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It follows from known results that every regular tripartite hypergraph of positive degree,

with n vertices in each class, has matching number at least n/2. This bound is best

possible, and the extremal configuration is unique. Here we prove a stability version of

this statement, establishing that every regular tripartite hypergraph with matching number

at most (1 + ε)n/2 is close in structure to the extremal configuration, where ‘closeness’ is

measured by an explicit function of ε.
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1. Introduction

One of the simplest statements about matchings in bipartite graphs is the following

corollary of Hall’s theorem.

Theorem 1.1. Let G be a bipartite regular multigraph of positive degree. Then G has a

perfect matching.

Our principal aim in this paper is to study the hypergraph analogue of this result. A

k-uniform multihypergraph (in which multiple edges are allowed), which we will call a

k-graph for short, is k-partite if its vertices can be partitioned into k classes V1, . . . , Vk

such that every edge has exactly one vertex from each class Vi.

In this paper, we will limit our interests to 3-partite 3-graphs. For these, we have the

following version of Theorem 1.1.

Theorem 1.2. Let H be a regular 3-partite 3-graph of positive degree, with n vertices in

each class. Then H has a matching of size at least n/2.
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This is an immediate consequence of a theorem of Aharoni [2], which verified the

3-partite case of a famous old conjecture due to Ryser [12] relating the minimum size

τ(H) of a vertex cover of H (a set of vertices meeting all edges) to the maximum size ν(H)

of a matching in H.

Theorem 1.3 (Aharoni’s theorem). Let H be a 3-partite 3-graph. Then τ(H) � 2ν(H).

Proof of Theorem 1.2. Let H be an r-regular 3-partite 3-graph with n vertices in each

class. Then H has rn edges, but each vertex only intersects r of them, hence any vertex

cover must have at least rn/r = n vertices, so τ(H) � n. By Aharoni’s theorem, we have

ν(H) � τ(H)/2 � n/2, which proves the theorem.

Theorem 1.2 is best possible, as can be seen by the following example. The truncated

Fano plane F (also called the Pasch configuration) is the 3-partite 3-graph with six vertices

x1, x2, x3, y1, y2, y3 and four edges x1x2x3, x1y2y3, y1x2y3, y1y2x3, where the sets {xi, yi} are

the vertex classes. It is easy to check that F is 2-regular and ν(F) = 1. For a hypergraph

H and an integer s, we let s · H denote the hypergraph with the same vertices as H and

with each edge replaced by s parallel copies.

If H consists of n/2 disjoint copies of (r/2) · F , then ν(H) = n/2, illustrating the

tightness of Theorem 1.2 for every even r and every even n. This is the unique extremal

configuration, a fact which follows from [8] in which the extremal hypergraphs for

Aharoni’s theorem are characterized.

Our main aim in this paper is to prove the following stability version of Theorem 1.2.

Theorem 1.4. Let r � 2. Let H be an r-regular 3-partite 3-graph with n vertices in each

class, and let ε � 0. If ν(H) � (1 + ε)n/2, then H has at least (1 − (22r − 77/3)ε)n/2 com-

ponents that are copies of (r/2) · F .

It is also possible to weaken the condition that the hypergraph is regular, resulting in

a weaker conclusion.

Theorem 1.5. Let r � 2. Let H be a 3-partite 3-graph with vertex classes A, B and C , such

that |A| = n, and let ε � 0. Suppose that every vertex of A has degree at least r, and that

every vertex in B ∪ C has degree at most r. If ν(H) � (1 + ε)n/2, then H contains at least

(1 − (72r2 − 150r + 77)ε)n/2 disjoint copies of (r/2) · F .

Theorem 1.5 may be viewed as a direct hypergraph analogue of the corresponding

weakening of Theorem 1.1, with the condition that the minimum degree of vertices in

vertex class A is at least the maximum degree of vertices in class B, and which concludes

that the bipartite graph has a matching of size |A|.
To prove Theorems 1.4 and 1.5 we rely on a version of Hall’s theorem for hypergraphs,

that uses a graph parameter η whose definition is topological (the connectedness of the

independence complex). However, the only properties of η we will need come from known

theorems which can be stated in purely graph-theoretical terms. Thus none of our proofs
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will make any explicit reference to topology. This background material is described in

Section 2. In Section 3 we prove a new lower bound on η for line graphs of bipartite

multigraphs, which will form the basis of our work in this paper. Section 4 contains the

proofs of Theorems 1.4 and 1.5, and in Section 5 we describe some constructions that

show a limit on the amount by which our theorems could be improved. We close by

mentioning a few open problems.

2. Tools

We begin by describing the version of Hall’s theorem for k-partite k-graphs that we will

need. In this setting, the analogue of the neighbourhood of a vertex subset S (which in the

bipartite graph case is just an independent set of vertices) is a (k − 1)-partite (k − 1)-graph

called the link of S .

Definition. Let H be a k-partite k-graph with vertex classes V1, . . . , Vk , and let S ⊆ Vi.

The link of S is the (k − 1)-partite (k − 1)-graph lkS whose vertex classes are the sets

{V1, . . . , Vk} \ {Vi}, and whose edges are {e − v : v ∈ S, v ∈ e ∈ E(H)}.

The generalization of Hall’s theorem to k-partite k-graphs [4, 6] can be stated in terms of

a number of parameters of the link hypergraphs, for instance their matching numbers, or,

as in its original formulation [6], their matching width (the maximum among all matchings

of the size of the smallest matching intersecting each of its edges). The formulation we use

here is based on the parameter η(J), which is defined to be the topological connectedness

of the independence complex of the graph J plus 2. (We add 2 in order to make η additive

under disjoint union, which makes practically every formula involving it simpler. See e.g.

[5] for a discussion of this parameter.) Our graphs J will usually be subgraphs of the line

graph L(G) of a bipartite graph G. The relevant version of Hall’s theorem for hypergraphs

is as follows.

Theorem 2.1 (Hall’s theorem for hypergraphs). Let H be a k-partite k-graph with vertex

classes V1, . . . , Vk , and let d � 0. If η(L(lkS)) � |S | − d for every subset S ⊆ Vi, then H has

a matching of size at least |Vi| − d.

The only properties of η we will need for our purposes are contained in the next three

statements (and in fact the third follows easily from the second).

The first lemma is derived from basic properties of connectedness that can be found in

any textbook on topology.

Lemma 2.2.

(1) If the graph J has no vertices, then η(J) = 0.

(2) If the graph J contains an isolated vertex, then η(J) = ∞.

(3) If J and K are disjoint graphs, then

η(J ∪ K) � η(J) + η(K).
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Note that the last part implies in particular that adding any non-empty component to

a graph increases the value of η by at least 1.

The next statement is Meshulam’s theorem [9], which relates η(J) to that of two

subgraphs of J , obtained by deleting an edge, or by what we call ‘exploding’ an edge. If

J is a graph and e ∈ E(J) is an edge, then we denote the edge deletion of e by J − e. We

denote the edge explosion of e by J � e, which is the subgraph of J that remains after

deleting both endpoints of e and all their neighbours.

Theorem 2.3 (Meshulam’s theorem). If J is a graph and e ∈ E(J), then

η(J) � min(η(J − e), η(J � e) + 1).

This result (in a different formulation) is proved in [9]. For more on Meshulam’s

theorem see e.g. [1] and [11, Section 5.3].

Various lower bounds on η(J) in terms of other graph parameters have been proved:

see e.g. [5, 9]. Of particular interest to us is the following bound for line graphs (which

was used for example in [6] but also follows easily from Theorem 2.3).

Theorem 2.4. If G is a multigraph, then

η(L(G)) � ν(G)

2
.

In the next section, we will apply Meshulam’s theorem to obtain an alternate version

of the above bound for bipartite graphs, which takes into account the maximum degree

as well as the matching number.

3. The connectedness of line graphs of bipartite multigraphs

In order to state and prove our results, we will need some definitions first.

If G is a multigraph and J ⊆ L(G) is a subgraph of the line graph of G, we let GJ

denote the subgraph of G with V (GJ) = V (G) and E(GJ) = V (J). Note that this makes

sense, as the vertices of J are a subset of the edges of G.

An r-regular C4 is a bipartite multigraph consisting of a cycle of length 4 and edges

parallel to the edges of the cycle so that every vertex has degree r.

An edge e ∈ E(J) is called decouplable if η(J − e) � η(J). It is called explodable if η(J �

e) � η(J) − 1. Note that by Theorem 2.3, every edge is either decouplable or explodable.

A graph is called reduced if no edge is decouplable (hence every edge is explodable). A

subgraph J ′ ⊆ J is called a reduction of J if J ′ is reduced, V (J ′) = V (J), and η(J ′) � η(J).

Note that one may obtain a reduction of a graph J by iteratively deleting decouplable

edges until there are none left.

In the proof of our theorem, we will be applying Meshulam’s theorem to edges of the

line graph, but will be regularly referring back to the original bipartite graph, whose edges

are vertices of the line graph. To help eliminate confusion among vertices of the graph G,
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vertices of the line graph L(G), edges of the graph, and edges of the line graph, we will

use different terminology. Vertices and edges will always refer to vertices and edges of the

original graph, while edges of the line graph will be called adjacencies, or J-adjacencies

for J a subgraph of the line graph. If a pair of edges of the graph intersect, they will be

adjacent in the line graph, but not necessarily J-adjacent.

When talking about decouplable or explodable edges of the line graph, rather than

say something like ‘decouplable adjacency’, we will often refer to these as decouplable

(explodable) pairs of edges (of the original graph).

Our main aim in this section is to prove the following theorem.

Theorem 3.1. Let G be a bipartite multigraph with maximum degree r � 2 that does not

contain an r-regular C4 component, and let J ⊆ L(G). Then

η(J) � (2r − 3)ν(GJ) + |V (J)|
6r − 7

.

Note that this is an improvement over the bound on η(L(G)) given in Theorem 2.4

whenever |E(G)| � ((2r − 1)/2)ν(G), and agrees with the bound when equality holds. In

order to prove it, we will need the following lemma.

Lemma 3.2. Let G be a bipartite multigraph with maximum degree r � 2 that does not

contain an r-regular C4 component, and let J ⊆ L(G) be reduced and non-empty. Then if

η(J) �= ∞, J contains an explodable pair me of one of the following types:

(1) ν(GJ�me) � ν(GJ) − 1 and |V (J � me)| � |V (J)| − (3r − 2),

(2) ν(GJ�me) � ν(GJ) − 2 and |V (J � me)| � |V (J)| − (2r − 1), or

(3) every reduction J ′ of J � me contains an explodable pair m′e′ such that ν(GJ ′�m′e′) �
ν(GJ) − 3, and |V (J ′

� m′e′)| � |V (J)| − (6r − 5).

Proof of Theorem 3.1 from Lemma 3.2. Let G be a bipartite multigraph with maximum

degree r � 2 that does not contain an r-regular C4 component, and let J ⊆ L(G). Also,

suppose that |V (J)| � ((2r − 1)/2)ν(GJ) (otherwise we may simply apply Theorem 2.4 to

prove our theorem).

We construct a sequence of subgraphs J0, . . . , Jn with J0 = J and Jn having no edges, in

which Ji is obtained from Ji−1 by either deleting a decouplable Ji-adjacency or exploding

an explodable pair of edges in GJi . This means that η(Ji−1) � η(Ji), with strict inequality

whenever we perform an explosion.

We start by iteratively deleting decouplable adjacencies until we have a reduced

subgraph Jk ⊆ J . Applying Lemma 3.2, we find that there is an explodable pair of

type (1), (2) or (3). We explode this pair to arrive at Jk+1. In the case of an explosion of

type (3), we then iteratively decouple decouplable pairs to arrive at a reduction J ′ of Jk+1

and then explode m′e′. We continue in this fashion until Jn has no edges.

In the end, we will get a bound η(J) � t + η(Jn), where t is the number of explosions

we perform in the sequence. Let xi denote the number of explosions of type (i). Note

that for every explosion of type (3), we perform another explosion, so the total number
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of explosions is t = x1 + x2 + 2x3. If Jn has a vertex, it is isolated, which would show

η(J) = ∞, so we may assume that Jn is the empty graph, and so ν(GJn ) = 0 and η(Jn) = 0.

Since the matching number is only affected by explosions, we thus obtain a bound

x1 + 2x2 + 3x3 � ν(GJ),

since explosions of type (i) decrease the matching number by at most i. Similarly, these

explosions must reduce the vertex number to |V (Jn)| = 0, giving us the bound

(3r − 2)x1 + (2r − 1)x2 + (6r − 5)x3 � |V (J)|.

Since we do not assume any control over the values of xi, we suppose that we obtain

the worst bound, where t = x1 + x2 + 2x3 is minimized among all triples of non-negative

integers (x1, x2, x3) satisfying the above two constraints. Relaxing the integer program to

a linear program gives us the bound in the theorem, since for |V (J)| � ((2r − 1)/2)ν(GJ),

the minimum is obtained at

x1 = 0, x2 =
(6r − 5)ν(GJ) − 3|V (J)|

6r − 7
, x3 =

2|V (J)| − (2r − 1)ν(GJ)

6r − 7
,

with a value of

tmin =
(2r − 3)ν(GJ) + |V (J)|

6r − 7
.

This can be confirmed by considering the dual linear program, which is to maximize

ν(GJ)y1 + |V (J)|y2 among positive real pairs (y1, y2) subject to the constraints

y1 + (3r − 2)y2 � 1,

2y1 + (2r − 1)y2 � 1,

3y1 + (6r − 5)y2 � 2.

It is enough to note that

y1 =
2r − 3

6r − 7
, y2 =

1

6r − 7

is feasible for the dual program, and its value is ν(GJ)y1 + |V (J)|y2 = tmin.

Proof of Lemma 3.2. Let G be a bipartite multigraph with maximum degree r � 2, and

let J ⊆ L(G) be reduced and contain an edge. Suppose that there are no explodable pairs

of any of the types (1), (2) and (3). We aim to show that G contains an r-regular C4

component.

Lemma 3.3. Each explosion in J destroys at most 3r − 2 edges of G.

Proof. Any pair of intersecting edges have at most three vertices in which to meet other

edges. Thus, as G has maximum degree r, there are at most 3r − 2 edges incident to those

vertices, because the two edges in question count towards the degree of two of these

vertices each. Thus, every explosion that reduces the matching number by at most 1 is

automatically an explosion of type (1).
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Lemma 3.4. No two edges that are parallel are J-adjacent.

Proof. If e and f are parallel, then ν(GJ�ef) � ν(GJ) − 2, and |V (J � ef)| � |V (J)| −
(2r − 2), so this would be an explosion of type (2), which does not exist. Hence e and f

cannot be J-adjacent, as J is reduced.

Lemma 3.5. If M ⊆ V (J) is a maximum matching of GJ , and e ∈ V (J) \ M is J-adjacent

to an edge of M, then e is J-adjacent to two edges of M (one at each endpoint of e).

Proof. Suppose e is J-adjacent to only m ∈ M, but no other edge of M. Then exploding

me would destroy only one edge of M, which reduces the matching number by at most

1. Thus by Lemma 3.3 this would be an explosion of type (1), which we assume not to

exist. Thus, e must be J-adjacent to a second edge of M.

We now make a few definitions, which will provide the setup for the two upcoming

Lemmas 3.6 and 3.7.

For a maximum matching M ⊆ V (J) and two edges m ∈ M, and e ∈ V (J) \ M with

me ∈ E(J), define P(M,m, e) to be the set of edges in V (J) contained in some M-alternating

path in GJ starting with m, e. Let A be the vertex class of G containing the starting point

of these paths, and let B be the other. Let Y ⊆ A be the set of vertices in edges of

P(M,m, e) contained in A, but not including the vertices of m and e. Let X ⊆ B be the set

of vertices in edges of P(M,m, e) contained in B, this time including the vertex in m ∩ e.

Let m′ ∈ M be the other edge of M besides m that is J-adjacent to e, which is guaranteed

to exist by Lemma 3.5.

Lemma 3.6. All vertices of Y are M-saturated.

Proof. Suppose y ∈ Y is M-unsaturated. By the definition of Y , there is an M-alternating

path in GJ starting m, e, and ending in vertex y. Exploding me destroys two edges m and

m′ of M, since it is not of type (1). However, for M ′ = M \ {m,m′}, we have that the rest

of the path ending in y is an M ′-augmenting path in GJ�me, which means that in fact

ν(GJ�me) � ν(GJ) − 1, and therefore the explosion of me is of type (1) after all. This is a

contradiction, thus no y ∈ Y can be M-unsaturated.

Lemma 3.7. Every edge of M with a vertex in Y is J-adjacent in Y to an edge whose

other endpoint is not in X.

Proof. Consider what happens when we explode me. This destroys m and m′, and destroys

at most 3r − 2 edges in total by Lemma 3.3. Let d be the vertex of GJ in m′ ∩ X. Let J ′

be a reduction of J � me, and let M ′ = M \ {m,m′}. We will make use of the fact that me

is not an explosion of type (3). This means that J ′ does not contain a pair of J ′-adjacent

edges whose explosion would reduce the matching number by at most 1 and destroy at

most 3r − 3 edges.

To prove Lemma 3.7 we establish two claims.
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Claim 3.8. All edges of M ′ with a vertex in Y are not J ′-adjacent to any edge preceding

or succeeding them in an M ′-alternating path in GJ ′ starting at d.

Proof. Consider any M ′-alternating path P in GJ ′ starting at d. Since these are all parts

of the M-alternating paths in GJ starting with m, e, we see that every edge of M ′ incident

to X is in one of these paths. Note that d has degree at most r − 1 in GJ ′ , since m′ was

incident to it and was destroyed in the explosion of me. Denote the edges of the path P

by e1, m1, e2, m2, . . . , so that mi ∈ M ′ and e1 is incident to d. Recalling that J ′ is reduced,

we claim that none of the pairs in the path are J ′-adjacent. Indeed, e1 and m1 are not,

because if they were explodable, this would make me an explosion of type (3). To see this,

note that since we only destroy one edge of M ′ in the second explosion, we reduce ν(G′
J)

by at most 1, and since d has degree at most r − 1, we destroy at most 3r − 3 edges in

the second explosion. This kind of explosion has been ruled out. Neither are m1 and e2

J ′-adjacent, since exploding this pair would not destroy e1, which means we could add

it to M ′ \ {m1, m2} to have a matching of size ν(G′
J) − 1 after the second explosion, and

again we destroy at most 3r − 3 edges incident to e1 ∩ m1, since we do not destroy e1.

This would again make me an explosion of type (3), which contradicts our assumptions.

Continuing in this fashion along the path, we see that ei and mi are not J ′-adjacent,

because exploding this pair would reduce the matching number by at most 1, as ei is not

J ′-adjacent to mi−1, and for the same reason, we only destroy 3r − 3 edges in the second

explosion, which would make me an explosion of type (3). Next, we see that mi and ei+1 are

not J ′-adjacent, because exploding this pair would leave an (M ′ \ {mi, mi+1})-augmenting

path e1, m1, . . . , ei, so even though two edges of M ′ are destroyed, the matching number

decreases only by 1, if at all, and again, we only destroy 3r − 3 edges in this second

explosion because ei is not destroyed. This proves the claim.

Claim 3.9. No edge of M ′ incident to Y is J ′-adjacent to an edge between X and Y .

Proof. Suppose e′ ∈ V (J ′) \ M ′ that joins X and Y is J ′-adjacent to some m′′ ∈ M ′

incident to Y . We claim that if m′′e′ were explodable, then me would be an explosion of

type (3), and hence m′′ and e′ are not J ′-adjacent, as J ′ is reduced.

If e′ is incident to b ∈ m ∩ e, then exploding m′′e′ reduces ν(GJ ′ ) by only 1 and destroys

at most 3r − 4 edges, since m and e are already gone. This would make m an explosion

of type (3). If e′ is incident to d, then it is the predecessor of m′′ on some M ′-alternating

path, so they are not J ′-adjacent by Claim 3.8. Hence we may assume e′ is incident to a

vertex of X \ {b, d}. If it is parallel to m′′, then exploding m′′e′ would destroy one edge of

M ′ and at most 2r − 2 edges, which would again make me a type (3) explosion.

Therefore e′ meets an edge m′′′ ∈ M ′ in a vertex of X \ {b, d}. If e′ is not J ′-adjacent to

m′′′ then m′′′ �= m′′ and exploding m′′e′ would reduce the matching number by at most one

and destroy at most 3r − 3 edges, making me a type (3) explosion. Hence m′′′e′ ∈ E(J ′).

By Lemma 3.6 we know e′ shares its Y -vertex with some m∗ ∈ M ′. If e′ is not J ′-adjacent

to m∗ then in the same way exploding m′′′e′ shows me is a type (3) explosion. Hence (by

renaming if necessary) we may assume e′ is J ′-adjacent to m′′ ∈ M ′ at Y , and to m′′′ �= m′′

at X.
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If there is an M ′-alternating path from d to m′′′ that does not use m′′, appending e′

and m′′ to this path shows by Claim 3.8 that e′ and m′′ are not J ′-adjacent, which is a

contradiction. If there is no such path, then e′ together with the part between m′′ and m′′′,

inclusive, of an M ′-alternating path P from d to m′′′ forms an M ′-alternating cycle. In this

case, let M ′′ be obtained from M ′ by switching on that M ′-alternating cycle. By Claim 3.8,

exploding m′′e′ only destroys one edge of M ′′ (namely e′), so the resulting graph has a

matching of size at least ν(GJ ′ ) − 1. The explosion also fails to destroy the successor of

m′′ on P , so we lose at most 3r − 3 edges in the second explosion, which makes me of

type (3).

Thus every edge of M ′ incident to Y is not J ′-adjacent to any edge between X and Y .

However, none of these edges of M ′ are isolated in J ′, since we have η(J ′) � η(J) − 1 < ∞
(recalling that J ′ was obtained from J by performing one explosion and reducing). This

means that they each must be J ′-adjacent to some edge that is not between X and Y .

If such an edge e∗ is incident to X, we would have an M ′-alternating path going from

d to the matching edge then to e∗, making the other endpoint of e∗ a vertex of Y by

definition. Thus e∗ is not incident to X, which proves Lemma 3.7, since J ′-adjacent implies

J-adjacent.

We now complete the proof of Lemma 3.2.

Choose the triple (M,m, e) consisting of a maximum matching M of GJ and a pair of

J-adjacent edges m ∈ M and e ∈ V (J) \ M so that |P(M,m, e)| is maximized among all

such triples. We claim that m and e are in fact part of an r-regular C4 component of GJ .

Let m′ be the other edge of M that is J-adjacent to e, which exists by Lemma 3.5, and let

the vertices of m, e and m′ be a, b, c and d, with m = ab, e = bc and m′ = cd.

Claim 3.10. Every edge that is J-adjacent to m at a is incident to d.

Proof. Suppose that e′ were such an edge. By Lemma 3.5, it is J-adjacent to another edge

m̂ ∈ M. If e′ ∩ m̂ �⊆ X, then we have a contradiction, as any edge e∗ in P(M,m, e) can be

reached by an M-alternating path starting with m̂, e′, then continuing with m, e, and the

rest of the path that shows e∗ is in P(M,m, e). But m̂ /∈ P(M,m, e), since it is not incident

to X, which runs contrary to the assumption that |P(M,m, e)| is maximum. Therefore, m̂

must be incident to X. If m̂ �= m′, then m̂ is also incident to Y , and so by Lemma 3.7,

it has an edge e′′ J-adjacent to it in Y , which is not incident to X, and by Lemma 3.5,

e′′ is J-adjacent to another edge m̂′ ∈ M. But then P(M, m̂′, e′′) would strictly contain

P(M,m, e). This is because for any edge in P(M,m, e), if the path from m, e containing

it passes through m̂, we can start with m̂′, e′′, m̂ and continue along the path to reach it

from m̂′, e′′. If on the other hand the path from m, e does not include m̂, we can reach it

by starting with m̂′, e′′, m̂, e′, m, e, and continuing along the path. This also contradicts

our choice of (M,m, e). This means the only option is m̂ = m′. Thus e′ is incident to d.

Next, we establish that there is an edge f = ad, which is J-adjacent to m. If there were

no such edge, then exploding me would destroy only edges incident to b and c, of which
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there are at most 2r − 1, since e is counted twice. Since also ν(GJ) would be reduced by

at most 2, this would be an explosion of type (2), which we assume not to exist. Thus

there must be an edge incident to a that is J-adjacent to m, and by Claim 3.10, we have

seen that such an edge must be incident to d.

Now consider the matching M× = M ∪ {e, f} \ {m,m′}, obtained by switching M along

the C4 on abcd. Note that P(M×, e, m) = P(M,m, e) ∪ {f} \ {m′}, since any M-alternating

path starting m, e, m′ can be converted to an M×-alternating path by starting with e, m,

f, and continuing the same way. Therefore this triple is also maximizing, so Claim 3.10

applies with M replaced by M× to show that the only edges J-adjacent to e at c are

parallel to m′.

We now show that m′ and f have no J-neighbours at c or a, respectively, except

those parallel to e and m, respectively. Suppose m′ has a J-neighbour g contradicting this

statement. Then by Lemma 3.5 we see that g has another J-neighbour h ∈ M not among

{m,m′}. But now applying Lemma 3.5 again to g with M replaced by M× tells us that

since g is J-adjacent to h ∈ M× it must also be J-adjacent to e ∈ M×. This contradicts

our finding in the previous paragraph. Thus such a g cannot exist. Similarly, if f has a

J-neighbour g at a that is not parallel to m, then Lemma 3.5 applied first with M× and

then with M leads to a contradiction.

We have therefore shown that none of m, m′, e and f have any J-neighbours incident

to {a, c} that leave the C4 on abdc.

Now suppose that there is an edge incident to d that is not incident to a or c. Such an

edge is disjoint from m and e, so it survives the explosion of me. By what we have proved

above, the explosion of me only destroys edges incident to b and d, of which there are at

most 2r. But since at least one edge incident to d survives, the explosion would destroy

at most 2r − 1 edges, and it clearly only destroys 2 edges of M, hence this would be an

explosion of type (2). Therefore, there are no edges incident to d, except those that go to

a or c. A similar argument, by threatening to explode m′f, shows that there are no edges

incident to b, except those that go to a or c. If any of b or d is not of degree r, then

me would again be an explosion of type (2), so they are both maximum degree vertices.

This forces all edges incident to a and c to be those from b and d by a simple counting

argument. Therefore, abcd form the vertices of an r-regular C4-component of GJ . This

proves the lemma by contraposition.

Corollary 3.11. Let G be a bipartite multigraph with maximum degree r � 2 that contains

at most k components that are r-regular C4. Then

η(L(G)) � (2r − 3)ν(G) + |E(G)| − k

6r − 7
.

Proof. Assume, without loss of generality, that G has exactly k components that are

r-regular C4. Let G′ be equal to G with all its r-regular C4 components removed. We have

|E(G′)| = |E(G)| − 2rk and ν(G′) = ν(G) − 2k. Applying Theorem 3.1 to G′, we have

η(L(G′)) � (2r − 3)ν(G′) + |E(G′)|
6r − 7

.
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Adding k non-empty components to L(G′) will increase its value of η by at least

k by Lemma 2.2, so η(L(G)) � η(L(G′)) + k, and this gives the desired bound via a

straightforward calculation.

We remark that Theorem 3.1 is tight when r = 2, as can be seen by taking G to be

the disjoint union of any number of paths P4 of length 3 and cycles of length 10 (since

η(P4) = 1, and η(C10) = 3).

4. Stability

We have two versions of our stability theorem, which for convenience we restate here.

One is for r-regular 3-partite 3-graphs, and the other has slightly less stringent degree

conditions, which of course results in a weaker bound.

Theorem 4.1. Let r � 2. Let H be an r-regular 3-partite 3-graph with n vertices in each

class, and let ε � 0. If ν(H) � (1 + ε)n/2, then H has at least (1 − (22r − 77/3)ε)n/2 com-

ponents that are (r/2) · F .

Theorem 4.2. Let r � 2. Let H be a 3-partite 3-graph with vertex classes A, B and C , such

that |A| = n, and let ε � 0. Suppose that every vertex of A has degree at least r, and that

every vertex in B ∪ C has degree at most r. If ν(H) � (1 + ε)n/2, then H contains at least

(1 − (72r2 − 150r + 77)ε)n/2 disjoint copies of (r/2) · F .

Our strategy is to use the low matching number to find a subset of each vertex class

whose links have low connectedness. From this, we deduce that each link must have many

r-regular C4 components. We analyse how these can interact and deduce that a number

of them must extend to (r/2) · F . We break the proofs down into several lemmas that

apply in both situations.

Lemma 4.3. Let H be a 3-partite 3-graph with vertex classes A, B and C , such that |A| = n,

and let ε � 0. Suppose that every vertex of A has degree at least r, and that every vertex

in B ∪ C has degree at most r. If ν(H) � (1 + ε)n/2, then lkA contains at least (1 − (6r −
7)ε)n/2 components that are r-regular C4.

Proof. We know that there must be some S ⊆ A such that η(L(lkS)) � |S | − (n − ν(H)),

otherwise H would have a matching larger than ν(H) by Theorem 2.1. Now lkS has

at least r|S | edges and maximum degree at most r, so τ(lkS) � |S |, and so by König’s

theorem it follows from this that ν(lkS) � |S |.
Let k be the number of r-regular C4 components of lkS . By Corollary 3.11, we have

η(L(lkS)) � (2r − 3)ν(lkS) + |E(lkS)| − k

6r − 7

� (2r − 3)|S | + r|S | − k

6r − 7

=
(3r − 3)|S | − k

6r − 7
.
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Combining this with our upper bound, we find

k � (6r − 7)(n − ν(H)) − (3r − 4)|S |

� (6r − 7)

(
n − (1 + ε)

n

2

)
− (3r − 4)n

= (1 − (6r − 7)ε)
n

2
.

Since the vertices of an r-regular C4 have degree r, which is the maximum degree of any

vertex in B ∪ C , no additional edges of lkA intersect any of these components of lkS ,

hence these are indeed components of lkA, which proves our lemma.

We say a subgraph of a link of H hosts an edge e of H if the edge of the link

corresponding to e is present in the subgraph.

Lemma 4.4. Let H be a 3-partite 3-graph, let A be one of its vertex classes, and suppose

that every vertex in A has degree at most r. If an r-regular C4 in lkA does not host two

disjoint edges of H, then the edges it hosts form a copy of (r/2) · F .

Proof. Let e, f, g and h be pairwise non-parallel edges of the r-regular C4 in lkA, so

that e, f and g, h form matchings. Since no pair of edges extend to disjoint edges of H, all

e-parallel and f-parallel edges must meet in the same vertex, and similarly, all g-parallel

and h-parallel edges meet in the same vertex. These, however, must be two different

vertices, since they are incident to 2r edges altogether. Thus, each of these vertices is

incident to r edges, and so there are r total e-parallel and f-parallel edges, and r total

g-parallel and h-parallel edges. To form an r-regular C4, there must be the same number

of e-parallel edges as f-parallel ones, and similarly the same number of g-parallel and

h-parallel edges. Thus there must be r/2 of each, and this forms an (r/2) · F , as desired.

Lemma 4.5. Let H be a 3-partite 3-graph. If an r-regular C4 component K of a link of a

vertex class of H is host to two disjoint edges of H, and all of the vertices of K are part

of r-regular C4 components of the links of the other vertex classes, then K belongs to a

component of H that either

(1) has two vertices in each class and a matching of size 2, or

(2) has four vertices in each class and a matching of size 4.

In particular, K belongs to a component of H with a perfect matching.

Proof. Let V1, V2 and V3 be the vertex classes of H, and suppose that the r-regular C4

component K in question is a component of lkV1.

Let a1a2a3 and b1b2b3 be two disjoint edges of H with ai, bi ∈ Vi and a2, b2, a3 and b3

being the vertices of K . We consider two cases.

Case 1. a1a2 and b1b2 belong to the same r-regular C4 component of lkV3.
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In this case, all edges incident to a1 or b1 are incident to a2 or b2, hence incident to a3

or b3, and vice versa. Thus the ai and bi are the vertices of a component of type (1).

Case 2. a1a2 and b1b2 belong to two different r-regular C4 components of lkV3.

In this case, let the vertices of the components be a1, c1, a2, c2, and b1, d1, b2, d2,

respectively. Now consider lkV2. It has edges a1a3 and b1b3. If a1b3 were an edge of

lkV2, then a3a1b3b1 would be a path in lkV2. By our assumption on the vertices of K ,

we find that {a3, a1, b3, b1} is the vertex set of an r-regular C4 component in lkV2. This

would preclude the existence of any edge between a3 or b3 and c1. But any edge of H
corresponding to c1a2 in lkV3 must be incident to a3 or b3, as seen by looking at lkV1.

This contradiction implies that a1a3 and b1b3 are in separate components of lkV2, and

thus the edges of H corresponding to a2b3 in lkV1 must extend to c1, rather than a1

(these being the only two options given by lkV3). A similar argument shows that edges

corresponding to b2a3 extend to d1. Now by assumption, a3 and b3 are each part of an

r-regular C4 component of lkV2, and given the edges we already have shown to exist, we

know that these are two distinct components, and we know three vertices of each. Denote

the remaining vertices by d3 and c3, respectively, so that a1, d1, a3, d3 are the vertices of

one component, and b1, c1, b3, c3 the vertices of the other component.

Since a3 and c1 are in distinct components of lkV2, we see that all edges of H
corresponding to a2a3 extend to a1 (note that looking at lkV3 shows a1 and c1 were

the only options). Similarly, all edges corresponding to b2b3 extend to b1, all the ones

corresponding to a2b3 extend to c1, and b2a3 to d1. Now in lkV2 there are the edges a1d3

and b1c3. These do not extend to a2 or b2 as seen in lkV1, and hence must extend to c2

and d2, respectively, by considering lkV3. Similarly, the edges c1c3 and d1d3 in lkV2 must

extend to c2 and d2, respectively.

Thus, we have deduced the structure of the subgraph G of H induced by these twelve

vertices. It has four vertices in each class and a matching a1a2a3, b1b2b3, c1c2c3, d1d2d3 of

size 4. All that remains to complete the proof is to show that this is a component of H,

which would make it a component of type (2).

Suppose there were an edge e of H containing a vertex u of G and a vertex v not in G.

Let Vi be the vertex class of u, let Vj be the vertex class of v, and let Vk be the third vertex

class of H. The presence of e would mean that there is an edge uv in lkVk . But since the

parts of G present in the links lkV2 and lkV3 are components of those links, uv cannot

be part of these links, and hence k = 1. Now consider the third vertex w of e, which is in

V1. If w is a vertex of G, then vw is an edge of lkVi of the type we just excluded, and if

w is a vertex not in G, then uw is an edge of lkVj giving us a similar contradiction. Thus

no such edge e can exist, and G is indeed a component of H.

As these cases were exhaustive, the claim follows.

We remark that with the previous three lemmas in hand, it would be a short step to

conclude that any 3-partite 3-graph satisfying the conditions of Theorem 4.1 contains at

least (1 − (30r − 35)ε)n/2 components that are (r/2) · F (see the proof of Theorem 4.1).

In order to get the improved bound stated in the theorem, we will need one more lemma.
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Definition. We say a vertex is Vi-bad if it is part of a component of lkVi that is not an

r-regular C4. Call a vertex bad if it is Vi-bad for some i, and call a vertex good otherwise.

Lemma 4.6. Let H be a 3-partite 3-graph of maximum degree r with vertex classes V1, V2

and V3. Let x denote the number of r-regular C4 components of H that contain exactly one

bad vertex, and let y denote the number containing at least two bad vertices. Then y � x.

Proof. We will prove the lemma by establishing the following technical statement.

Claim 4.7. Let H be a 3-partite 3-graph of maximum degree r with vertex classes V1, V2

and V3. Let {i, j, k} = {1, 2, 3}. If an r-regular C4 component of lkVi is such that all of its

vertices are good except one Vk-bad vertex in Vj , then it shares vertices of Vk with two

r-regular C4 components of lkVj that each have two bad vertices (one Vi-bad, and one Vk-

bad), and shares one vertex of Vj with an r-regular C4 component of lkVk that has exactly

one Vi-bad vertex in Vj . Furthermore, these four r-regular C4 components do not share

vertices with any r-regular C4 component outside of these four.

This claim proves the lemma, since every r-regular C4 component with only one bad

vertex appears together with another r-regular C4 component with only one bad vertex

and two r-regular C4 components with two bad vertices each, and these four form a unit

that does not touch any other such unit (hence there is no overlap in our counting). This

implies that there must be at least as many r-regular C4 components with two bad vertices

as there are ones with only one bad vertex, hence y � x.

Thus it remains to prove Claim 4.7. We know by Lemma 4.4 that such a C4 component

must be host to two disjoint edges of H, otherwise it would extend to an (r/2) · F and all

of its links would be r-regular C4. Thus, let a1a2a3 and b1b2b3 be two disjoint edges of H
with ai, bi ∈ Vi and a2, b2, a3 and b3 being the vertices of an r-regular C4 component of

lkV1, all of whose vertices are part of r-regular C4 components in the other links except

for b3. We consider two cases.

Case 1. a1a2 and b1b2 belong to the same r-regular C4 component of lkV3.

In this case, all edges incident to a1 or b1 are incident to a2 or b2, hence incident to

a3 or b3, and vice versa. But this means that the r-regular C4 component of lkV2 that a3

participates in must have {a1, b1, a3, b3} as its vertex set, which contradicts the fact that b3

is not in an r-regular C4 component of lkV2. Therefore, this case is impossible.

Case 2. a1a2 and b1b2 belong to two different r-regular C4 components of lkV3.

In this case, let the vertices of the components be a1, c1, a2, c2, and b1, d1, b2, d2,

respectively. Now consider lkV2. It has edges a1a3 and b1b3. Note that these edges are in

separate components of lkV2, since a3 participates in an r-regular C4, while b3 does not.

Therefore, there are no edges a1b3 or b1a3 in lkV2, which implies that all edges parallel to

a2b3 in lkV1 extend to c1, rather than a1 (these being the only two options given by lkV3),

and similarly all edges parallel to b2a3 in lkV1 extend to d1 (not b1). These edges of H
correspond to edges c1b3 and d1a3, respectively, in lkV2. Now by assumption, a3 is part of
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an r-regular C4 component of lkV2, and given the edges we have already shown to exist,

we know three of its vertices. Denote the remaining vertex by d3 so that {a1, d1, a3, d3} is

the vertex set of that component.

Since a3 and c1 are in distinct components of lkV2, we see that all edges of H
corresponding to a2a3 extend to a1. Similarly, all edges corresponding to b2b3 extend to

b1, all the ones corresponding to a2b3 extend to c1, and b2a3 to d1. Now in lkV2 there is

at least one edge a1d3. Any such edge does not extend to a2 as seen in lkV1, and hence

must extend to c2 by considering lkV3. Similarly, the edges parallel to d1d3 in lkV2 must

extend to d2.

Since b1b3 and c1b3 are edges of lkV2 in the component of b3, which is not an r-regular

C4, we have that b1 and c1 are both V2-bad vertices (recall Definition 4). We claim that

c2 and d2 are V1-bad vertices. Suppose to the contrary that they were good. Then by the

existence of edges c2d3 and d2d3 in lkV1, these are part of the same r-regular C4 component

of lkV1. Call its fourth vertex c3. Now any edge parallel to c2c3 in lkV1 extends to c1,

since it may only extend to c1 or a1 by lkV3, and cannot extend to a1 by lkV2. Similarly,

any edge parallel to d2c3 in lkV1 extends to b1. We just showed that all edges on c3 go to

c1 or b1 in lkV2. What we showed earlier is that all edges on b3 go to c1 or b1 in lkV2.

These account for all edges on c3 and b3, putting b3 in an r-regular C4 component, which

is a contradiction, because b3 was assumed not to participate in one of those in lkV2.

Therefore, the component of lkV1 including c2 and d2 is not an r-regular C4, hence these

are V1-bad vertices.

Thus we have two r-regular C4 components of lkV3 each with two bad vertices:

{a1, c1, a2, c2} harbours an r-regular C4 with bad vertices c1 and c2, while {b1, d1, b2, d2}
harbours an r-regular C4 with bad vertices b1 and d2. We also have an r-regular C4 in

lkV2 on {a1, d1, a3, d3} with a single V1-bad vertex d3. Since all of the good vertices of

these four r-regular C4 components are shared among themselves, this proves the claim

and hence the lemma.

Proof of Theorem 4.1. Let H be an r-regular 3-partite 3-graph with n vertices in each

class, and assume ν(H) � (1 + ε)n/2. Let V1, V2 and V3 be the vertex classes of H.

First, we modify H by replacing each component of H that has a perfect matching with

r parallel copies of the perfect matching. Note that this does not change ν(H) nor the

number of vertices in each class, and keeps H r-regular. This change also clearly does not

create any new copies of (r/2) · F , so if we prove that the modified hypergraph has some

number of (r/2) · F components, these must have been present in H to begin with. Thus,

we may assume that every perfect matching component of H is just r parallel copies of

an edge.

For each i, by applying Lemma 4.3 with A = Vi, we have that lkVi contains at least

(1 − (6r − 7)ε)n/2 components that are r-regular C4. Call an r-regular C4 component of a

link good if it contains no bad vertices (see Definition 4), and ruined otherwise. We aim

to show that at least one of the links has at least (1 − (22r − 77/3)ε)n/2 good r-regular

C4 components.

Claim 4.8. Each link contributes at most (6r − 7)εn bad vertices to any vertex class.
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Proof. This is immediate since each link has in each vertex class at least (1 − (6r − 7)ε)n

vertices belonging to r-regular C4 components.

The idea for completing the proof is as follows. If the bad vertices in each vertex

class each ruin a different r-regular C4 component of one link, then we may have

as many as (12r − 14)εn ruined r-regular C4 components in that link, leaving us with

only (1 − (30r − 35)ε)n/2 good components. But then that link has many r-regular C4

components with only one bad vertex, so by Lemma 4.6, the other links must have many

such components with at least two bad vertices, and so these links will have more good

components.

To make this precise, we count the total number of bad vertices in all three links. By

Claim 4.8, each link contributes at most (6r − 7)εn bad vertices to each vertex class. Since

there are two vertex classes per link and three links in total, we have at most 6(6r − 7)εn

bad vertices in all. Now let xi count the number of r-regular C4 components of lkVi with

exactly one bad vertex, and let yi count the number of r-regular C4 components of lkVi

with at least two bad vertices. Let x = x1 + x2 + x3 and let y = y1 + y2 + y3. Note that

any bad vertex contributes to at most one of x1, x2, x3, y1, y2 and y3, since in one of the

two links containing that vertex, it is in an r-regular C4 component. Therefore, we find

that x + 2y � 6(6r − 7)εn, as there must be at least x + 2y bad vertices.

Now let Vi be the vertex class such that xi is the least among x1, x2 and x3. We thus

have xi � x/3. By Lemma 4.6 we know that y � x. Therefore 3x � x + 2y � 6(6r − 7)εn,

and so we have xi � 2
3
(6r − 7)εn. By Claim 4.8 we know that lkVi has at most 2(6r − 7)εn

bad vertices that were contributed from the other two links, which leaves at most

2(6r − 7)εn − xi bad vertices to ruin the r-regular C4 components counted by yi. Since

these each use at least two of these vertices, we have yi � 1
2
(2(6r − 7)εn − xi). Combining

our inequalities we find that lkVi therefore has

xi + yi � (6r − 7)εn +
1

2
xi � 4

3
(6r − 7)εn

ruined r-regular C4 components. The rest must be good, so we have at least

(1 − (6r − 7)ε)
n

2
− 4

3
(6r − 7)εn =

(
1 −

(
22r − 77

3

)
ε

)
n

2

good r-regular C4 components in lkVi.

If any good r-regular C4 component hosts two disjoint edges of H, then by Lemma 4.5 it

is part of a perfect matching component of H, which is a contradiction, since we replaced

these with parallel copies of a matching (so their links do not contain any r-regular C4

components). Therefore, all good r-regular C4 components extend to copies of (r/2) · F
by Lemma 4.4, so we have found the desired number of those in H, completing the proof.

Proof of Theorem 4.2. This follows along very similar lines to the proof of Theorem 4.1.

Let H be a 3-partite 3-graph with vertex classes A, B and C , such that |A| = n, and

suppose that every vertex of A has degree at least r, and that every vertex in B ∪ C has

degree at most r. Assume that ν(H) � (1 + ε)n/2.
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First, we modify H by removing edges from vertices of A that have degree strictly

larger than r until every vertex of A has degree exactly r. Note that this does not hurt

any of our assumptions and cannot create copies of (r/2) · F . After this modification, H
has maximum degree r.

Next, we again modify H (as in the proof of Theorem 4.1) by replacing each component

of H that has a perfect matching with r parallel copies of the perfect matching. Note that

again this change does not affect our assumptions, and also clearly does not create any

new copies of (r/2) · F . Thus, we may assume that every perfect matching component of

H is just r parallel copies of an edge.

Now apply Lemma 4.3 to H to find that lkA contains at least (1 − (6r − 7)ε)n/2-many

r-regular C4 components. Now delete from H all vertices of B and C that are not in one

of the r-regular C4 components. This leaves at least n′ = (1 − (6r − 7)ε)n vertices in each

of these classes. Note that all vertices of B and C now have degree r.

Next, we follow along the lines of the proof of Lemma 4.3 to find out about r-regular

C4 components of lkB and lkC . There must be some S ⊆ B such that η(L(lkS)) �
|S | − (|B| − ν(H)), otherwise H would have a matching larger than ν(H) by Theorem 2.1.

We have ν(lkS) � |S |, so by Corollary 3.11, if lkS has k-many r-regular C4 components,

then

η(L(lkS)) � (2r − 3)|S | + r|S | − k

6r − 7
.

Combining this with our upper bound, we find

k � (6r − 7)(|B| − ν(H)) − (3r − 4)|S |

� (6r − 7)

(
n′ − (1 + ε)

n

2

)
− (3r − 4)n′

= (1 − (36r2 − 72r + 35)ε)
n

2
.

Since lkB has maximum degree r, these components of lkS are all components of lkB,

hence we have found at least (1 − (36r2 − 72r + 35)ε)n/2-many r-regular C4 components

in lkB. The same holds for lkC .

Call an r-regular C4 component of a link good if it contains no bad vertices (see

Definition 4), and ruined otherwise. We claim that lkA has at least (1 − (72r2 − 150r +

77)ε)n/2 good r-regular C4 components.

Note that there are no A-bad vertices, since we deleted them all before considering lkB

and lkC . This means that all ruined r-regular C4 components of lkA have at least two bad

vertices, since if they only had one, Claim 4.7 of Lemma 4.6 would imply the existence of

an A-bad vertex (in fact, three of them). There are at most

n′ − (1 − (36r2 − 72r + 35)ε)n = (36r2 − 78r + 42)εn

B-bad vertices in C , and also no more than that many C-bad vertices in B. Since the ruined

r-regular C4 components of lkA each have two bad vertices, this means that there are in

fact at most (36r2 − 78r + 42)εn ruined r-regular C4 components in lkA. Therefore, since

the rest are good, there are indeed at least (1 − (72r2 − 150r + 77)ε)n/2 good r-regular C4

components in lkA.
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If any good r-regular C4 component hosts two disjoint edges of H, then by Lemma 4.5 it

is part of a perfect matching component of H, which is a contradiction, since we replaced

these with parallel copies of a matching (so their links do not contain any r-regular C4

components). Therefore, all good r-regular C4 components extend to copies of (r/2) · F
by Lemma 4.4, so we have found the desired number of those in H, completing the proof.

5. (r/2) · F -free 3-graphs

Theorems 4.1 and 4.2 have the following easy corollaries, respectively.

Corollary 5.1. Let H be an r-regular 3-partite 3-graph with n vertices in each vertex class.

If H does not contain a copy of (r/2) · F , then

ν(H) �
(

1 +
1

22r − 77/3

)
n

2
.

Corollary 5.2. Let H be a 3-partite 3-graph with vertex classes A, B and C , such that

|A| = n. Suppose that every vertex of A has degree at least r, and that every vertex in B ∪ C

has degree at most r. If H contains no subgraph isomorphic to (r/2) · F , then

ν(H) �
(

1 +
1

72r2 − 150r + 77

)
n

2
.

It would be interesting to determine the correct function α(r) for which ν(H) � (1 +

α(r))n/2 for every H satisfying the conditions of Corollary 5.1. The following constructions

give upper bounds on α(r).

Theorem 5.3. For every even r � 2 there exists an r-regular 3-partite 3-graph H with n

vertices per vertex class, not containing a copy of (r/2) · F , such that

ν(H) �
(

1 +
1

r + 1

)
n

2
.

For every odd r � 3 there exists an r-regular 3-partite 3-graph H with n vertices per vertex

class (obviously not containing a copy of (r/2) · F) such that

ν(H) �
(

1 +
1

r

)
n

2
.

Proof. First suppose r � 2 is even. Let (r/2) · F− denote the 3-partite 3-graph obtained

by removing a single edge from (r/2) · F . Note that it has three vertices of degree r − 1

and three vertices of degree r. Take r/2 disjoint copies of (r/2) · F− together with three

vertices a, b and c, one in each class. For each copy F of (r/2) · F−, add three edges,

each using two of a, b and c and one of the three degree-(r − 1) vertices of F . Each

group of three edges contributes 2 to the degree of a, b and c, and 1 to the degree of the

https://doi.org/10.1017/S0963548318000147 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548318000147


792 P. Haxell and L. Narins

degree-(r − 1) vertices, hence after all r/2 such groups are added, the resulting 3-graph

is r-regular and clearly (r/2) · F-free. It has n = r + 1 vertices per vertex class, and its

largest matching is of size at most r/2 + 1, since in any matching we can pick at most

one edge from each copy of (r/2) · F−, and all of the edges we added intersect in one of

a, b or c. This gives the desired bound for even r.

If r � 3 is odd, we can use a very similar construction as above. Instead of (r/2) · F−,

which does not exist for odd r, let ((r − 1)/2) · F+ denote the 3-partite 3-graph obtained

from ((r − 1)/2) · F by adding an extra copy of one of its edges. Note that it has three

vertices of degree r − 1 and three vertices of degree r. Taking (r − 1)/2 disjoint copies of

((r − 1)/2) · F+ together with three vertices a, b and c, one in each class, we add edges

containing two of these vertices and one degree-(r − 1) vertex of an ((r − 1)/2) · F+ as in

the previous construction. We also add the edge abc. The resulting 3-graph is r-regular

and clearly (r/2) · F-free (since this 3-graph does not exist for odd r). It has n = r vertices

per vertex class, and its largest matching is of size at most (r − 1)/2 + 1, since we can

pick at most one edge from each copy of ((r − 1)/2) · F+, and all of the edges we added

intersect in one of the three extra vertices a, b and c. This gives the desired bound for

odd r.

All of these examples have high edge multiplicity, and one may expect substantially

better lower bounds on the matching number for simple hypergraphs. We close with the

following (special case of a) conjecture of Alon and Kim from [7] about this case.

Conjecture 5.4 (Alon and Kim [7]). The edges of any 3-uniform simple hypergraph with

maximum degree r can be covered by (3/2 + o(1))r matchings.

If true, this conjecture would imply that every simple r-regular 3-partite 3-graph with n

vertices in each class has a matching of size at least (2/3 − o(1))n. The constant 2/3 here

is best possible (as shown in [3]).
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