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ABSTRACT

In insurance analytics, textual descriptions of claims are often discarded,
because traditional empirical analyses require numeric descriptor variables.
This paper demonstrates how textual data can be easily used in insurance
analytics. Using the concept of word similarities, we illustrate how to extract
variables from text and incorporate them into claims analyses using standard
generalized linear model or generalized additive regression model. This proce-
dure is applied to the Wisconsin Local Government Property Insurance Fund
(LGPIF) data, in order to demonstrate how insurance claims management and
risk mitigation procedures can be improved. We illustrate two applications.
First, we show how the claims classification problem can be solved using tex-
tual information. Second, we analyze the relationship between risk metrics and
the probability of large losses. We obtain good results for both applications,
where short textual descriptions of insurance claims are used for the extraction
of features.
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1. INTRODUCTION

When an insurance claim arises, one of the first things that is reported to
a claims manager of an insurance company is a short textual description
of the insurance claim, along with demographic information regarding the
policyholder. Losses may be reported via a notice form, where one of the com-
mon forms used is the Association for Cooperative Operations Research and
Development (ACORD) form; see page 7.16 of Kearney (2010). Upon this ini-
tial report, the claims department is responsible for a number of important
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tasks. The claims department would identify the policy and set adequate
reserves, contact the insured, investigate the claim, document the claim, and
determine the precise cause of loss, liability, and the loss amount. In this pro-
cess, the claims manager would coordinate with the actuarial department in
order to predict the amount of insurance claim and set the adequate case
reserve for each claim. In practice, parametric loss models are fit to data,
and the resulting distribution is used for the prediction of the ultimate claim
amount.

In this process, regression analysis helps us understand the relationship
among variables. The goal of a standard regression model is to understand
the relationship between the response variable y and explanatory variables
X, and predict future responses under a set of assumptions. The relationship
g {E[y]} =Xβ, where typically a distributional assumption is imposed on the
error, allows us to interpret the relationship between y and X in a systematic
way. In case y is a binary response, logistic regression can be used. For a general
overview of regression, see Frees (2009). When forming theXmatrix for empir-
ical research using traditional approaches, useful information is discarded from
the analysis, because traditional regression analysis requires numeric descriptor
variables. Textual information has been one example.

In this paper, we demonstrate how textual information can be transformed
into a format where traditional analysis can be performed. Then, the extracted
information is used to build a regression model for the response variable
of interest. Through this demonstration, we show how information can be
extracted from textual data. We demonstrate two illustrative case studies in
insurance claims classification and insurance risk mitigation. We believe these
approaches demonstrate how text-processing methods can improve insurance
analytics in the actuarial practice. In addition, understanding the factors
that relate with large insurance losses may help us mitigate future insurance
losses.

Text mining has been utilized in a variety of contexts, including but not
limited to spam filtering, sentiment analysis, customer churn, stock returns,
and politics. Recently, Mikolov et al. (2013) introduced the vector represen-
tation for words, and Pennington et al. (2014) demonstrated how the Global
Vectors for word representation (GloVe) algorithm can be used to obtain anal-
ogous representations for words. Neural network-based text analysis methods
essentially treat the vector representation of words as the hidden layer of a
neural network, which is trained over a huge corpus of text. The resulting
word embeddings can be used for classic machine learning tasks, such as text
classification. Recurrent neural networks (RNNs) can be utilized to classify
large textual data, essentially treating textual data as a sequence of words;
see Goodfellow et al. (2016) and Goldberg (2017) for a treatment of neural
networks, and how they can be utilized for prediction tasks.

Neural network-based text models are powerful in terms of their prediction.
Meanwhile, we are interested in models that allow us to interpret the relation-
ship between explanatory variables and response variables. One way this can
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be achieved is to consider projecting the vector representation of words onto
a set of axes, which we are able to understand. Given a vector representation
of phrases, instead of using the vectors directly inside a prediction algorithm,
one may consider projecting the vectors onto axes defined by known keywords.
This can be achieved by taking the cosine similarity between the phrase and the
predefined keywords. This is the approach we will take in this paper.

Generalized additive models (GAMs) extend linear models to contain
smooth functions for each of the covariates, while retaining inference about the
functions. Applications of GAMs have been discussed in Hastie and Tibshirani
(1990). These applications include studying kyphosis in laminectomy patients,
atmospheric ozone concentration, and the intensity of ischemic heart disease
risk factors, among others.

Moreover, Hastie et al. (2009) describes an example of utilizing GAMs to
classify e-mails as spam. While this example does analyze text, the method has
several significant differences from that of our analysis. The spam example
observes the number of occurrences of certain words, and fits a GAM with
each word as a covariate. While the spam example in Hastie et al. (2009) also
discusses the interpretability of the model, the primary goal is to predict the
probability of an e-mail being spam. In our analysis, we start by quantifying
the similarity between a description and a series of selected words. The main
interest in this analysis is the interpretation of the smoothing functions. This
provides a much more complete explanation of the various factors that lead to
high losses, and therefore, may provide for a more improved strategy of risk
mitigation. A recent work, Wood (2017), provides a comprehensive overview
of GAMs.

There is a vast literature in insurance claims modeling, where paramet-
ric models are employed to understand insurance claims distributions. To the
best of our knowledge, combining text mining approaches with loss modeling
is a new approach, which has not been attempted in the past. In particular,
there seems to be no prior work utilizing text mining approaches to empirically
understand and model insurance claims data. The rest of the paper proceeds in
the following order: In Section 2, the Wisconsin Local Government Property
Insurance Fund (LGPIF) data are introduced. In Section 3, the word similarity
model is introduced. In Section 4, two applications of word similarity models
are presented: insurance claims categorization and insurance risk mitigation.
In Section 5, concluding remarks are provided.

2. DATA

2.1. Overview

In this section, we provide some summary statistics for the data set. For our
case study, we utilize a unique data set of claim descriptions and loss amounts
from the Wisconsin LGPIF. The data set is obtained from the Office of the
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Commissioner of Insurance (OCI) of Wisconsin. The Wisconsin LGPIF has
been established to make property insurance available for local government
units. The property fund essentially acts as an insurance company in the area,
providing property coverage for thousands of government entities.

In Table 1, it is interesting to observe that claim categories with high fre-
quency tend to have low severity, while claim categories with low frequency
tend to have high severity. In order to illustrate this effect, the table has been
sorted in decreasing order of the number of observations N. Modelers have
studied insurance claim frequency and severity models, and empirically, it has
been discovered that claim frequencies and severities are often correlated; see
Frees et al. (2016).

2.2. Data generation

The number of claims observations is 4991 in the training sample and 1039 in
the validation sample, which totals to 6030 observations. The data used for
this paper are already in tabular form corresponding to the data generating
processes in Section 4, and we consider the data cleaning process, including
the metadata analysis, as a black-box process that has already been performed
by the provider of the data. We assume all claims are closed, and the claim
amounts are fixed.

Descriptions for the observed insurance claims are recorded in the data
set. These claim descriptions are human generated, and there are 2797 unique
words found in the training sample and validation sample all together. Figure 1
shows a projection of the word vectors in a two-dimensional space, for com-
mon words found in the data set. Word vectors are explained in Section 3.1.
For now, imagine that there exists a framework, where every word corresponds
to some two-dimensional vector, with related words having similar vector rep-
resentations. A plot of common words found in the claim descriptions file may
look like Figure 1.

In Figure 1, notice that library andmuseum appear close to each other, since
they have similar functions, and hence may appear in similar contexts. Also,
graffiti, vandalism, theft, and stolen all appear at a similar location on the plot.
Imagine drawing an arrow from the point (0, 0) to the word, and the reader
may see that the vector corresponding to each of these words are very similar
to one another. The angle between the words is small, and hence the cosine of
the angle between the words would be large (close to 1). Another way to say this
is that the dot product between the words is large. Now consider the word hail
and its corresponding vector, and compare it with the vector corresponding to
graffiti. The two words are somewhat unrelated, and hence the angle between
these two words is large. Another way to say this is that the cosine between the
unit vectors corresponding to the two vectors is negative, or in other words the
dot product is negative.
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TABLE 1

SUMMARY STATISTICS OF LOSSES BY CLAIM CATEGORY.

Validation sample Training sample

Peril min median mean max N min median mean max N

Vandalism 1 500 6190 981,599 310 6 587 2084 207,565 1774
Vehicle 1 3000 5662 135,268 227 37 2500 3905 111,740 852
Lightning 500 5000 11,623 88,603 123 1 4431 11,087 655,092 832
Water (weather) 55 19,337 51,608 411,641 38 1 8898 80,432 12,922,218 426
Miscellaneous 70 3025 9723 242,918 103 1 3929 29,150 2,633,822 362
Wind 325 9010 46,304 1,048,683 107 1 4960 18,125 492,478 296
Water (non-weather) 544 6739 60,538 2,672,184 67 1 6306 23,974 1,114,595 202
Fire 125 11,355 83,767 964,150 46 100 8964 81,762 1,570,619 171
Hail 7886 49,184 103,674 332,412 18 124 17,819 145,488 6,615,117 76
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FIGURE 1: Two-dimensional projection of the word embeddings for common words.
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FIGURE 2: Distribution of common words.

2.3. Textual data preprocessing

Figure 2 shows the most common words in the data set. Stop-words such as
a, the, and, etc., have been removed. No other preprocessing of the words has
been performed. Notice that the word damage is most frequent in the descrip-
tions. The word vandalism is also frequent, as vandalism turns out to be one of
the most frequent claim causes in the data set. Abbreviations such as hs (high
school), ms (middle school), es (elementary school), dmg (damage), and bldg
(building) also appear in the data set.

Note that both bldg and building are valid words. Imagine we search for the
word building in a search engine. In this case, phrases with the word bldg and
building should both appear in the search. We also note that building and build-
ings both appear in the vocabulary. The reason why both bldg and buildings
appear when building is already in the vocabulary list, is because they are dis-
tinct words. Howmuch these words relate to claim occurrence is determined by
the cosine similarities of the words with selected key words. The advantage of
our approach is that minimal data preprocessing is needed, so that such similar
words can all be kept in the data.

Note that the claim descriptions are short phrases, such as lightning dam-
age to building, or vandalism damage at recycle center. A total of 4991 such
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claim descriptions are in the training data set. Each claim description is asso-
ciated with the loss amount corresponding to the description. Each claim is
categorized into one of the following claim categories: vandalism, fire, light-
ning, wind, hail, vehicle, water (weather related), water (non-weather related),
and miscellaneous losses.

Table 1 shows a summary of the loss amounts for each of the nine claim cat-
egories. According to the table, vandalism has the lowest average loss amount,
while the frequency of vandalism is the highest. Hail damages are the largest in
terms of median and mean value, while the frequency is the lowest. The largest
hail damage with a loss of 6.6 million is a hail damage to multiple buildings
insured by the property fund. It is interesting to observe that the maximum loss
amount happened within the weather-related water damages category, which
is a loss of 12.9 million. This largest loss corresponds to a water damage to a
school. The second most frequent claim category is the vehicles category. This
category of claim happens when a vehicle (car, plow, truck, etc.) runs into a
government property building or structure, such as a light pole.

To conclude the data description, we provide some ground-truth informa-
tion regarding the quality of the data. The data have no missing values, and the
categories for each claim are all observed. We inspected the claim categoriza-
tions and believe that the data quality is mostly dependable, although some
errors may exist because the categorization has been performed by human
experts.

3. WORD SIMILARITY MODEL

In order to incorporate textual data into a regression analysis, we need a
framework for representing words as numeric vectors. In this framework, each
word in the vocabulary is represented as a vector of a certain fixed dimension,
allowing words to be added and subtracted. For an overview of natural lan-
guage processing,Manning and Schutze (1999) is recommended.Mikolov et al.
(2013) describes the neural network approach to natural language processing,
and illustrates how the word2vec algorithm can be implemented. Pennington
et al. (2014) introduced the GloVe algorithm for finding word embeddings.

3.1. Word embeddings

As described briefly in Section 2, we utilize a framework, where every word
in the vocabulary is represented by a unique vector representation. The com-
ponents of the vector each represent a feature of the word. Words with closer
meaning will show up closer in the graph when plotted as shown in Figure 1.
The fact that words can be represented as vectors allows a lot of flexibility in
modeling. Standard vector operations can be performed on words, once this
realization has been achieved. For example, the word queen may be obtained
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algebraically by adding and subtracting vectors: queen=woman+ king−man.
With vector representation of words, the relevance of the search string and the
content can be determined by the cosine between the search string and the con-
tent. Suppose we are interested in the relevance between the word queen, and
the vector: woman+ king−man. In this case, the cosine between the two vec-
tors will be close to 1. This will indicate that the two vectors are nearly identical.
Now consider another word: lightning. In this case, the cosine between queen
and lightning will have a low value. Recall that the cosine function ranges from
−1 to 1, depending on the angle between two vectors. Hence, a cosine of 1
indicates high relationship, while a cosine of −1 indicates a low relationship.

3.1.1. Word2vec
One approach to obtaining the word embeddings is to use the word2vec algo-
rithm. The word2vec algorithm can be illustrated using a simplified example.
Suppose we use the following five words as our simplified vocabulary list:

V = {lightning, vandalism, vehicle, building, struck} = {w1,w2, . . . ,w5}.
Consider the sentence:

lightning struck building

with center word w5, and context words C = {w̃1, w̃4}. What we want is some
vector representationW of center words and W̃ of context words. These word
embedding matrices are obtained by letting an algorithm read through billions
of sentences, maximizing a log likelihood, treatingW and W̃ as parameters to
be estimated. For this, we can specify the probability of observing a context
word w̃j given a center word w5 by

Pr
(
w̃j|w5

)= exp
(
w̃j ·w5

)
∑|V |

k=1 exp
(
w̃k ·w5

) .
Going back to the sentence, lightning struck building, using a naive Bayes
assumption (where we assume the conditional independence of the events of
observing context words given a center word), the negative log likelihood
becomes

L= − logPr(w̃1|w5)− logPr(w̃4|w5)= −
∑
w̃j∈C

w̃j ·w5 + |C| log
∑
w̃k∈V

exp (w̃k ·w5).

The negative log likelihood is minimized by gradient descent. Note that ana-
lytical formulas for the gradient can be obtained based on the likelihood. In
practice, using the analytical forms of the gradient speeds up the convergence
and makes the algorithm more stable. Extensions of the gradient descent algo-
rithm such as Adam optimizers may be used as well. The W and W̃ matrices
start from a random initial matrix and is updated each step of the gradient
descent iteration. Repeating this process for millions and billions of center
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words and context words, an input word matrixW and a context word matrix
W̃ are learned.

Word2vec may use either the continuous bag-of-words (CBOW) model
or the continuous skip-gram model, depending on how the log likelihood is
defined. In the CBOW model, the log likelihood represents the probability of
observing the center word within a window of context words. In the contin-
uous skip-gram model, the probability of observing the context word given a
center word is used. Hence, the example shown above would correspond to a
continuous skip-gram model.

Nowadays, word embedding matrices trained by word2vec can be down-
loaded from Google’s website (https://code.google.com/archive/p/word2vec/).
An extension of word2vec, which uses character n-grams, is fastText, which
can be downloaded from (https://fasttext.cc). FastText is a library for learning
word embeddings, created by Facebook’s AI Research (FAIR) lab.

3.1.2. Global vectors for word representation
In this paper, we use the pretrained word embeddings obtained via an algo-
rithm called GloVe, developed by Pennington et al. (2014). We note that other
methods to create word embedding matrices exist. From our perspective, the
end result of word2vec and GloVe is similar. We chose GloVe because it is a
straightforward algorithm based on word counts, and the approach is well doc-
umented with an emphasis on reproducibility. In practice, the GloVe algorithm
has additional benefits over word2vec in that the algorithm is more easily par-
allelized. GloVe word embedding matrices can be downloaded from https://
nlp.stanford.edu/projects/glove/. From this website, the 300 dimension word
vectors containing 400 thousand vocabularies, trained over 6 billion tokens
appearing in theWikipedia corpus, have been downloaded. The algorithm used
for this particular word embedding is to minimize a cost function, which has
the form

J =
|V |∑
s=1

|V |∑
t=1

�(Ms,t)
(
ws · w̃t + bs + b̃t − log (Ms,t + 1)

)2
,

where |V | is the size of the vocabulary, bs, b̃t are bias terms,Ms,t are entries of
the co-occurrence matrix for all the words found in the corpus over which the
algorithm is being applied, ws and w̃t are the word embeddings corresponding
to the position in the co-occurrence matrixMs,t, and � is a weighting function:

�(x)=
{
(x/xmax)ξ , if x< xmax,
1, otherwise.

with xmax = 100 and ξ = 3/4. The motivation for ξ = 3/4 is empirical, and with
this choice of the parameter, the performance of the model happens to improve
when compared to ξ = 1. In practice, we may have any 0< ξ < 1. See Figure 3.
The reader may understand this is a way to give more weight to rare word
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FIGURE 3: Plot of �(x) for different values of ξ , with xmax = 100.

combinations found in the corpus. Intuitively, the co-occurrence matrix Ms,t

records how often two words occur together in the training corpus.
The algorithm attempts to find a word embedding for each word that gives

a dot product that is close to the transformed co-occurrence matrix entry of the
word combination. The resulting word embedding gives a large dot product for
those combinations of words that have a high co-occurrence matrix entry, and
a low dot product for those combinations of words that correspond to zero
matrix entries. Note that most of the entries of the matrix would be zeros. For
additional details on the GloVe algorithm, we refer to the original paper by
Pennington et al. (2014).

Word embedding matrices obtained this way have numerous applications.
In the natural language processing literature, word embeddings are used to
construct neural networks that can predict missing words in sentences, or trans-
late sentences in one language to another. Applications in the actuarial science
literature is new, best to our knowledge. In this paper, we focus on the appli-
cation of word embeddings in an insurance claims analysis context, assuming
that a good word embedding is given. For this, we utilize the concept of word
similarities, as explained in Section 3.2.

3.2. Word similarities

Once the word vectors are obtained using approaches outlined in Section 3.1,
explanatory variables can be formed using cosine similarity of words. The
cosine similarity between two words a and b with nonzero vector represen-
tations is given by

simcos(a, b)= a · b
||a||2 · ||b||2 .

One may think geometrically, and interpret the cosine between two unit vectors
as the dot product of the two vectors. The dot product ranges between −1 and
1, with 1 indicating identical vectors and −1 indicating two vectors that point
in the opposite direction. Now consider two phrases D1 = (a1, a2, . . . , aS) and
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D2 = (b1, b2, . . . , bT ). Hence, a phrase is simply a sequence of words. Goldberg
(2017) suggests using the similarity metric

sim∗
cos(D1,D2)=

S∑
s=1

T∑
t=1

simcos (as, bt).

Essentially this metric assumes the vectors within a phrase can be added to
form a vector representing the entire phrase. We tried using this metric, and
discovered that the results could be improved using a different metric. Hence,
in this paper, we use the similarity metric

simcos(D1,D2)= max
s=1,...,S

(
max
t=1,...,T

(
simcos(as, bt)

))
.

Thus, the cosine similarity between two phrases corresponds to the maxi-
mum cosine similarity between any two words found within the phrases. In
particular, the similarity between a single word a and D= (b1, b2, . . . , bS) is
given by

simcos(a,D)= max
s=1,...,S

(
simcos(a, bs)

)
.

Defining the features this way is equivalent to max-pooling the features of a
one-dimensional convolutional neural network (CNN). Max-pooling tends to
work better than alternatives such as average pooling, as explained in page 120
of Chollet and Allaire (2018). When used with a single word a, the similar-
ity will be 1 if the particular word appears in the claim description. Hence, in
some sense, the similarity can be thought of as a detector of whether a par-
ticular word or concept appears in the claim description. This provides more
interpretability, as it is a generalization of indicators for word appearance. In
Section 4, we demonstrate that using cosine similarities result in an improve-
ment in the predictive accuracy in the claims classification task, compared to
when word appearance indicators are used.

Note that we are not assuming that every word appearing in the LGPIF
would appear in the word embedding matrix. Those words not appearing in the
word embedding matrix could not be used as a word element in a description
nor a search key under the current framework of our paper. Hence those words
not found in the word embedding matrix are dropped from the model.

4. APPLICATIONS

In this section, we demonstrate how the explanatory variables extracted from
textual data can be used in specific models. We provide two examples: an
example in claims classification and an example in risk mitigation. In both
applications, the GAM framework is used as an underlying theme. We selected
the GAM framework for its flexibility in capturing potential nonlinear effects
of the cosine similarities. Word vectors are used in order to improve the
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classification results in all examples. These applications specifically use short
textual descriptions of insurance claims, which may be found in initial reports
of the claims to an insurance claims department. For long textual descrip-
tions or claim adjuster notes, other methods such as RNNs using LSTM cells,
or CNNs with multiple layers, may be preferred. For more details regard-
ing neural network approaches to textual data analyses, see Goodfellow et al.
(2016) and Goldberg (2017). Yet, the simplicity of our approach may make it
attractive for actuaries working with simple textual descriptions of claims.

4.1. Claims classification

4.1.1. Model
In practice, an insurance claims manager would have to classify given claims
based on their properties. This task may be supported with a claims classifica-
tion engine, which would take the claim description as its input, and output the
correct claim category. This motivates our first application of word embedding
models, which is the classification of insurance claims into discrete categories.

The engine would be trained over a training data set, and validated over a
test data set. Within the training data set, we assume category Ji and descrip-
tionDi are observed for each claim i. Thus, the sample consists of observations
{(J1,D1), . . . , (Jn,Dn)}. Note that Di = (wi1,wi2, . . . ,wiq(i)), a description con-
sisting of q(i) words, where q(i) is the number of words consisting the ith
description. We assume that n= n0 + n1 + · · · + njmax ; thus, we imagine that
nine samples each of size n0, n1, . . . , njmax are stacked to form the given sample
of size n. In this paper, jmax = 8. The claim categories for the training sample
and test sample are shown in Table 2. Thus, the response variable Ji takes on
the values 0, . . . , jmax.

A GAM framework can be thought of as a generalized linear model (GLM)
with predictors involving smooth functions. See Hastie and Tibshirani (1990)
and Wood (2017). The explanatory variables, ui, are defined by

ui,k = simcos(wk,Di) · I
(
simcos(wk,Di)≥ ε

)
, k= 1, . . . ,K,

where ε = 0.2 is used, and wk is the kth word used in the model and Di is the
description of the ith claim. For the model, we use a multinomial specification.
We made this choice (as opposed to other classification methods), based on the
fact that the multinomial model provides a framework that is easily generaliz-
able to a GAMmodel. In this case, the probability of observing a specific peril
type j is given by

fi( j)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
/⎛
⎝1+

jmax∑
j′=0

exp
(
ψj′,i

)⎞⎠, for base peril type j= 0,

exp
(
ψj,i

) /⎛
⎝1+

jmax∑
j′=0

exp
(
ψj′,i

)⎞⎠, for peril type 1≤ j ≤ jmax,
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TABLE 2

CLAIM CATEGORIES FOR TRAINING AND VALIDATION DATA SETS.

Misc. Vandalism Fire Lightning Wind Hail Vehicle Water (NW) Water (W)
(Ji = 0) (Ji = 1) (Ji = 2) (Ji = 3) (Ji = 4) (Ji = 5) (Ji = 6) (Ji = 7) (Ji = 8) Total

Training 362 1774 171 832 296 76 852 202 426 4991
Test 103 310 46 123 107 18 227 67 38 1039
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14 G. Y. LEE, S. MANSKI AND T. MAITI

TABLE 3

WORDS USED FOR CLASSIFICATION.

vandalism fire lightning wind hail vehicle water

with

ψj,i = αj +
K∑
k=1

φj,k(ui,k),

where αj is an intercept, and φj,k(k= 1, . . . ,K) may be smooth functions of the
covariate, and K is the number of words used in the model. We denote the base
peril type as miscellaneous claims, and call it j= 0. If we assume the functions
are linear so that estimation time could be saved, then we have

φj,k(ui,k)= ui,kβj,k, k= 1, . . . ,K

and hence

fi( j)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
/⎛
⎝1+

jmax∑
j′=0

exp
(
αj′ + u′

iβ j′
)⎞⎠, for base peril type j= 0,

exp
(
αj + u′

iβ j

)/⎛⎝1+
jmax∑
j′=0

exp
(
αj′ + u′

iβ j′
)⎞⎠, for peril type 1≤ j ≤ jmax.

Here, β j are K-dimensional coefficients. Note that with this choice of φj,k, the
GAM model becomes the GLM model. This simplification is useful for reduc-
ing the computation time, when a large number of explanatory variables are
included in the model.

Table 3 shows the K = 7 words used in the model. The reader may imagine
projecting each claim descriptionDi onto a space represented by K = 7 axes. In
this paper, the feature words have been selected by a human expert with a good
understanding of the data set. In practice, the most frequent words found in the
claim descriptions may be used as the key words. Abbreviated words are valid
choices. In the claims classification problem, our goal is to construct an engine
that gives the best possible classification result, and the focus is less on the
interpretability of the coefficients resulting from the estimation. For applica-
tions such as that found in Section 4.2, the interpretability is more important,
and hence the feature words should be selected more carefully by a human
expert using the engine.

The reader may be curious why a censoring of the cosine similarities is
needed. The reason is that cosine similarities smaller than the threshold is basi-
cally noise. One way to understand this phenomenon is to imagine a search
engine returning results on the Internet. The first few results are highly related
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TABLE 4

CONFUSION MATRIX FOR MULTINOMIAL MODEL.

Predicted category

Actual Water Water
category Misc. Vandalism Fire Lightning Wind Hail Vehicle (NW) (W) Total

Misc. 24 33 1 1 0 0 39 0 5 103
Vandalism 17 267 0 0 2 0 23 0 1 310
Fire 0 2 18 3 0 0 20 2 1 46
Lightning 3 1 0 114 0 1 3 0 1 123
Wind 4 4 2 3 88 2 1 0 3 107
Hail 0 0 0 0 0 17 1 0 0 18
Vehicle 31 5 4 0 0 0 182 2 3 227
Water (NW) 2 4 0 0 0 0 5 4 52 67
Water (W) 5 1 0 0 4 0 0 1 27 38

Total 86 317 25 121 94 20 274 9 93 1039

to the search string that has been entered, but as one goes down the list, more
and more irrelevant results may be observed. These junk results tend to add
noise to the regression result, and hence we censor the cosine similarities with
a threshold ε = 0.2, where the choice of ε is an empirical question. Figure 4 in
Section 4.1.2 shows the classification accuracy as a function of the threshold ε.

4.1.2. Result
The GLM model is fit using the training sample, and tested on the validation
sample. Table 4 shows the confusion matrix for the result of the classification in
the validation sample. For each i, the category with the largest prediction score
is chosen as the predicted category. The reader may observe that the classifica-
tion result is good, based on the fact that the diagonal entries are the largest.
The classification for non-weather-related water damages suffered somewhat,
and the confusion is primarily due to the fact that differentiating them with
weather related water damages is a difficult task. Similar observations may be
made for other peril types as well. Sometimes the allocation to one category
may not be entirely clear to the engine, and in this case misclassification may
happen. For instance, a fire due to lightning may be incorrectly categorized as
fire. Including more words in the model would presumably result in a better
classification engine.

The analysis of classification accuracy is often performed by the receiver
operating characteristic (ROC) curve in the binary classification problem. The
ROC curve is created by plotting the true positive rate against the false positive
rate at various thresholds. The area under the curve is often used as a measure
of how well the classification engine is performing. In the multiple class prob-
lem, numeric measures such as the average accuracy, error rate, and precision
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FIGURE 4: Average accuracy, error rate, and precision in log scale.

are better suited for analyzing the classification accuracy. These quantities are
defined by

Average Accuracy= 1
jmax + 1

jmax∑
j=0

tpj + tnj
tpj + fnj + fpj + tnj

,

Error Rate= 1
jmax + 1

jmax∑
j=0

fpj + fnj
tpj + fnj + fpj + tnj

,

Precision= 1
jmax + 1

jmax∑
j=0

tpj
tpj + fpj

,

where tpj is the number of true positives, tnj is the number of true negatives,
fpj is the number of false positives, fnj is the number of false negatives; see
Sokolova and Lapalme (2009). Figure 4 shows the average accuracy, error rate,
and precision. With ε = 0.2, the average accuracy is 93.62%, the error rate is
6.37%, and the precision is 63.9%. We tested if these numbers changed as the
threshold ε changed.

Figure 4 shows that the average accuracy, error rate, and precision changes
as ε is altered by 0.005. The solid lines show degree 10 splines fit to the exper-
iment data. Notice that when ε = 1 (or in other words when log ε = 0), the
accuracy and precision reduces, and the error rate increases significantly. This
is precisely the case when the cosine similarities boil down to indicator variables
of whether the particular words are found in the claim descriptions (in other
words, when there exists an embedding for at least one word in the description
that is a constant multiple of the keyword). Figure 4 is evidence that the model
matrix based on cosine similarities is outperforming that based on indicators.
Our choice ε = 0.2 is shown as a vertical dotted line at log (0.2)= −1.609. We
emphasize once more that the choice of ε is an empirical question, as the classi-
fication accuracy is not influenced much by the threshold. Moreover, since the
graph is stable on the left-hand side, ε = 0 may also be a reasonable choice, if
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prediction alone is the concern. Yet, for interpretation of the coefficients, we
have chosen a nonzero threshold.

4.2. Risk mitigation

4.2.1. Model
In order to understand the factors that relate with high losses, we assume a
sampling frame in the following form: we assume that the loss amount, the
category of the loss, and the description of the loss are observed. While Ji was a
random variable in Section 4.1, here we assume Ji = j is fixed. Also, we assume
for each category, nj losses are observed.

Let j be the category of the loss, and let Y ∗
j,i be the underlying loss amount,

and Dj,i the description of the ith loss in the jth category. Thus, the data set
consists of distinct samples with observations of the form{

(Y ∗
0,1,D0,1), . . . , (Y ∗

0,n0
,D0,n0 )

}
...{

(Y ∗
jmax,1,Djmax,1), . . . , (Y

∗
jmax,njmax

,Djmax,njmax )
}
.

For a given 0< γ< 1, responses Yj,i are formed by

Yj,i = I(Y ∗
j,i > qj(γ)),

qj(γ)= inf
{
y :P(Y ∗

j ≤ y)≥ γ
}
,

where γ = 0.5 is used to obtain the median for each category. For our analysis,
the empirical quantile has been used for qj(γ). In other words, for any given
loss, Yj,i is an indicator of whether the observed loss Y ∗

j,i is above the 50th per-
centile of losses in that category of loss. Any other quantile could have been
used. For instance, the 95th percentile could have been used. Different quan-
tiles would give different stories, because the definition of a large claim would
be different for each case. The 50th percentile has been arbitrarily selected for
demonstration.

We analyzed the losses for vandalism, fire, wind, vehicle, and the two water
damage categories, omitting lightning, hail, and miscellaneous losses from the
analysis because for the latter three it was difficult to identify keywords that
correspond to large claims. Detailed results are shown for the vandalism peril
type only, in order to limit the number of pages of the paper. The question
is, whether we can understand the factors that are related to response values
Yj,i = 1, corresponding to high losses, through text analysis.

Using the word similarity metric described in Section 3.2, we can create
variables for risk measures of interest. Consider a specific description of a claim
in a given category. Suppose a modeler is interested in creating a risk metric
corresponding to a word wj,k, k= 1, . . . ,Kj (Kj: number of risk metrics in cat-
egory j). Suppose an insurance claim is described by the phrase Di, for the ith
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TABLE 5

SUMMARY STATISTICS OF EXPLANATORY VARIABLES
(VANDALISM MODEL).

Min. Median Mean Max.

laptop 0.000 0.000 0.130 1.000
graffiti 0.000 0.520 0.424 1.000
window 0.000 0.246 0.348 1.000
shelter 0.000 0.221 0.187 1.000
pool 0.000 0.260 0.209 1.000

observation, i= 1, . . . , n, where n is the number of claims found in the data set.
We create a variable by

uj,i,k = simcos(wj,k,Di) · I
(
simcos(wj,k,Di)≥ εj

)
for a threshold εj. In this paper, εj = 0.2 is chosen for each j. Thus, uj,i,k is the
cosine similarity between a search word wj,k and the description of the claim
Di, with a censoring below a certain similarity level. For example, the mod-
eler may be interested in the risk metric graffiti. The modeler may be interested
in the relationship between this risk metric, and a response variable of inter-
est, say the magnitude of loss. If the metric has a high correlation with large
losses, then attention should be given to the particular risk metric in order to
mitigate the risk inherent in this metric. In this case, the modeler may create
a column vector for graffiti. For a particular response, say the likelihood of a
high vandalism claim, a modeler may have a set of risk metrics of interest, say
graffiti, laptop, window, shelter, pool (In this case, Kj = 5). This gives a matrix
of Kj explanatory variables, which can be used in standard regression models.
Table 5 summarizes the explanatory variables used for the vandalism model.

For category j (this section will focus on the vandalism category in particu-
lar), given a claim i, the GAMmodel for each peril type can be specified as

g
{
E(Yj,i)

}= αj +
Kj∑
k=1

φj,k(uj,i,k),

where

g(μj,i)= log
(

μj,i

1−μj,i

)
,

and αj is the coefficient for the intercept, and φj,k are smooth functions of the
covariates uj,i,k, subject to the constraint such that

∑n
i=1 φj,k(uj,i,k)= 0. In other

words, a logit link is used since Yj,i is a binary variable taking on the value of 1
or 0. We have

μj,i =
exp (x′

j,iβ j)

1+ exp (x′
j,iβ j)

, V (μj,i)=μj,i(1−μj,i).
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Let the matrix X j include transformed columns representing the spline bases
for the φj,k. For this study, a second-order B-spline basis with three terms is
used. In this case, the design matrix Xj can be constructed by first forming the
matrix

�j,k =

⎡
⎢⎢⎢⎢⎣
B1

1(uj,1,k) B
1
2(uj,1,k) B

1
3(uj,1,k)

B1
1(uj,2,k) B

1
2(uj,2,k) B

1
3(uj,2,k)

...
...

...
B1

1(uj,n,k) B
1
2(uj,n,k) B

1
3(uj,n,k)

⎤
⎥⎥⎥⎥⎦, k= 1, . . .Kj,

where Bm
l (u) are the B-spline basis functions, presented in Wood (2017). Then

the columns are transformed using QR factorization, in order to impose the
identifiability constraint. This involves decomposing each vector �T

j,k1 into the
form

�T
j,k1= [

Qj,k,1 Qj,k,2

] [Rj,k

0

]

and then taking Qj,k,2 for k= 1, . . . ,Kj to form the design matrix

Xj =
[
1; �j,1Qj,1,2; �j,2Qj,2,2; . . . �j,KjQj,Kj ,2

]
.

This ensures that an intercept is included in the design, and also allows the
basis functions φj,k to satisfy

∑n
i=1 φj,k(uj,i,k)= 0. The idea of P-IRLS (Penalized

Iteratively Reweighted Least Squares) is that a weight matrix is adjusted
each time the algorithm iterates until convergence. The algorithm follows the
following steps:

1. Given the current Xjβ
[h]
j , calculate the diagonal matrixW [h]

j

W [h]
j,ii =

[
G[h]
j,ii

2
V

(
μ

[h]
j,i

)]−1

and

z[h]j =G [h]
j

(
yj − μ

[h]
j

)
+X jβ

[h]
j ,

where G [h]
j is a diagonal matrix satisfying G[h]

j,ii = g′
(
μ

[h]
j,i

)
and μ

[h]
j,i =

g−1
(
Xjβ

[h]
j

)
.

2. Then minimize∥∥∥∥
√
W [h]

j

(
z[h]j −X jβ j

)∥∥∥∥
2

+
Kj∑
k=1

λj,kβ
T
j Q

T
j,k,2Sj,kQj,k,2β j

with respect to β j.
3. Repeat Steps 1 and 2 until convergence.
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Here, h is the iteration index, and Sj,k are matrices designed to penalize the
roughness of the smooth functions. In this paper, we used the difference penalty

Sj,k =DTD, where D=
[−1 1 0

0 −1 1

]
.

The λj,k are selected by generalized cross-validation. Cross-validation is applied
to a subset of the training sample corresponding to each peril type. This
involves minimizing the generalized cross-validation score

Vj = nj
∑nj

i=1 ( yj,i − ŷj,i)2

[nj − tr(Aj)]2
,

where Aj is the influence matrix for the jth category. For details of the the-
ory behind cross-validation, we reference Wood (2017). The above procedure
is performed for each j, where in our work each of the following peril types
are considered: vandalism, fire, wind, vehicle, water (non-weather), and water
(weather). GAMs are implemented in the R programming language via pack-
ages such as gam and mgcv. In this paper, parameters are estimated using the
mgcv R package, implemented by the author of Wood (2017). We chose this
package because it provides a convenient interface regarding the choice of basis
functions and graphical outputs.

4.2.2. Result
In this section, we present the analysis results for the vandalism category. For
the vandalism category, explanatory variables laptop, graffiti, window, shelter,
and pool were included in the GAM model. Among these, laptop turns out
to have a positive relationship with high losses. Figure 5 shows the shape of
the smooth functions φj,k, j= 1, k= 1, . . . , 5, as the explanatory variable varies
from 0 to 1. The shaded regions in Figure 5 illustrate the 95% credible intervals
of the smooth functions at each point on the curve.

Notice that data for large values of cosines are scarce, hence the credible
interval widens for large values of the explanatory variables. Figure 6 shows
the words with highest cosine similarity with laptop, which turns out to be pos-
itively related with high losses. Presumably, vandalisms and thefts to laptops,
computers, and portables turn out to result in relatively high losses within the
vandalism category. Note that vandalisms are small frequent losses. Although
the loss amounts in this category are small, the frequent nature of the losses
may make it worthwhile to mitigate thefts to laptops. The words in Figure 6 are
not necessarily found in the training data. They are words found in the word
embedding matrices. What we are saying here is that since the word laptop has
a high correlation with large losses, related words such as laptops, computers,
and phones are also suspects for potential high losses, due to their relationship
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FIGURE 5: GAM model plots for vandalism.
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FIGURE 6: Words that relate with high vandalism losses.

to the word laptop. This type of chart helps an insurance claims department to
learn which type of property to focus on, when mitigating risk.

4.2.3. Model diagnostic
Table 6 provides a summary of the GAMmodels. The χ 2 statistic reported for
each smooth function is based on Wood (2013), or pages 305–308 of Wood
(2017). Essentially, this tests the hypothesis

H0 : φj,k(u)= 0

for all u in the range of the cosine similarities for category j. A high p value
would indicate that the function φj,k is not needed in the model. The smooth
functions for vandalism all turn out to be significant, according to Table 6.
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TABLE 6

GAM MODEL SUMMARY (VANDALISM MODEL).

Chi.sq p value

s (laptop) 32.560 0.000
s (graffiti) 39.250 0.000
s (window) 47.430 0.000
s (shelter) 132.930 0.000
s (pool) 9.020 0.001
R-sq. (adj) 0.206

5. CONCLUDING REMARKS

In this paper, we introduced a framework for incorporating textual data
into insurance claims modeling, and considered its applications in claims
management processes. An insurance claims representative is responsible for
investigating the claim, in order to determine the handling process. In this
paper, we explored the use of word similarities as a tool for modeling insur-
ance claims and mitigating insurance risks. Our results demonstrate how text
mining technology can be incorporated into a traditional regression analysis.
The methodology is applicable in many different areas of applications, where
textual data arises. Possible applications of our approach for an insurance risk
manager may include the following:

• classification of claims based on textual descriptions of the claims,
• classification of policyholders based on textual descriptions of the policy-

holders,
• prediction of insurance claims at the claim level,
• prediction of insurance claims at the policyholder level,
• analysis of insurance claims and risk mitigation.

We explored the LGPIF data in the form of case studies to understand
the factors that relate with high insurance losses, classify insurance claims,
and model the loss amounts using parametric distributions involving covari-
ates derived from textual information. We make some remarks on the current
limitations of our framework, where potential improvements can be made.

• Under the current framework, words not found in the word embedding
matrix cannot be used in the modeling.

• The threshold ε is selected using heuristics by a human expert, under the
current framework.

• Because predetermined word embedding matrices are limited to one-grams
(single words) at the time the paper is being written, the incorporation of
n-grams (use of phrases longer than one word as a search key) remains an
open question.
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• Further linguistic barriers may exist, if the textual descriptions are longer
than those appearing in the data set used for this paper. Examples may be
polysemy, false friends, and compound words.

• In order to use the proposed method, insurers that focus on specific insur-
ance segments may be constrained to build their own word embedding
matrices, as the terms appearing in the claim descriptions may be specific
to the field. For example, a medical insurer may find GloVe insufficient, and
may need a word embedding matrix trained on medical terms in order to use
our proposed approach.

Economic losses due to property damage caused by perils including fire,
lightning, wind, hail, or vandalism have vast implications to our society.
Understanding the nature of property damage can improve our readiness and
contribute to minimizing the losses. We have illustrated a way to help realize
this goal using a new analysis method, which, to the best of our knowledge, has
not been attempted before in the actuarial literature. We believe our methodol-
ogy may help broaden the horizon of empirical research, and contribute to the
advancement of the understanding of our world and the risks residing within it.
In addition, we believe that our approach will improve the claim handling pro-
cedures of insurance claims departments. Illustrative R code is available from
the authors upon request.
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