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Abstract

In Bingham and Doney (1988) the authors presented the applied probability community
with a question which is very simply stated, yet is extremely difficult to solve: what is the
distribution of the quadrant occupation time of planar Brownian motion? In this paper we
study an alternate formulation of this long-standing open problem: let X(t), Y (t), t ≥ 0,
be standard Brownian motions starting at x, y, respectively. Find the distribution of the
total time T = Leb{t ∈ [0, 1] : X(t) × Y (t) > 0}, when x = y = 0, i.e. the occupation
time of the union of the first and third quadrants. If two adjacent quadrants are used, the
problem becomes much easier and the distribution of T follows the arcsine law.
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1. Introduction

In this paper we consider a long-standing open problem in the applied probability literature:
what is the quadrant occupation time of planar Brownian motion? Formally, let T be the total
time that the vector process X(t) = (W1(t), W2(t)) on 0 ≤ t ≤ 1 is in the first quadrant; the
task is to find the distribution of T . In 1988, Bingham and Doney remarked [3, p. 121] that ‘in
no case to our knowledge is the law of T known explicitly’. Using independence of coordinate
processes, the authors obtained the first two moments of T and provided a solution for the third
moment, the latter of which was corrected in [4]. Desbois [4] generalized the aforementioned
quadrant problem by considering the occupation time spent in a wedge of apex O and angle θ .
Analytical results for general θ were provided for both the second and third moments, and the
fourth moment for the quadrant problem (θ = π/2) was obtained.

Despite these new additions to the literature, Desbois [4] concluded that ‘our feeling is that
the occupation time problem for Brownian motion is far from being understood as soon as we
leave one-dimensional or quasi-one-dimensional (graphs) situations. Clearly, new ideas are
needed if we want to tackle this problem’. Our work, through its use of Kontorovich–Lebedev
transforms and pasting of solutions, offers a new, but ultimately incomplete, approach on this
long-standing problem. For references on the Kontorovich–Lebedev transform, we refer the
reader to [1], [2], [6], and [7].

2. Main results
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2.1. Setup

We consider the following alternative formulation of Bingham and Doney’s [3] quadrant
occupation of planar Brownian motion problem. Let

X(t), Y (t), t ≥ 0,

be standard Brownian motions starting at x, y, respectively. We wish to find the distribution of
the total time T = Leb{t ∈ [0, 1] : X(t)×Y (t) > 0}, when x = y = 0, i.e. the occupation time
of the union of the first and third quadrants. If two adjacent quadrants are used, the problem
becomes much easier and the distribution follows the arcsine law [8].

The Feynman–Kac theorem states (see [5]) that

U(x, y) = Ex,y

[∫ ∞

0
exp

(
−αt − λ

∫ t

0
1{X(u)×Y (u)>0} du

)
dt

]

is the bounded solution of the Helmholtz partial differential equation in each quadrant,

1
2 (Uxx + Uyy)(x, y) − β(x, y)U(x, y) + 1 ≡ 0,

where β(x, y) = β1 = α + λ for (x, y) ∈ Q1, Q3 (the first and third quadrants, respectively)
and β(x, y) = β2 = α, (x, y) ∈ Q2, Q4 (the second and fourth quadrants, respectively). The
function U must be twice differentiable interior to each quadrant, continuously differentiable
overall, and uniformly bounded. If we can find U , then we know U(0, 0), and then we will
have

U(0, 0) = E

[∫ ∞

0
e−αt−λtT dt

]
= E

[
1

α + λT

]
.

We turn to finding the Kontorovich–Lebedev solution in each quadrant. Let x = r cos θ ,
y = r sin(θ), and set V (r, θ) = U(x, y). As is well known,

Uxx + Uyy = Vrr + 1

r
Vr + 1

r2 Vθθ .

The modified Bessel function v(r) = κiv(r) satisfies the ordinary differential equation (see [9])

r2v′′(r) + rv′(r) − (r2 − ν2)v(r) = 0.

It now can be easily checked that, for any functions f (ν), g(ν),

V (r, θ) = 1

β
+

∫ ∞

0
f (ν)κiv(r

√
2β) sinh(νθ) dν +

∫ ∞

0
g(ν)κiv(r

√
2β) cosh(νθ) dν

solves the differential equation

1

2

(
Vrr(r, θ) + 1

r
Vr(r, θ) + 1

r2 V (r, θ)

)
− βV (r, θ) + 1 = 0, (1)

with a different choice of f, g, β in each quadrant, which we must paste together to satisfy the
needed smoothness. For convenience, we can use any two linearly independent combinations
of sinh, cosh, etc. We now proceed to do so.
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2.2. Pasting

Our strategy is to use ‘pasting’ of the solutions. We denote fi and gi as the densities for
each of the two linear combinations of sinh, cosh, respectively, in the ith quadrant. In

Q1 = {
(r, θ) : r > 0, 0 < θ < 1

2π
}
,

we set

V (r, θ) = 1

β1
+

∫ ∞

0
f1(ν)κiv(r

√
2β1) sinh

(
ν

(
π

2
− θ

))
dν

+
∫ ∞

0
g1(ν)κiv(r

√
2β1) sinh(vθ) dν.

In
Q2 = {

(r, θ) : r > 0, 1
2π < θ < π

}
,

we set

V (r, θ) = 1

β2
+

∫ ∞

0
f2(ν)κiv(r

√
2β2) sinh(ν(π − θ)) dν

+
∫ ∞

0
g2(ν)κiv(r

√
2β2) sinh

(
v

(
θ − π

2

))
dν.

By symmetry, U(x, y) = U(y, x) = U(−x, −y), and so gj ≡ fj for j = 1, 2, 3, 4, f3 = f1,
f4 = f2.

2.3. Consequences of continuity and continuous differentiability on the axes

Note that

V

(
r,

π

2
− 0

)
= 1

β1
+

∫ ∞

0
f1(ν) sinh

(
νπ

2

)
κiv(r

√
2β1) dν,

V

(
r,

π

2
+ 0

)
= 1

β2
+

∫ ∞

0
f2(ν) sinh

(
νπ

2

)
κiv(r

√
2β2) dν,

and the right-hand sides of these equations are equal. The derivatives, taken with respect to θ ,
are

Vθ

(
r,

π

2
− 0

)
=

∫ ∞

0
f1(ν)ν

(
cosh

(
νπ

2

)
− 1

)
κiv(r

√
β1) dν,

Vθ

(
r,

π

2
+ 0

)
=

∫ ∞

0
f2(ν)ν

(
− cosh

(
νπ

2

)
+ 1

)
κiv(r

√
β2) dν,

and the right-hand sides of these equations are equal.

2.3.1. Solving the above smoothness equations. We assume that there are signed measures,
μj (dz), j = 1, 2, such that

fj (ν) = 2

π

cosh(νπ/2)

sinh(νπ/2)

(−1

βj

)
+

∫ ∞

0
μj sin(νz) dz. (2)

We can then substitute fj into the first two equations expressing continuity on the y-axis. The
first term in fj kills the term 1/βj because the Kontorovich–Lebedev transform of cosh(νπ/2)

is, for every y,
2

π

∫ ∞

0
cosh

(
ν
π

2

)
κiv(y) dν = e−y cos π/2 ≡ 1,
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(see [9, p. 242]). This leaves the following equation for the sine transforms of μj for V (r, θ)

to be continuous at each r when θ = π/2:

V

(
r,

π

2

)
=

∫ ∞

0
μ1 dz

∫ ∞

0
sin(νz) sinh

(
νπ

2

)
κiv(r

√
2β1) dν (3)

=
∫ ∞

0
μ2 dz

∫ ∞

0
sin(νz) sinh

(
νπ

2

)
κiv(r

√
2β2) dν.

Equation (8) from [9, p. 244] states that∫ ∞

0
sin(νz) sinh

(
νπ

2

)
κiv(y) dν = π

2
sin(y sinh(z)).

This gives us the continuity equation linking μ1, μ2 as∫ ∞

0
sin(r

√
2β1 sinh(z))μ1 dz =

∫ ∞

0
sin(r

√
2β2 sinh(z))μ2 dz.

We now define the change of variables z′(z) = φ(z), z ≥ 0, such that√
2β1 sinh(z) = √

2β2 sinh(φ(z)).

Explicitly,

φ(z) = log

(√
β1

β2
sinh z +

√
β1

β2
sinh2(z) + 1

)
.

We then have, for every r ≥ 0,∫ ∞

0
sin(r

√
2β1 sinh(z))μ1 dz =

∫ ∞

0
sin(r

√
2β1 sinh(z))μ2 dφ(z).

Since the sine transform is unique on a half interval, we have

μ1(dz) = μ2(dφ(z)), z ≥ 0.

Thus, we have expressed one relationship between μ1 and μ2. We now need a second equation
linking μ1 and μ2, and we use the equation obtained by using the continuity of the derivative
on the positive y-axis.

2.3.2. Continuity of the derivative of V on θ at θ = π/2. Noting that

Vθ

(
r,

π

2
− 0

)
=

∫ ∞

0
f1(ν)ν

(
cosh

(
νπ

2

)
−1

)
κiv(r

√
2β1) dν,

Vθ

(
r,

π

2
+ 0

)
= −

∫ ∞

0
f2(ν)ν

(
cosh

(
νπ

2

)
− 1

)
κiv(r

√
2β2) dν,

we immediately see that the right-hand sides are equal for all r ≥ 0 (the derivative of V on θ

is continuous at θ = π/2). Placing the expressions for the fj , given in (2), in terms of the
unknown μj , into the right-hand side of each of the above equations gives

0 =
2∑

j=1

∫ ∞

0

[
2

π

cosh(νπ/2)

sinh(νπ/2)

(−1

βj

)
+

∫ ∞

0
μj sin(νz) dz

]

× ν

(
cosh

(
νπ

2

)
− 1

)
κiv(r

√
2βj ) dν.
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From [9, p. 244, Equation (7)], for a real or |a| ≤ π/2,

2

π

∫ ∞

0
ν sin(aν)κiν(y) dν = ye−y cosh a sinh a.

We then use the identities

cosh(νπ/2)

sinh(νπ/2)

(
cosh

(
νπ

2

)
− 1

)
= sinh

(
νπ

2

)
− tanh

(
νπ

4

)
,

sin(νz)

(
cosh

(
νπ

2

)
− 1

)
= 1

2
sin

(
ν

(
z + iπ

2

))
+ 1

2
sin

(
ν

(
z − iπ

2

))
− sin(νz),

and link μ1 and μ2 as follows:

0 =
2∑

j=1

∫ ∞

0

2

π

(−1

βj

)(
sinh

(
νπ

2

)
− tanh

(
νπ

4

))
νκiv(r

√
2βj ) dν

+
2∑

j=1

∫ ∞

0
μj dz

∫ ∞

0

[
1

2
sin

(
ν

(
z + iπ

2

))
+ 1

2
sin

(
ν

(
z − iπ

2

))

− sin(νz)νκiv(r
√

2βj )

]
dν. (4)

Since sinh(z + 2i
√

π) = i cosh z and cosh(z + iπ/2) = −i sinh z, we obtain, from (4), with
a = iπ/2, a = z ± iπ/2, respectively,

0 =
2∑

j=1

(
−r

√
2

βj

)
+ 2

πβj

∫ ∞

0
ν tanh

(
νπ

4

)
κiv(r

√
2βj ) dν

+
2∑

j=1

π

2

∫ ∞

0
μj

r
√

2βj

2
[er

√
2βj i sinh z(i cosh z) + e−r

√
2βj i sinh z(−i cosh z)

− 2e−r
√

2βj cosh z sinh z] dz.

We now use the substitution z′(z) = φ(z), implicitly defined by√
2β1 sinh z = √

2β2 sinh z′

in the second integral of the last display, with j = 2. Combined with the fact that

μ2(dφ(z)) = μ1(dz),

we obtain
π

2

∫ ∞

0
μ1r

√
2β1[sin(r

√
2β1 sinh z) cosh z + e−r

√
2β1 cosh z sinh z] dz

+ π

2

∫ ∞

0
μ1r

√
2β2[sin(r

√
2β1 sinh z) cosh φ(z) + e−r

√
2β2 cosh φ(z) sinh φ(z)] dz

=
2∑

j=1

(
−r

√
2

βj

)
+ 2

πβj

∫ ∞

0
tanh

(
νπ

4

)
νκiv(r

√
2βj ) dν. (5)
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Despite much effort, further explicit calculations beyond (5) quickly become intractable.
It is our opinion that an explicit solution to this long-standing problem may not be possible.
Nonetheless, we have successfully reduced the problem to that where an analyst of special
functions could pick up where we have left off. The problem now becomes one of finding
the relationship between functions f and g if their Kontorovich–Lebedev transforms F and G

satisfy F(r) = G(cr) for all r with c given.

3. Remarks

Professor Terry Lyons is credited (personal communication with Professor Nick Bingham)
with saying that the simplest case beyond the half-plane (which reduces to the arc-sine law in
one dimension) is the third plane 0 < θ < 2

3π . This could help one to compare the differential
equations we obtained in (5).

One can consider the random occupation measure generated on the unit circle (or a sphere
in higher dimensions) by the angular part of a Brownian motion starting at 0 and running
for time 1. Some results regarding this random measure, and its relation to the angle of the
Brownian motion at time 1, were obtained in [10].

Another natural problem in two dimensions is to find the law of the occupation time Au of
an interval of length 2πu around the unit circle, for 0 < u < 1. Some problems involving
cyclically stationary local-time processes were treated in [11].
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