (2.2) is

u = (0, v(r, t), 0) (2.3)
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54 H. K. Moffatt

where
1

r

∂

∂r
(rv) = ω. (2.4)

Noting that ∇∧ (u∧ω) = 0, the exact vorticity equation is

∂ω

∂t
= ∇∧ (U ∧ω) + ν∇2ω, (2.5)

with z-component

∂ω

∂t
=
γ(t)

2r

∂

∂r
(r2ω) +

ν

r

∂

∂r

(
r
∂ω

∂r

)
. (2.6)

Let us suppose that at time t = 0,

ω(r, 0) = ω0 exp (−r2/δ2
0), (2.7)

i.e. the vorticity profile is Gaussian with radial scale δ0 and circulation

Γ = πω0δ
2
0 . (2.8)

The steady strain rate γs that would be required to maintain such a vortex against
viscous erosion is

γs = 4ν/δ2
0 . (2.9)

We envisage a situation in which ω(r, t) becomes singular at some finite time t = t∗ > 0.
To achieve this, it is evident that γ(t) must become singular at this time also; we
suppose that, through some mechanism, γ(t) is prescribed in the form

γ(t) = c(t∗ − t)−1, 0 < t < t∗. (2.10)

We may then seek a similarity solution of (2.6) of the form

ω(r, t) =
Γ

ν(t∗ − t)f(η), η =
r

(ν(t∗ − t))1/2
. (2.11)

No other power law for γ(t) is compatible with a similarity solution, as may be easily
checked. The power law (2.10) is distinguished in that the imposed strain becomes
singular as t → t∗ in the same manner as the peak vorticity ω(0, t) (cf. (1.1), (1.2)).
(As pointed out by a referee, a wide family of singular solutions may be generated
by means of Lundgren’s 1982 transformation; however, only one of these, namely the
one presented here, has a self-similar power-law form with the above distinguishing
property.)

Substitution of (2.11) in (2.6) yields the ordinary differential equation

1

2η

d

dη
(η2f) =

c

2η

d

dη
(η2f) +

1

η

d

dη

(
η

df

dη

)
; (2.12)

and on integration, we find a solution, finite at r = 0 (i.e. η = 0), in the form

f(η) =
c− 1

4π
exp (− 1

4
(c− 1)η2), (2.13)

the coefficient being determined from the requirement that the total circulation remain
equal to Γ . The solution for ω(r, t) is then from (2.11)

ω(r, t) =
(c− 1)Γ

4πν(t∗ − t) exp

(−(c− 1)r2

4ν(t∗ − t)
)
. (2.14)
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The interaction of skewed vortex pairs 55

The initial condition (2.7) is satisfied provided

c− 1 = 4νt∗/δ2
0 . (2.15)

Thus a solution of the form (2.11) (with t∗ > 0) exists only if

c > 1, (2.16)

and, under this condition, ω(r, t) becomes singular on the z-axis (r = 0) as t ↑ t∗. The
strain rate is given by

γ(t) =
c

t∗ − t =
1 + γst

∗

t∗ − t , (2.17)

so that

γ(0) = γs + (t∗)−1. (2.18)

Thus, in order to provoke a singularity at t = t∗ with strain rate of the form (2.10), it
is necessary that γ(0) > γs; and the singularity time is then given by

t∗ = (γ(0)− γs)−1. (2.19)

It is important to observe here that, although a singularity in the strain field is im-
posed through the assumption (2.10), it is not inevitable that there is a corresponding
singularity of vorticity; for this, the additional condition c > 1 must be satisfied.

Note that the velocity v(r, t)eθ associated with the vortex is given, from (2.10), by

v(r, t) =
Γ

2πr

(
1− exp

(−(c− 1)r2

4ν(t∗ − t)
))

, (2.20)

and that the maximum value of v(r, t) at time t is of order

vm(t) =
Γ

4π

[
c− 1

ν(t∗ − t)
]1/2

. (2.21)

The ratio of strain rate to maximum vorticity is

γ(t)

ω(0, t)
=

4πcν

(c− 1)Γ
(2.22)

and is constant for 0 < t < t∗.
Again, we emphasize that this property arises only for the special choice (2.10) of

strain-rate time-dependence.

2.1. The inviscid limit

The similarity assumption (2.11) is clearly inappropriate in the inviscid limit ν = 0.
However there is an interesting parallel behaviour which can be obtained directly
from (2.6) with ν = 0. If γ(t) is given by (2.10), then the solution of (2.6) with initial
condition (2.7) is

ω(r, t) =

(
t∗

t∗ − t
)c

Γ

πδ2
0

exp

{
− r

2

δ2
0

(
t∗

t∗ − t
)c}

(2.23)

as may be easily verified. In this situation, if ω is to become singular in the same way
as γ (i.e. ∼ (t0 − t)−1), then necessarily

c = 1, (2.24)
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56 H. K. Moffatt

and so

ω(r, t) =
t∗

t∗ − t
Γ

πδ2
0

exp

{
− r

2

δ2
0

t∗

t∗ − t
}
, (2.25)

which is formally identical to (2.14) if we use (2.15) to replace (c − 1)/4ν by t∗/δ2
0 .

Thus, the inviscid-limit solution is the natural limit of the viscous solution, exhibiting
exactly the same type of singularity as t ↑ t∗. The inviscid limit is peculiar however in
that (2.25) is a solution of the inviscid equation

∂ω

∂t
=

1

2r(t∗ − t)
∂

∂r
(r2ω) (2.26)

with initial condition (2.7), for arbitrary t∗; this is because (2.26) is invariant under
the time dilatation t→ at, t∗ → at∗ for arbitrary a.

3. Effect of non-axisymmetric strain
It will be necessary, in what follows, to consider the modification of the above exact

solution of the Navier–Stokes equations when, instead of (2.1), the imposed strain
field is non-axisymmetric and given (in cylindrical polar coordinates) by

U = γ(t)(− 1
2
r(1 + λ cos 2θ), 1

2
λr sin 2θ, z), (3.1)

where γ(t) is still given by (2.10), and λ is a constant in the range 0 < λ < 1; if λ = 0,
(3.1) reduces to (2.1), while if λ = 1, (3.1) is a two-dimensional strain field. Note that
the Cartesian form of (3.1) is U = γ(t)

(− 1
2
(1 + λ)x,− 1

2
(1− λ)y, z) .

We shall suppose that the vortex Reynolds number Re = Γ/ν is large, or equiva-
lently that

ε ≡ Re−1 = ν/Γ � 1. (3.2)

The asymptotic technique developed by MKO’94 is then applicable with slight modi-
fication as follows. With vorticity field now of the form

ω = (0, 0, ω(r, θ, t)), ω = −∇2ψ(r, θ, t), (3.3)

the exact vorticity equation is

∂ω

∂t
− 1

r

∂(ψ,ω)

∂(r, θ)
=
γ(t)

2r

∂

∂r
(r2ω) + 1

2
λγ(t)

[
cos 2θ r

∂

∂r
− sin 2θ

∂

∂θ

]
ω (3.4)

+ν

[
1

r

∂

∂r
r
∂ω

∂r
+

1

r2

∂2ω

∂θ2

]
. (3.5)

We introduce dimensionless variables

t′ = t/t∗, r′ = r(νt∗)−1/2, ψ′ = ψ/Γ , ω′ = ω(νt∗/Γ ). (3.6)

Substituting in (3.5) and dropping primes, we obtain

1

r

∂(ψ,ω)

∂(r, θ)
= −εL0ω − ελL1ω, (3.7)

where

L0ω = −∂ω
∂t

+
c

2(1− t)
1

r

∂

∂r
(r2ω) + ∇2ω, (3.8)

L1ω =
c

2(1− t)
(

cos 2θ r
∂

∂r
− sin 2θ

∂

∂θ

)
ω. (3.9)
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The interaction of skewed vortex pairs 57

Note that, with the scaling (3.5), the term ∂ω/∂t appears among the O(ε) terms on
the right-hand side of (3.7).

As in MKO’94, we may now seek a vortex-type asymptotic solution of (3.7) in the
form

ψ = ψ0(r, t) + εψ1(r, θ, t) + ε2ψ2(r, θ, t) + · · · . (3.10)

The O(ε0) term in (3.5) then vanishes, and at O(ε) we have

∂

∂θ

[
1

r

∂ψ0

∂r
ω1 − 1

r

∂ω0

∂r
ψ1

]
= −L0ω0 − λc

2(1− t) (cos 2θ)r
∂ω0

∂r
. (3.11)

The solvability condition for this equation, obtained by integrating over θ(0 to 2π), is

L0ω0 = 0. (3.12)

This is simply a scaled version of (2.6), and has solution (2.14) which in the present
dimensionless form becomes

ω0(r, t) =
c− 1

4π(1− t) exp

[
− (c− 1)r2

4(1− t)
]
. (3.13)

The first-order perturbation ψ1(r, θ, t) (and hence ω1(r, θ, t)) may now be obtained from
(3.11) exactly as in MKO’94, t appearing merely as a parameter. The time-dependence
of the solution is determined at the leading order (3.13), and the non-axisymmetric
part is generated in a quasi-static manner at order ε (and higher orders). We need
not pursue the details of these higher-order terms here.

The above procedure clearly requires that ε > 0, but ε may be arbitrarily small; it
also requires that c > 1, as is evident from the leading-order solution (3.13).

4. Singular straining of a vortex pair
Consider now a vortex pair ±Γ placed at t = 0 at positions x = 0, y = ±b

respectively and subjected to the strain field (3.1). We shall suppose below that each
vortex core is of scale δ � b and subject to viscous diffusion. However let us first
consider the movement of the vortex pair on the assumption that each is a point
vortex. The vortex trajectories are evidently x = X(t), y = ±Y (t) where

dX

dt
=

Γ

4πY
− 1

2
γ(t)(1 + λ)X, (4.1)

dY

dt
= − 1

2
γ(t)(1− λ)Y , (4.2)

the term Γ/4πY in (4.1) arising from the vortex interaction. We easily obtain

Y (t) = b(1− t/t∗)(1−λ)c/2, (4.3)

X(t) =
Γt∗1+(1−λ)c

2πb(λc− 1)

[(
1− t

t∗

)1+(1−λ)c/2
−
(

1− t

t∗

)(1+λ)c/2 ]
. (4.4)

If 0 < λ < 1, then evidently

Y (t)→ 0, X(t)→ 0 as t→ t∗. (4.5)

The self-induced motion of the vortices first takes them away from the plane x = 0,
but the x-component of the strain field ultimately drives the pair back towards the
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58 H. K. Moffatt

origin. The important thing to note is the manner in which Y (t) tends to zero as
t→ t∗. Compare this with the behaviour

δ(t) =

[
4ν(t∗ − t)
c− 1

]1/2

(4.6)

for the radius of the vortex core given by (2.14) or (3.13): we have

δ(t)

Y (t)
∝ (t∗ − t)(1−c+λc)/2 (4.7)

and this tends to zero as t→ t∗ provided

λ > (c− 1)/c (> 0). (4.8)

This is of course satisfied for the particular case of plane strain for which λ = 1 and
Y = const.

What this means is that, under the condition (4.8), if the two vortex cores are
well-separated at time t = 0 (i.e. δ0 � b), then they remain well separated for all
t ∈ (0, t∗). Moreover, under the same condition (4.8), the additional strain (O(Γ/Y 2))
experienced by each vortex due to the presence of the other remains small (as t→ t∗)
compared with the ‘imposed’ strain which is proportional to (t∗−t)−1. Hence, provided
ε = ν/Γ � 1, the leading-order solution (3.13) is valid for each vortex: the vortex
pair ‘collapses’ towards the origin (0, 0) as t → t∗, but the circulations ±Γ in the
half-planes y > 0 and y < 0 remain constant for all t < t∗ despite the ever-decreasing
length-scale of the vorticity distribution.

5. The strain field associated with a vortex pair
Consider a vortex pair ±Γ situated instantaneously at x = 0, y = ±b, the core of

each vortex being diffused on a scale δ0 � b. With the notation

E(x, y) = exp (−(x2 + y2)), (5.1)

the vorticity distribution is assumed to be

ω(x, y) =
Γ

πδ2
0

[
E

(
x

δ0

,
y − b
δ0

)
− E

(
x

δ0

,
y + b

δ0

)]
, (5.2)

the weak elliptic deformation of the vortex cores that results from mutual interaction
being neglected. Of course, this vortex pair will propagate in the x-direction with
velocity Γ/4πb, and the cores will diffuse under the action of vorticity. For the
moment, however, we restrict attention to the instantaneous state described by (5.2),
and we investigate the nature of the strain field in the surrounding fluid.

The streamfunction ψ(x, y) outside the vortex cores is given by

ψ(x, y) = − Γ
4π

(
ln r2

1 − ln r2
2

)
, (5.3)

where

r2
1 = x2 + (y − b)2, r2

2 = x2 + (y + b)2. (5.4)

Near any point (x0, y0) we may write

x = x0 + ξ, y = y0 + η, (5.5)
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and expand ψ in the form

ψ(x, y) = ψ0 − ξv0 + ηu0 + 1
2
(A0ξ

2 + 2B0ξη − A0η
2) + · · · , (5.6)

where the suffix zero indicates evaluation at (x0, y0); by straightforward calculation,
we find

u = ψy =
Γb

π

x2 − y2 + b2

r2
1r

2
2

, (5.7)

v = −ψx =
Γb

π

2xy

r2
1r

2
2

, (5.8)

A = ψxx = −ψyy =
2Γby

πr4
1r

4
2

[(x2 + y2)(3x2 − y2 + 2b2)− b4], (5.9)

B = ψxy = ψyx = +
2Γbx

πr4
1r

4
2

[(x2 + y2)(3y2 − x2 − 2b2)− b4]. (5.10)

Note that, for y = 0,

u =
Γb

π

1

x2 + b2
, v = 0, (5.11)

A = 0, B = − 2Γbx

π(x2 + b2)2
. (5.12)

The quadratic (strain) contribution to (5.6) is here

ψs = B0ξη, (5.13)

and, since B0 < 0 (for x0 > 0), the principal axis of positive strain at (x0, 0) is in the
η (or y) direction.

The principal axes of strain at any point (x0, y0) are the directions for which

(us, vs) ≡ (B0ξ − A0η,−A0ξ − B0η) = µ(ξ, η) (5.14)

for some (real) µ. The usual determinantal condition gives

µ2 = A2
0 + B2

0 =
4Γ 2b2

π2r8
1r

8
2

P (x2
0, y

2
0), (5.15)

where P (X,Y ) is a fifth-order polynomial in X and Y . The principal directions of
strain at (x0, y0) are then given by

ξ

η
= −B0 ±

√
A2

0 + B2
0

A0

. (5.16)

These principal axes of strain are parallel to Ox,Oy wherever A = 0, i.e. on the axis
y = 0 and also on the quartic curve

Q1 : (x2 + y2)(3x2 − y2 + 2b2) = b4. (5.17)

The form of this curve is most easily understood by noting that in the plane of the
variables

X = x2, Y = y2, (5.18)

it is just the hyperbola H1

(X + Y )(3X − Y + 2b2) = b4, (5.19)
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x/b2

S2
Q1

Q2

Q1

S1

Figure 1. Rate-of-strain field associated with a single vortex pair ±Γ placed at (0,±b). (a)
Geometrical divisions in the plane of the variables X = x2, Y = y2; (b) variation of strain
orientation in (x, y)-plane; the curves Q1 and Q2 are symmetric with respect to the x- and y-axes.

with asymptotes

X + Y = 0, 3X − Y + 2b2 = 0. (5.20)

This hyperbola is sketched in figure 1(a); it is of course only the portion in the
quadrant X > 0, Y > 0 that is relevant here.

Similarly, the principal axes of strain are oriented at π/4 to Ox,Oy wherever B = 0,
i.e. on x = 0 and on the quartic curve

Q2 : (x2 + y2)(3y2 − x2 − 2b2) = b4, (5.21)

which corresponds to the hyperbola

H2 : (X + Y )(3Y −X − 2b2) = b4 (5.22)

in the (X,Y )-plane. This is also sketched in figure 1(a).
Knowledge of these curves allows us to determine the signs of A and B in various

regions of the (x, y)-plane as shown in figure 1(b). The corresponding strain orientation
can be easily deduced and is as indicated. As might be expected, a material curve
like the dashed curve in the figure, which at each point of the segment S1S2 makes
an angle of less than π/4 with the local principal axis of positive strain, is subject to
stretching along the full length of this segment.

6. The interaction of two skewed vortex pairs
We are now in a position to consider the model of vortex interaction proposed in

the introduction, namely two vortex pairs propagating towards each other, each pair
being initially aligned along the principal axis of positive rate of strain associated
with the other. Thus we adopt as initial condition the configuration indicated in figure
2(a): one vortex pair ±Γ (denoted V±1 ) is centred on the lines x = −a0, y = ±b0 with

b0/a0 = O(1); and the other pair ±Γ (denoted V±2 ) on x = a0, z = ±b0. Each of the
four constituent vortices is supposed diffused around these lines with Gaussian profile
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(a)
y

x
b0

C

V 1
–

a0
a0

V 2
+ V 2

–

V 1
+

–C

z

–C
C

(b)
y

V 2
–

V 2
+ V 1

–

V 1
+

x

z

S

S′

C
2

C
1

Figure 2. Interaction of two vortex pairs, each initially placed parallel to the positive axis of
strain associated with the other. (a) Initial configuration; (b) configuration during the asymptotic
interaction phase, the interaction zone being as indicated.

on a scale δ0 � a0, b0. Thus, with the notation (5.1), the initial vorticity distribution
is assumed to be

ω0(x) =
Γ

πδ2
0

(
0, E

(
x− a0

δ0

,
z − b0

δ0

)
− E

(
x− a0

δ0

,
z + b0

δ0

)
,

E

(
x+ a0

δ0

,
y − b0

δ0

)
− E

(
x+ a0

δ0

,
y + b0

δ0

))
. (6.1)

This vorticity field is invariant under rotation (x → −x, z → −z) through π about
the y-axis followed by rotation (y → z, z → −y) through π/2 about the x-axis. This
skew symmetry is preserved under the subsequent evolution, and may (for t > 0) be
expressed in the form

(ω1(x, t), ω2(x, t), ω3(x, t)) =
(−ω1(x

∗, t), ω3(x
∗, t), ω2(x

∗, t)
)

(6.2)

where x∗ = (−x, z, y). This simply means that we may focus attention on the evolution
of one vortex pair, the evolution of the other being governed by this symmetry.

Consider now, in physical terms, what happens for t > 0. The vortex pairs propagate
towards each other and a ‘zone of interaction’ of the vortex pairs |x| = O(b0) may be

identified; far outside this zone, the vortex pairs V±1 , V±2 propagate with undisturbed
velocities ±Γ/4πb0 respectively. After a time of order 4πa0b0/Γ a situation like
that depicted in figure 2(b) must presumably develop, all the interesting effects taking
place within the interaction zone. Clearly the minimum x-wise separation of the vortex
pairs 2a(t) must continue to decrease until either viscous effects cause reconnection
of vortex lines (the conventional view), or a singularity of the vorticity distribution
appears at x = 0 at some finite time t∗ > 0.

In this scenario, if a singularity appears, then it does so at the single point x = 0 at
time t = t∗, consistent with the fact that the space–time Hausdorff dimension of any
singularity of the Navier–Stokes equations is not greater than 1/2 (Cafarelli, Kohn
& Nirenberg 1982). The singularity must also clearly involve a singularity of the
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direction of the vorticity field at x = 0, t = t∗, consistent with the result of Constantin
& Fefferman (1993) (see also Constantin, Fefferman & Majda 1996).

If the behaviour envisaged does indeed occur, then the development of the singu-
larity should presumably be describable in terms of a local similarity solution of the
Navier–Stokes equations representing a characteristic structure whose scale decreases
in proportion to a(t). Thus, for example, if 2b(t) is the minimum separation of V+

1

and V−1 , then geometrical self-similarity implies that

b(t)/a(t) = s (6.3)

where s (the ‘separation’ parameter) is a constant of order unity; and if δ(t) is the
scale of the core radius where this is minimal, then

δ(t)/a(t) = σ (6.4)

where σ is a constant which may depend on the vortex Reynolds number Re = Γ/ν
(since the core size is influenced by viscosity). This means that δ(t)/a(t) remains small,
if small initially, so that the circulation ±Γ in each of the four vortices remains
effectively constant.

We may now estimate da/dt, which is determined by the instantaneous configuration
of the vortices of strength ±Γ and by the current scale a(t) in the interaction zone;
on dimensional grounds

da

dt
= −kΓ

2a
(6.5)

where k is a positive constant of order unity (positive because we know on physical
grounds that a(t) is decreasing). Hence, integrating,

a2 = kΓ (t∗ − t) (6.6)

where t∗ is a constant. This result holds only once the self-similar behaviour is
established. If, during this self-similar stage, a = a1 when t = t1, then from (6.6) the
‘singularity time’ t∗ is given by

t∗ − t1 = a2
1/kΓ . (6.7)

Note further that the rate of strain acting on the pair V±2 at the point C2 (figure

2(b) (due mainly to the influence of the segment of V±1 in the interaction zone) is
also determined instantaneously by Γ and by the scale a(t), and is therefore given (cf.
(2.10)) by

γ(t) = k′Γ/a2 =
c

t∗ − t (t1 < t < t∗), (6.8)

where k′ and c = k′/k are constants of order unity. This strain field is two-dimensional

with positive strain aligned parallel to V±2 at C2. The relevance of the model developed
in §§ 2–4 should now be apparent! The implication is that, in some neighbourhood of
the points C±1 , C±2 on the four vortices, the solution (2.14) (with ± now inserted in
front of Γ ) is valid. Note that the scale δ(t) of the vortex cores is given by (4.6), so
that now

δ(t)

a(t)
=

(
4

k(c− 1)

)1/2 ( ν
Γ

)1/2

=

(
4

k(c− 1)

)1/2

Re−1/2, (6.9)

a constant, consistent with (6.4). As t ↑ t∗, the whole configuration collapses onto
x = 0, where a singularity of vorticity appears.
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A necessary condition for the validity of this description is that c > 1 (see (2.15)
and (2.16)). It therefore becomes necessary to estimate more accurately the values of
k and k′. Consider first the values of these constants if the vortices are treated as
straight (as in figure 2a). In this configuration

da

dt
= − Γ

4πb
+
Γ

π

b

4a2 + b2
, (6.10)

the first term coming from the self-induced velocity of either pair, and the second
coming from the interaction (equation (5.7) with y = 0, x = 2a). With b = sa, (6.10)
gives (6.5) with

k =
1

2π

[
4− 3s2

s(4 + s2)

]
. (6.11)

Since k must be positive to give da/dt < 0, we must have s2 < 4/3, i.e.

s < 1.15. (6.12)

Similarly, the strain acting on either vortex pair at the point of minimum separation
is given by (5.12) with x = 2a, b = sa, i.e.

γ =
k′Γ
a2

with k′ =
4s

π(4 + s2)2
. (6.13)

Hence, from (6.11) and (6.13), we have

c = k′/k =
8s2

(4 + s2)(4− 3s2)
(6.14)

and the condition c > 1 is satisfied provided

s2 > − 8
3

+ 4
3

√
7 = 0.86, i.e. s > 0.92. (6.15)

The conditions (6.12), (6.15) evidently place tight constraints on s for self-consistency
of the description.

Now of course in the self-similar phase in the interaction zone, the vortex pairs are
necessarily curved as in figure 2(b), and so the above values of k and k′ ((6.11) and
(6.13)) are an overestimate. However, the curvature effect may be expected to reduce
k and k′ by the same factor, so that the result (6.14) for the ratio remains accurate.

The curvature of the vortices in the interaction zone is actually a vitally important
ingredient of the model. The portions of V±2 in the neighbourhoods of the inflection

points S , S ′ (figure 2b) contribute the y-component of velocity at V±1 which decreases
b(t) in step with a(t) according to (6.3). This inward-directed component must be
sufficient to overcome the curvature-induced velocity of V+

1 and V−1 which is outwards
in the direction of the binormal.

It seems likely that the relative magnitude of these effects will depend critically on
the ratio of core radius to vortex separation. A numerical study by Boratav (1991)
has indicated that the curvature effect associated with local induction may, for some
initial conditions, dominate, in which case a singularity of the type envisaged will
not occur (R. B. Pelz 1999, private communication). The diverse effects are evidently
all quite delicately balanced, and it is clearly desirable to identify more precisely
the nature of the similarity solution that is postulated in the interaction zone. A
preliminary exploration is described in the following section.
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7. Local similarity solution of the Navier−Stokes equations
The problem of determining both a local similarity solution valid in an inner region,

and a global solution in the outer region to which it can be matched, is very difficult.
Nevertheless, we seek to clarify in this section the necessary condition that the inner
solution must satisfy for a self-consistent matching to be possible.

The estimates of § 6 suggests that we should seek a local similarity solution of the
Navier–Stokes equation of the form

u(x, t) =
Γ 1/2

√
(t∗ − t)U (X ), X =

x

(Γ (t∗ − t))1/2
, (7.1)

where Γ is the conserved vortex strength. This is just the Leray (1934) transformation
discussed in the introduction. We then have

ω = ∇∧ u =
1

(t∗ − t)Ω(X ), Ω = ∇X ∧U , (7.2)

which may be compared with (2.11). Noting that

∂X

∂t
=

X

2(t∗ − t) ,
∂Xi

∂xj
=

1

(Γ (t∗ − t))1/2
δij , (7.3)

we have further

∂ω

∂t
=

−1

(t∗ − t)2

(
Ω+ 1

2
X · ∇X ∧Ω) = − 1

2(t∗ − t)2
∇X ∧ (X ∧Ω), (7.4)

∇∧ (u∧ω) =
1

(t∗ − t)2
∇X ∧ (U ∧Ω), (7.5)

and

ν∇2ω =
ν

Γ (t∗ − t)2
∇2
XΩ. (7.6)

Hence, the (Navier–Stokes) vorticity equation

∂ω

∂t
= ∇∧ (u∧ω) + ν∇2ω (7.7)

yields the quasi-steady equation

−∇∧ (U + 1
2
X )∧Ω = ε∇2Ω (7.8)

where ∇ now represents ∂/∂X . Note that, for the particular problem considered in
§ 2, (7.8) is equivalent to (2.12), allowing for slight change of notation.

It must here be emphasized that we cannot reasonably expect to find any solution
of (7.8) for which Ω(X ) is localized in X (i.e. O(|X |−2−ρ) for ρ > 0 as |X | → ∞, for this
would yield a solution ω(x, t) of (7.7) similarly localized in x, and with the property
that

ω → 0 as t→ t∗ for all x 6= 0, (7.9)

a behaviour that cannot be reconciled with the fact that, under evolution governed
by (7.7), vortex lines are convected and diffused by the fluid motion. This statement
is compatible with the theorem of Nečas, Ru̇z̆ic̆ka & S̆verák (1997) that no smooth
solution of (7.8) exists for which |U | ∈ L3(R3).

What we must rather look for is a solution of (7.8) which matches, as |X | → ∞,
to an ‘outer solution’ of (7.7), this outer solution being non-singular as t → t∗. The
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appropriate matching condition is

lim
|X |→∞

Ω(X ) = lim
|x|→0

ω(x, t). (7.10)

This can be achieved provided

Ω(X ) ∼ |X |−2 as |X | → ∞, (7.11)

ω(x, t) ∼ Γ |x|−2 as |x| → 0. (7.12)

More precisely, for the problem of two vortex pairs considered in § 6, we require a
solution of (7.8) satisfying

Ω · êr ∼ f(θ, ϕ)/|X |2 as |X | → ∞, (7.13)

where f(θ, ϕ) is a function of the spherical polar angles (θ, ϕ) integrating to zero
over the sphere |X | = const. and to ±1 over the (small) surface areas on which the
outgoing (incoming) vortices are located. The corresponding behaviour for the outer
field is then

ω · êr ∼ Γf(θ, ϕ)/|x|2 as |x| → 0 (7.14)

each vortex thus expanding conically in passing from the inner to the outer region
(figure 3). We note here that precisely this sort of structure is evident in the solution
computed by Pelz (1997).

The problem (7.8), (7.13) is still a difficult one, which will require careful numerical
analysis. The great advantage of this formulation however is that, if a smooth
solution is found by numerical or analytical means, an objective that we must defer
to a subsequent investigation, then this immediately implies a finite-time singularity
of the Navier–Stokes equations via the transformation (7.1), (7.2).

Here, we simply infer certain properties of the singularity, assuming such a solution
can indeed be found. First, we may easily estimate the contributions to momentum
P , angular momentum M , kinetic energy K , helicity H and enstrophy Ω̄ from the
interaction zone V , which we may take to be |X| < R, for some fixed R. We find

P =
1

2

∫
V

x∧ωd3x = 1
2
Γ 2(t∗ − t)

∫ R

0

X ∧Ω(X ) d3X , (7.15)

M =
1

3

∫
V

x∧ (x∧ω) d3x = 1
3
Γ 5/2(t∗ − t)3/2

∫ R

0

X ∧ (X ∧Ω) d3X , (7.16)

K =
1

2

∫
V

u2d3x = 1
2
Γ 5/2(t∗ − t)1/2

∫ R

0

U 2d3X , (7.17)

H =

∫
V

u · ωd3x = Γ 2

∫ R

0

U ·Ωd3X , (7.18)

Ω̄ =

∫
ω2d3x =

Γ 3/2

(t∗ − t)1/2

∫ R

0

Ω2d3X . (7.19)

Thus the contributions to P , M and K from the interaction zone V tend to zero as
t→ t∗, whereas the contribution to H is constant. The contribution to enstrophy, and
hence to rate of dissipation of energy,† from V tends to infinity like (t∗ − t)−1/2, a

† The dissipation integral
∫
V

(
∂ui/∂xj

)2
dV obviously has the same (t∗ − t)−1/2 time-dependence.
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Figure 3. A hypothetical configuration showing conical expansion of vortex tubes as they leave
the interaction zone.

result that may have an important bearing on the phenomenon of intermittency of
energy dissipation in turbulent flow.

The decreasing contribution to K in the interaction zone is particularly noteworthy.
If conservation of energy were imposed as an additional requirement, this would
require a scale decreasing like (t∗− t)2/5 rather than (t∗− t)1/2 (Constantin 1994); there
is however no need to impose such a condition, because a flux of energy from the
inner to the outer region cannot be excluded.

8. Inviscid limit
In the inviscid limit ε = 0, (7.8) becomes simply

∇∧ [(U + 1
2
X )∧Ω] = 0. (8.1)

We note here a peculiarity of this situation. If, instead of (7.1) we seek an ‘expanding’
similarity solution of the Euler equations of the form

u(x, t) =

(
Γ

t∗ + t

)1/2

U (X 1), X 1 =
x

(Γ (t∗ + t))1/2
(8.2)
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for t > −t∗, then, instead of (8.1) we obtain

∇∧ [(U − 1
2
X 1)∧Ω] = 0. (8.3)

Evidently if U = U 1(X 1), Ω = Ω1(X 1) is a solution of (8.3), then U = −U 1(X ),
Ω = −Ω1(X ) is a solution of (8.1); thus if there exists an expanding similarity
solution of the form (8.2) matching to an external flow via a condition of the form
(7.10), then there exists a dual ‘imploding’ solution obtained by replacing U 1(X 1) by
−U (X ). This duality, which is a consequence of the time-reversibility of the Euler
equations, was noted by Pelz (1997), who in fact suggested that an imploding solution
may be replaced by its dual as t passes through the critical time t∗.

Equation (8.1) is satisfied provided

(U + 1
2
X )∧Ω = ∇h (8.4)

for some scalar field h. We then have

Ω · ∇h = 0 (8.5)

and

U · ∇h = − 1
2
X · ∇h = − 1

2
R
∂h

∂R
(8.6)

where R = |X |. From (8.5), the vortex lines lie on surfaces h = const. in the interaction
zone. From (8.6), the component of the flow U across these surfaces must exactly
compensate the term 1

2
X · ∇h which is associated with the inclination of the vorticity

Ω to the radius vector X .
Reference back to the exact solution (2.25) of the Euler equation shows that the

same behaviour is evident there: the condition c = 1 gives a balance of the first two
terms of (2.12), one coming from ∂ω/∂t, the other from the action of the imposed
strain; in the similarity variables, two radial velocities (perpendicular to the vortex
tube) exactly compensate.

It is an honour and a pleasure to dedicate this paper to Philip Saffman, whose
contributions to fluid dynamics, and in particular to vortex dynamics, have pro-
voked admiration and provided inspiration over more than four decades. I thank K.
Ohkitani for drawing my attention to the seminal work of Leray (1934) concerning
the possibility of a finite-time singularity; and R. B. Pelz for providing me with
relevant preprints and reprints and for his illuminating comments.
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