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ON CATEGORICITY IN SUCCESSIVE CARDINALS

SEBASTIEN VASEY

Abstract. We investigate, in ZFC, the behavior of abstract elementary classes (AECs) categorical in
many successive small cardinals. We prove for example that a universal L�1 ,� sentence categorical on an
end segment of cardinals below �� must be categorical also everywhere above �� . This is done without any
additional model-theoretic hypotheses (such as amalgamation or arbitrarily large models) and generalizes
to the much broader framework of tame AECs with weak amalgamation and coherent sequences.

§1. Introduction. The upward Löwenheim–Skolem theorem says that any first-
order theory with an infinite model has models of arbitrarily large cardinalities.
This result is no longer true outside of first-order logics, for example for theories in
L�1,� . For this more general case, it is reasonable to ask which properties of small
models guarantee existence of bigger models. In that light, the following early result
of Shelah [She87a] is remarkable:

Fact 1.1. An L�1,� sentence which is categorical in both ℵ0 and ℵ1 has a model of
size ℵ2.

Shelah proved in fact a more general theorem, valid for any “reasonably definable”
abstract elementary class (AEC) with countable Löwenheim–Skolem number (see
[She09a, I.3.11] for the details). In particular, he answered in the negative Baldwin’s
question: can a sentence in L(∃≥ℵ1) have exactly one uncountable model? See for
example [Gro02, §4] for a more detailed history.

It is natural to ask whether Fact 1.1 generalizes to any AEC. More specifically:

Question 1.2. Assume K is an AEC with Löwenheim–Skolem–Tarski number �.
If K is categorical in both � and �+, must it have a model of cardinality �++?

Question 1.2 is still open. Partial approximations immensely stimulated the field:
Shelah [She01] has shown assuming some set-theoretic hypotheses that categoricity
in three successive cardinals suffices:

Fact 1.3. Assume1 2� < 2�
+
< 2�

++
. Let K be an AEC with Löwenheim–Skolem–

Tarski number �. If K is categorical in �, �+, and �++, then it has a model of size
�+3.
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1Shelah originally proved this assuming in addition a saturation condition on the weak diamond

ideal, but this was subsequently removed [She09a, VI.8.1(3)].
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546 SEBASTIEN VASEY

Remark 1.4. One of the byproduct of Shelah’s proof is the machinery of good
frames , developed in Shelah’s two volume book [She09a]. Essentially, an AEC has
a good �- frame if K�, its class of models of cardinality �, behaves “well” in the
sense that it has several structural properties, including a superstable-like forking
notion. Good frames have subsequently been used in many results, for example
in the author’s proof of the eventual categoricity conjecture for universal classes
[Vas17b, Vas17c], in the recent proof of the eventual categoricity conjecture from
large cardinals [SV], and in the full analysis of the categoricity spectrum of AECs
with amalgamation [Vas19].

More ambitiously, one can ask when it is possible not only to prove the existence
of a model from successive categoricity, but to prove the existence of arbitrarily
large models, or even the existence of a unique model in all cardinalities. Another
milestone result of Shelah in that direction is [She83a, She83b]:

Fact 1.5. Assume 2ℵn < 2ℵn+1 for all n < �. If an L�1,� sentence is categorical in
every ℵn, then it is categorical in every infinite cardinal.

This has recently been generalized to AECs by Shelah and the author [SV]. An
example of Hart and Shelah [HS90, BK09] shows that one needs in general to
assume categoricity at all ℵn’s to deduce categoricity further up. However, Mazari-
Armida and the author [MAV18] showed that this restriction does not apply to
“simple” AECs, and in particular to universal classes (classes of structures closed
under isomorphisms, unions of chains, and substructures, see for example [Vas17b]).
The reader may argue that there are relatively few interesting examples of universal
classes, so let us work in the much broader (but slightly harder to define—see
Section 2 for the details) framework of tame AECs with intersections, encompassing
multiuniversal classes [ABV19], and Zilber’s quasiminimal classes [Zil05]:

Fact 1.6. Assume 2ℵ0 < 2ℵ1 . If K is an AEC with LS(K) = ℵ0 which has
intersections, is ℵ0-tame, and is categorical in both ℵ0 and ℵ1, then it is categorical in
all infinite cardinals.

Proof. By [BV19, 3.14], K≤ℵ0 is analytic, so the result follows from [MAV18,
4.4]. �

In the present paper, we aim to prove results along the ones above but in ZFC.
The broad idea is to develop a new, local, model theory that relies only on very weak
consequences of the compactness theorem. In essence, using cardinal arithmetic
makes it “too easy” by allowing set-theoretic tools (such as the weak diamond)
to be used instead of model theory. While removing a minor-looking assumption
such as “2ℵ0 < 2ℵ1 ” may not seem very impressive, it is the author’s thesis that
in fact proving such results in ZFC is much harder and yields to interesting new
mathematics.

One specific challenge is that it is harder to obtain amalgamation when one
does not assume set-theoretic hypotheses: Shelah [She09a, I.3.8] has shown that
categoricity in � and �+ implies amalgamation in � assuming that 2� < 2�

+
. However,

the set-theoretic hypothesis cannot in general be removed:
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Example 1.7 ([She09a, §I.6]). Assuming Martin’s axiom, there is an AEC
(axiomatizable in L(∃≥ℵ1)) that is categorical in every cardinal in [ℵ0, 2ℵ0 ), fails
amalgamation everywhere below 2ℵ0 , and has no model of cardinality

(
2ℵ0

)+
.

This example leads to the following weakening of Question 1.2, which is also
open:

Question 1.8. Assume K is an AEC with Löwenheim–Skolem–Tarski number �,
categorical in every cardinal in [�, 2�]. Must K have a model of cardinality

(
2�

)+
?

Similarly, looking at Fact 1.5 suggests that to replace ℵ� by �� may be interesting:

Question 1.9. Assume K is an AEC with Löwenheim–Skolem–Tarski number �,
categorical in every cardinal in [�,��(�)). Must K be categorical everywhere above �?

The present paper makes the following contributions:

(1) By a very short proof, putting together several results of Shelah, we observe
(Corollary 3.7) that if � > LS(K) is limit and K is categorical everywhere
in [LS(K), �], then K has a model of cardinality �+. This is a very partial
approximation to Questions 1.8 and 1.9, but perhaps it can awaken interest
in these general cases again.

(2) We give a positive answer to Question 1.9 in the special case where K is a
tame AEC with intersections (hence in particular when it is a universal class,
see Corollary 5.10). This gives a ZFC version of the Facts presented above,
and partially answers [MAV18, Question 4.3] (where we worked near ℵ1 and
assumed the weak continuum hypothesis, see Fact 1.6). We more generally
answer Question 1.9 in the broader framework of tame AECs with weak
amalgamation and coherent sequences (see §2 for the definitions):

Corollary 5.9. Assume K is a LS(K)-tame AEC with weak amalgamation
and coherent sequences. If K is categorical everywhere in [LS(K),��(LS(K))),
then K is categorical everywhere above LS(K).

Interestingly, even in the case of tame AECs with (full) amalgamation, the
result is new and not trivial: it was only known [GV06c, GV06a] in case the
AEC also has arbitrarily large models.

The proof of Corollary 5.9 proceeds as follows: we use tameness and the weak
amount of amalgamation to build a good ��(�)-frame (we have set � := LS(K)).
The very rough idea is to follow the construction in [Vas16a] (where amalgamation
and arbitrarily large models were assumed), but there are many nontrivial difficulties
because of the lack of amalgamation. We develop new, more local tools to get
around this. One key is a local character theorem (Lemma 4.6), generalizing [Vas18,
4.12] which was instrumental in studying the stability spectrum for tame AECs. An
important problem is how to build “free” (nonsplitting) extensions of types. The
notion of a nicely fitrable model (Definition 4.9) is a new definition for a “good”
saturated models in this amalgamationless context. In a sense, nicely filtrable models
form the bases over which types behave well. They have independent interest and
may play a role in future investigations.
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Once the good frame is built, a known upward transfer of good frames in tame
AECs with weak amalgamation (see [Bon14] and [Vas17b, 4.16]) is used to prove
that the AEC has arbitrarily large models and eventual amalgamation. After some
more work, it then becomes possible to use the result of Grossberg and VanDieren
[GV06a] showing that in tame AECs with amalgamation and arbitrarily large
models, categoricity in two successive cardinals implies categoricity above those
cardinals.

We assume the reader has some basic knowledge of AECs (see e.g.
[She09a, Bal09, Gro02]), although we briefly repeat the main definitions in the
preliminaries. In the last section, we will also assume some familiarity with the
material in [Vas16a] regarding good frames. Other results we use can be regarded
as black boxes.

The author would like to thank John T. Baldwin for some interesting discussions
(while on a research visit at UIC) that led to §3 of the present paper. The author
also thanks Marcos Mazari-Armida and a referee for helpful feedback on this
paper.

§2. Preliminaries.

2.1. Abstract elementary classes. Given a structure M, write |M | for its universe
and ‖M‖ for the cardinality of its universe. We usually do not distinguish between M
and |M |, writing e.g. a ∈M instead of a ∈ |M | andA ⊆M instead ofA ⊆ |M |. An
abstract class is a pair K = (K,≤K), where K is a class of structures in a fixed (here
will all arities finite) vocabulary � = �(K) and≤K is a partial order,M ≤K N implies
that M is a �-substructure of N, and both K and ≤K respect isomorphisms (the
definition is due to Grossberg). We often do not distinguish between K (the class of
structures) and K (the ordered class of structures). Any abstract class admits a notion
of K-embedding: these are the functions f :M → N such that f :M ∼= f[M ] and
f[M ] ≤K N . Thus one can naturally see K as a category. Unless explicitly stated,
any map f :M → N in this paper will be a K-embedding. We write f :M −→

A
N

to mean that f is a K-embedding from M into N which fixes the set A pointwise
(so A ⊆M ). We similarly write f :M ∼=A N for isomorphisms from M onto N
fixing A.

For � a cardinal, we will write K� for the restriction of K to models of
cardinality �. Similarly define K≥�, K<�, or more generally KΘ, where Θ is a class of
cardinals.

For an abstract class K, we denote by I(K) the number of models in K up to
isomorphism (i.e. the cardinality of K/∼=). We write I(K, �) instead of I(K�). When
I(K) = 1, we say that K is categorical. We say that K is categorical in � if K� is
categorical, i.e. I(K, �) = 1.

We say that K has amalgamation if for anyM0 ≤K M� , � = 1, 2, there isM3 ∈ K
and K-embeddings f� :M� −−→

M0
M3, � = 1, 2. K has joint embedding if any two

models can be K-embedded in a common model. K has no maximal models if for
any M ∈ K there exists N ∈ K with M ≤K N and M �= N (we write M <K N ).
Localized concepts such as amalgamation in � mean that K� has amalgamation.

The definition of an abstract elementary class is due to Shelah [She87a]:
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Definition 2.1. An abstract elementary class (AEC ) is an abstract class K
satisfying:

(1) Coherence: if M0,M1,M2 ∈ K, M0 ⊆M1 ≤K M2 and M0 ≤K M2, then
M0 ≤K M1.

(2) Tarski-Vaught chain axioms: if 〈Mi : i ∈ I 〉 is a≤K-directed system andM :=⋃
i∈I Mi , then:

(a) M ∈ K.
(b) Mi ≤K M for all i ∈ I .
(c) If N ∈ K is such thatMi ≤K N for all i ∈ I , thenM ≤K N .

(3) Löwenheim–Skolem–Tarski axiom: there exists a cardinal � ≥ |�(K)| + ℵ0

such that for any N ∈ K and any A ⊆ N , there existsM ∈ K withM ≤K N ,
A ⊆M , and ‖M‖ ≤ |A| + �. We write LS(K) for the least such �.

2.2. Types. In any abstract class K, we can define a semantic notion of type (the
definition was first given by Shelah in [She87b]). We give the full definition here for
convenience, but the reader can also check [Vas16b, 2.16] for more details. First,
define a relation Eat (atomic equivalence) on the class of triples (b,A,N ) with
N ∈ K, A ⊆ N , and b ∈ N as follows: (b1, A,N1)Eat(b2, B,N2) if A = B and there
exists N ∈ K and K-embeddings f : N1 −→

A
N , g : N2 −→

A
N so that f(b1) = g(b2).

Note thatEat is a symmetric and reflexive relation. Let E denote its transitive closure
(if K has amalgamation, it is easy to check that Eat is in fact already transitive, so
E = Eat in this case). ForN ∈ K,A ⊆ N , and b ∈ N , we define the type of b over A in
N, written tpK(b/A;N ), to be the E-equivalence class of the triple (b,A,N ). Usually
K will be clear from context and we will omit it from the notation. These semantic
types are called Galois (or orbital) types in the literature, but they coincide with the
first-order syntactic types in elementary classes (and we will never use syntactic types
anyway) so we simply call them “types”. ForM ∈ K, we write SK(M ) = S(M ) for
{tp(b/M ;N ) |M ≤K N}, the class2 of all types over M. Also define, forM ≤K N ,
S(M ;N ) = {tp(b/M ;N ) | b ∈ N}, the class of all types over M realized inside N.
We define in the expected way what it means for a type to extend another type or to
take the image of a type by a K-embedding. We call a type p algebraic if it can be
written as p = tp(a/M ;N ), with a ∈M .

As mentioned before, when K is an elementary class, tp(b/A;N ) contains the
same information as the usual notion of L�,�-syntactic type. In particular, types in
an elementary class are determined by their restrictions to finite sets. In [GV06b],
this fact was built into the following definition: for � an infinite cardinal, an abstract
class K is (< �)-tame if for any M ∈ K and any distinct p, q ∈ S(M ), there exists
A ⊆M such that |A| < � and p � A �= q � A. We say that K is �-tame if it is (< �+)-
tame. Thus elementary classes are (< ℵ0)-tame, but there are examples of nontame
AECs, see e.g. [BV17a, 3.2.2].

2.3. Weak amalgamation, intersections, and coherent sequences of types. Weak
amalgamation was first introduced in [Vas17b, 4.11]. It can be seen as a common
weakening of amalgamation and having certain kinds of prime models.

2If K is an AEC, S(M ) will of course be a set.
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Definition 2.2. Let K be an abstract class and let M ∈ K. We say that M is a
weak amalgamation base (in K) if for anyN1, N2 ∈ K withM ≤K N1,M ≤K N2, and
any a1 ∈ N1, a2 ∈ N2, if tp(a1/M ;N1) = tp(a2/M ;N2), then there exists N 0

1 , N
′
2, f

such that:

(1) M ≤K N
0
1 ≤K N1.

(2) a1 ∈ N 0
1 .

(3) N2 ≤K N
′
2.

(4) f : N 0
1 −→
M
N ′

2.

(5) f(a1) = a2.

We say that K has weak amalgamation if every object of K is a weak amalgamation
base.

Note that amalgamation implies weak amalgamation (see Fact 2.5 below).
Another example of abstract classes with weak amalgamation are those that have
intersections:

Definition 2.3. An abstract class K has intersections if for any N ∈ K and any
A ⊆ N , the set

⋂
{M ∈ K |M ≤K N,A ⊆M} induces a K-substructure of N. We

write clN (A) for this substructure.

Remark 2.4. By [BS08, 1.3] or [Vas17b, 2.18], in an abstract class with inter-
sections, tp(a1/M ;N1) = tp(a2/M ;N2) if and only if there exists an isomorphism
f : clN1(a1M ) ∼=M clN2(a2M ) such that f(a1) = a2. In particular, abstract classes
with intersections have weak amalgamation.

The following characterizes when weak amalgamation implies amalgamation.

Fact 2.5 ([Vas17b, 4.14]). Let K be an AEC and let � ≥ LS(K). The following
are equivalent:

(1) K� has weak amalgamation and for any M ≤K N both in K�, any p ∈ S(M )
can be extended to a type in S(N ).

(2) K� has amalgamation.

The definitions below are well known in AECs with amalgamation, see [Bal09,
§11].

Definition 2.6. Let K be an abstract class, M̄ = 〈Mi : i < α〉 be increasing
continuous, and let p̄ = 〈pi : i < α〉 be an increasing chain of types with pi ∈ S(Mi)
for all i < α.

(1) We say that p̄ is local if for any limit i < α and any q ∈ S(Mi), if q �Mj = pj
for all j < i , then q = pi . We say that M̄ is local if any increasing chain of
types p̄ as above is local.

(2) We say that p̄ is coherent if there exists 〈Ni : i < α〉 increasing continuous,
〈ai : i < α〉, and 〈fij : i ≤ j < α〉 such that for all i ≤ j ≤ k < α:
(a) Mi ≤K Ni .
(b) ai ∈ Ni .
(c) pi = tp(ai/Mi ;Ni).
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(d) fij : Ni −−→
Mi
Nj .

(e) fii = idNi .
(f) fjk ◦ fij = fik .
(g) fij(ai) = aj .

We say that M̄ is coherent if any local p̄ as above is coherent. Finally, we say that
K has coherent sequences if any M̄ as above is coherent.

The following is immediate from the definitions (take a directed colimit). See
[Bal09, 11.5].

Fact 2.7. Let K be an AEC. Let 	 be a limit ordinal, let M̄ = 〈Mi : i < 	〉 be
increasing continuous in K, and let p̄ = 〈pi : i < 	〉 be an increasing chain of types
with pi ∈ S(Mi) for all i < 	. If p̄ is coherent, then there exists q ∈ S(

⋃
i<	 Mi) so

that q �Mi = qi for all i < 	.

We finish by proving some easy results about building coherent sequences of types:
it can be done assuming amalgamation or assuming the AEC has intersections.

Lemma 2.8. Let K be an AEC. Let 	 be a limit ordinal, let M̄ = 〈Mi : i < 	〉 be
increasing continuous in K, and let p̄ = 〈pi : i < 	〉 be an increasing chain of types
with pi ∈ S(Mi) for all i < 	. Assume that p̄ is local.

(1) If K<supi<	 (‖Mi‖+LS(K))+ has amalgamation, then p̄ is coherent.
(2) If K has intersections, then p̄ is coherent.

In particular, AECs with amalgamation and AECs with intersections both have
coherent sequences.

Proof. (1) Straightforward and well known. See the proof of [Bal09, 11.5].
(2) We build the coherence witnesses 〈Ni : i < α〉, 〈ai : i < α〉, 〈fij : i ≤ j <
α〉 inductively such that for all i < α, Ni = clNi (Miai). The base case is
trivial, and at limits we can take directed colimits (and use locality to see
type equality is preserved; the closure condition will be preserved by finite
character of the closure operator [Vas17b, 2.14(6)]). At successors, we are
givenNi and ai and want to buildNi+1, ai+1, and fi(i+1). PickN ′

i+1 and ai+1

such thatpi+1 = tp(ai+1/Mi+1;N ′
i+1). Thenpi+1 �Mi = pi , so there exists an

isomorphism fi : Ni ∼= clN
′
i+1(Miai+1) such that f(ai) = ai+1. Let Ni+1 :=

clN
′
i+1(Mi+1ai+1). By the coherence axiom of AECs, clN

′
i+1(Miai+1) ≤K Ni+1.

Thus composing fi with the inclusion gives the desired K-embedding fi(i+1)
of Ni into Ni+1. �

§3. Existence from successive categoricity below a limit. In this section, we work
in an arbitrary AEC (i.e. we do not assume tameness or weak amalgamation)
and prove some relatively easy results about deriving no maximal models from
categoricity below a limit.

The following easy observation will be used in the later sections:

Lemma 3.1. Let K be an AEC and let � > LS(K) be a limit cardinal of countable
cofinality. If K is categorical in unboundedly-many cardinals below �, then K� �= ∅.
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Proof. Since � has countable cofinality, we can pick 〈�i : i < �〉 increasing cofi-
nal in � such that �0 ≥ LS(K) and �i is a categoricity cardinal for each i < �. Now
we build an increasing chain 〈Mi : i < �〉 such thatMi ∈ K�i for all i < �. Then the
union of the chain will be in K�. For i = 0, take anyM0 ∈ K�0 . For i = j + 1, given
Mj , first pick any Ni ∈ K�i . Pick N 0

i ≤K Ni with N 0
i ∈ K�j . By categoricity, there

is an isomorphism f : N 0
i
∼=Mj . With some renaming, we can extend this isomor-

phism to g : Ni ∼=Mi , for someMi withMj ≤K Mi . ThenMi ∈ K�i , as desired. �
The next two definitions are due to Shelah [She01].

Definition 3.2. An existence triple in an abstract class K is a triple (a,M,N )
withM ≤K N both in K and a ∈ N\M .

Definition 3.3. We say an abstract class K has weak extension if for any existence
triple in (a,M,N ) in K, there exists an existence triple (b,M ′, N ′) in K with a = b,
M <K M

′, and N <K N
′. We say that (b,M ′, N ′) is a strict extension of (a,M,N ).

The next two results are essentially due to Shelah, see [She09a, §VI.1]. We give
full proofs here because they are short and (for the second one) slightly simpler than
Shelah’s.

Lemma 3.4. Let K be an AEC and let � > LS(K). If:

(1) There exists an existence triple in KLS(K).
(2) For every � ∈ [LS(K), �), K� has weak extension.

Then not every element of K� is maximal.

Proof. Pick an existence triple (a,M,N ) in KLS(K). Now build 〈Mi : i ≤ �〉,
〈Ni : i ≤ �〉 both increasing continuous such that for every i < �:

(1) M0 =M , N0 = N .
(2) Mi,Ni ∈ K|i|+LS(K).
(3) Mi ≤K Ni .
(4) a ∈ Ni\Mi .
(5) Mi <K Mi+1.

This is possible using the weak extension property at successor stages and taking
unions at limit stages. In the end, M� <K N�, since a ∈ N�\M�. Thus M� is not
maximal. Since 〈Mi : i ≤ �〉 was strictly increasing,M� ∈ K�. �

Lemma 3.5. Let K be an AEC. If K is categorical in LS(K) and KLS(K)+ has no
maximal models, then KLS(K) has weak extension.

Proof. Let � := LS(K). Let (a,M,N ) be an existence triple in K�. We want to
find a strict extension of (a,M,N ). We build 〈Mi : i ≤ �+〉 increasing continuous
and 〈ai : i < �+〉 such that for all i < �+:

(1) (ai ,Mi ,Mi+1) is an existence triple in K�.
(2) There exists an isomorphismfi : N ∼=Mi+1 sothatfi [M ] =Mi andfi(a) =ai .

This is possible by categoricity. This is enough: since K�+ has no maximal
models, there existsM ′ ∈ K�+ withM�+ <K M

′. Let 〈M ′
i : i ≤ �+〉 be an increasing
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continuous resolution of M ′. Let C ⊆ �+ be a club such that i ∈ C implies
Mi ≤K M

′
i and moreover M�+ ∩M ′

i =Mi . Pick b ∈M ′\M�+ and pick i ∈ C so
that b ∈M ′

i . ThenMi <K M
′
i and one can pick j < �+ so thatMi+1 <K M

′
j . Then

(ai ,M ′
i ,M

′
j) is a strict extension of (ai ,Mi ,Mi+1). Taking an isomorphic copy, we

obtain a strict extension of the original triple (a,M,N ). �
Putting the two lemmas together, we obtain:

Theorem 3.6. Let K be an AEC and let � > LS(K) be a limit cardinal. If K is
categorical in every cardinal in [LS(K), �), then not every element of K� is maximal.

Proof. Note that for every � ∈ [LS(K), �), both K� and K�+ are not empty and
have no maximal models (we are using that � is limit to deduce this for K�+). In
particular, there is an existence triple in KLS(K). Moreover by Lemma 3.5 (applied to
K≥�), for any � ∈ [LS(K), �), K� has the weak extension property. By Lemma 3.4,
we get the result. �

Corollary 3.7. Let K be an AEC and let � > LS(K) be a limit cardinal. If K is
categorical in every cardinal in [LS(K), �], then K�+ �= ∅.

Proof. By Theorem 3.6, not every model in K� is maximal. By categoricity in �,
this implies that K� has no maximal models, hence that K�+ �= ∅. �

§4. Local saturation and splitting. The present section is the core of the paper.
We adapt known results about saturated models and splitting to setups without
amalgamation (but often with weak amalgamation and/or tameness). For several
results, categoricity is not needed, but in the end we will use it to put everything
together.

The following are localized definitions of the well known variations of saturation:

Definition 4.1. Let K be an AEC. For 
 an infinite cardinal, a model M is
locally 
- saturated if for any N ≥K M and any A ⊆M with |A| < 
, we have that
S(A;N ) = S(A;M ). ForM0 ≤K M , we say that M is locally 
- universal overM0 if
for anyM0 ≤K N0 ≤K N withM ≤K N and ‖N0‖ < 
,N0 embeds into M overM0.
M is locally 
- model-homogeneous if it is 
-universal over M0 for any M0 ≤K M
with ‖M0‖ < 
. We say that M is locally saturated when it is locally ‖M‖-saturated,
and similarly for locally model-homogeneous. We say that M is locally universal over
M0 if it is locally ‖M0‖+-universal overM0.

The usual exhaustion argument shows that locally model-homogeneous model
can be built assuming some cardinal arithmetic. See for example the proof of [Ros97,
Theorem 1].

Fact 4.2. Let K be an AEC. For anyM ∈ K and any regular cardinal 
 > LS(K),
there existsN ∈ K such thatM ≤K N , N is locally 
-model-homogeneous, and ‖N‖ ≤
‖M‖<
 .

Assuming categoricity in a suitable unbounded set, we can build locally model-
homogeneous models.
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Lemma 4.3. Let K be an AEC and let � > LS(K) be a strong limit cardinal. If for
every 
 < � there exists � < � such that � = �
 and K is categorical in �, then every
object of K� is locally model-homogeneous.

Proof. LetM ∈ K�. Fix 
 < �,N ∈ K� withM ≤K N , andM0, N0 ∈ K≤
 with
M0 ≤K M , M0 ≤K N0 ≤K N . We have to see that N0 embeds inside M over M0.
Without loss of generality, 
 ≥ LS(K). By assumption, we can pick a categoricity
cardinal � < � such that � = �
 . LetM ′

0 ≤K M be such thatM0 ≤K M
′
0 andM ′

0 ∈
K�. By categoricity in � and Fact 4.2, M ′

0 is locally 
+-model-homogeneous. In
particular, N0 embeds into M ′

0 over M0. Thus N0 embeds into M over M0, as
desired. �

The following notion was introduced by Shelah [She99, 3.2] for AECs with
amalgamation.

Definition 4.4 (Splitting). Let K be an AEC, let N ∈ K, A ⊆ N , let p ∈ S(N ),
and let 
 be an infinite cardinal with |A| < 
. We say that p(< 
)- splits over A if
there existsM1,M2 ∈ K<
 such that A ⊆M� ≤K N for � = 1, 2 and f :M1

∼=A M2

so that f(p �M1) �= p �M2. We say that p
- splits over A if it (< 
+)-splits over A.
We say that p splits over A if it (|A| + ℵ0)-splits over A.

Remark 4.5. Let N ∈ K, A ⊆ N , let p ∈ S(N ) and let 
 be an infinite cardinal
with |A| < 
. If p(< 
)-splits over A, then there exists N0 ≤K N with A ⊆ N0 and
‖N0‖ < 
 such that p � N0(< 
)-splits over A.

The following is a generalization of [Vas18, 4.12].

Lemma 4.6 (Local character). Let K be an AEC, letM ∈ K≥ℵ0 , let 	 be a regular
cardinal, and let 〈Ai : i ≤ 	〉 be an increasing continuous chain of sets with A	 =M .
Let 
 be either ‖M‖+ or supi<	 |Ai |+. Letp ∈ S(M ). If there exists a regular� ≤ ‖M‖
such that:

(1) K<
 is (< �)-tame.
(2) M is locally (� + 	+)-saturated.

Then there exists i < 	 such that p does not (< 
)-split over Ai .

Proof. Suppose not. Then for each i < 	, there exists M 1
i ,M

2
i ∈ K<
 and fi :

M 1
i
∼=Ai M 2

i so that Ai ⊆M�i ≤K M , � = 1, 2 and fi(p �M 1
i ) �= p �M 2

i .
By (< �)-tameness, we can findA1

i ⊆M 1
i of cardinality strictly less than � so that

fi(p � A1
i ) �= p � A2

i (we have set A2
i := fi [A1

i ]).
LetA :=

⋃
i<	(A

1
i ∪ A2

i ). Recall that p is realized in an extension of M. Moreover,
if 	 < � then |A| < � and if 	 ≥ � then |A| ≤ 	. In either case, M is locally |A|+-
saturated, so p � A is realized in M, say by a. Since 	 is a limit ordinal, there exists
i < 	 such that a ∈ Ai . Now, fix an extension gi :M ∼=M ′ of fi (soM 2

i ≤K M
′).

We have:
fi(p � A1

i ) = gi(tp(a/A1
i ;M )) = tp(gi(a)/A2

i ;M
′) = tp(a/A2

i ;M
′).

Where we have used that gi fixesAi , so gi(a) = a. On the other hand, sinceA2
i ⊆ A,

p � A2
i = tp(a/A2

i ;M ).
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Finally, observe that M 2
i ≤K M and M 2

i ≤K M
′ by construction. Therefore since

a ∈ Ai ⊆M 2
i , tp(a/A2

i ;M
′) = tp(a/A2

i ;M
2
i ) = tp(a/A2

i ;M ). We have shown that
fi(p � A1

i ) = p � A2
i , contradicting the definition of A1

i , A
2
i , and fi . �

We now generalize the weak uniqueness and extension properties of splitting first
isolated by VanDieren [Van06, I.4.10].

Lemma 4.7 (Weak uniqueness). LetM0 ≤K M1 ≤K N all be in K≥LS(K). Letp, q ∈
S(N ). If M1 is locally universal over M0, p and q both do not split over M0, and
p �M1 = q �M1, then p � A = q � A for any A ⊆ N with |A| ≤ ‖M0‖.

Proof. Fix A ⊆ N with |A| ≤ ‖M0‖. Pick N0 ≤K N with A ⊆ N0 and ‖N0‖ ≤
‖M0‖. Since M1 is locally universal over M0, there exists f : N0 −−→

M0
M1. By the

definition of nonsplitting (whereM1,M2 there stand for N0, f[N0] here), we must
have that f(p � N0) = p � f[N0] and f(q � N0) = q � f[N0]. Since p �M1 = q �
M1, f � f[N0] = q � f[N0]. Therefore f(p � N0) = f(q � N0), hence p � N0 = q �
N0. �

Lemma 4.8 (Weak extension). Let M0 ≤K M1 ≤K M all be in K≥LS(K) and let
p ∈ S(M ). Let N0 ∈ K be such thatM1 ≤K N0. If:

(1) p does not split overM0.
(2) N0 embeds into M overM1.

Then there exists q0 ∈ S(N0) such that q0 extends p �M1 and q0 does not split over
M0. Moreover, if p is not algebraic then q0 can be taken to be nonalgebraic.

Proof. Use the hypothesis to fix f : N0 −−→
M1
M . Let q0 := f–1(p � f[N0]).

By invariance, q0 does not split over M0 and q0 �M1 = p �M1. To see the
moreover part, assume that q0 is algebraic. Then p � f[N0] is algebraic, hence p is
algebraic. �

We now work toward improving the statement of weak extension. Roughly, we
would like to prove that if M is model-homogeneous and N is an extension of M of
the same cardinality, then types over M have nonsplitting extensions over N. This
is not immediate from Lemma 4.8 because without amalgamation we do not know
whether N embeds into M. Instead, we will first build small approximations of the
type we want to build, and then use tameness and existence of coherent sequences
of types to take the limit of these approximations. The following technical definition
will be key (one can think of it as a replacement for the notion of a “good saturated
model”—or limit model—in this context, see Remark 4.10):

Definition 4.9. Let K be an AEC. We call N ∈ K nicely filtrable over M if there
exists a limit ordinal 	 and an increasing continuous chain N̄ = 〈Ni : i < 	〉 such
that:

(1) N =
⋃
i<	 Ni , N0 =M .

(2) ‖Ni‖ < ‖N‖ for all i < 	.
(3) Ni+1 is locally universal over Ni for all i < 	.
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(4) N̄ is local and coherent (Definition 2.6).
(5) For any p ∈ S(

⋃
i<	 Ni), there exists i < 	 so that p does not split over Ni .

We call 〈Ni : i < 	〉 a nice filtration of N (over M).

Remark 4.10. It is not clear whether in general if N is nicely filtrable over M,
then N is nicely filtrable over any M ′ with ‖M ′‖ < ‖N‖, although this seems to
happen in reasonable cases. For example, if K is the class of models of a superstable
first-order theory T (ordered by elementary substructure), then a model N is nicely
filtrable (over some base) if and only if it is saturated. This holds even if T is only
stable with cf(‖N‖) ≥ κ(T ), and generalizes (in high-enough cardinals) to tame
AECs with amalgamation, see for example [Vas18, §6].

From categoricity in a suitable unbounded set of cardinals below a strong limit
of countable cofinality �, we can get nice filtrations. Note that Lemma 3.1 tells us
that from the hypotheses of Lemma 4.11 there will be a model in K�.

Lemma 4.11. Let K be an AEC and let � > LS(K) be a strong limit cardinal of
countable cofinality. If:

(1) For any 
 < � there exists � < � such that � = �
 and K is categorical in �.
(2) K<� is LS(K)-tame.
(3) K<� has coherent sequences.

Then for any N ∈ K� and any M ∈ K[LS(K),�) with M ≤K N , N is nicely filtra-
ble over M.

Proof. Let N ∈ K� and let M ∈ K[LS(K),�) with M ≤K N . Pick an increasing
sequence 〈�i : i < �〉 cofinal in � with ‖M‖ ≤ �0 and so that for any i < �, ��ii+1 =
�i+1 and K is categorical in �i . This is possible by assumption. By increasing M
if needed, we can assume without loss of generality that M ∈ K�0 . Now pick any
increasing sequence 〈Ni : i < �〉 such that N0 =M ,

⋃
i<� Ni = N , and Ni ∈ K�i

for all i < �. We claim this is a nice filtration of N over M.
As in the proof of Lemma 4.3, for any i < �, Ni+1 is locally universal over Ni .

Also, N̄ = 〈Ni : i < �〉 is trivially local since there are no limit ordinals below �.
Furthermore, N̄ is coherent because by assumption K<� has coherent sequences.
Finally, pick p ∈ S(N ). Note that by Lemma 4.3, N is locally model-homogeneous,
hence locally saturated. Thus Lemma 4.6 (where 	, � there stands for �,LS(K)+

here) implies there exists i < � so that p does not split over Ni . �
From the existence of nice filtrations, we can now prove the desired extension

property:

Lemma 4.12 (Extension). Let K be an AEC and letM0 ≤K M1 ≤K M ≤K N all
be in K≥LS(K). Let p ∈ S(M ). If:

(1) p does not split overM0.
(2) M1 is locally universal overM0.
(3) M is (‖M‖)-locally universal overM1.
(4) ‖N‖ = ‖M‖.
(5) N is nicely filtrable overM1.
(6) K≤‖N‖ is ‖M0‖-tame.
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Then there exists q ∈ S(N ) which extends p and does not split overM0. Moreover, q
is not algebraic if p is not algebraic.

Proof. Fix N̄ = 〈Ni : i < 	〉 a nice filtration of N over M1. For i < 	, let qi ∈
S(Ni) be as given by weak extension: it extends p �M1 and does not split overM0.
Moreover it is nonalgebraic if p is nonalgebraic. By weak uniqueness (and tameness),
qj � Ni = qi for i < j < 	. By Fact 2.7, there exists q ∈ S(N ) such that q � Ni = qi
for all i < 	. Note that q cannot be algebraic if all the qi ’s are nonalgebraic. By the
properties of N̄ , there exists i < 	 so that q does not split over Ni .

Claim: q does not split overM0.
Proof of Claim: By Remark 4.5, it suffices to see that q � N ′

0 does not split over
M0 for any N ′

0 ∈ K<‖N‖ with Ni+1 ≤K N
′
0 ≤K N . So let q′0 ∈ S(N ′

0) be as given by
weak extension (extending p �M1 and not splitting overM0). By weak uniqueness,
q′0 � Ni+1 = qi+1. Since q does not split over Ni , q � N ′

0 does not split over Ni . By
monotonicity, also q′0 does not split over Ni . By weak uniqueness again (recalling
that by definitionNi+1 is locally universal overNi ), q′0 = q � N ′

0. In particular, q � N ′
0

does not split overM0. �
Now since q �M1 = p �M1, weak uniqueness and tameness imply that q �M =

p, as desired. �

§5. Good frames and the main theorem. We use the tools of the previous section
to build a good frame, a local forking-like notion. We assume some familiarity with
good frames (see [She09a, Chapter 2]) here. We will use the definition and notation
from [Vas16a, §2.4] (which we do not repeat here). Recall that a good–S�-frame
is a good frame, except that it may fail the symmetry property. The following key
result tells us that good frame can be transferred up in tame AECs with weak
amalgamation:

Fact 5.1. Let s be a good–S�-frame on an AEC K. If K is �-tame and has weak
amalgamation, then s is a good �-frame and extends to a good [�,∞)-frame on all of
K≥�. In particular, K≥� has amalgamation and arbitrarily large models.

Proof. By [Vas17b, 4.16], K≥� has amalgamation. By [Bon14], s extends to a
good–S [�,∞)-frame t on K. By [Vas16a, 6.14], t, and hence s, also has symmetry.3

The “in particular” part follows from the definition of a good [�,∞)-frame. �
For K an AEC and M ∈ K, we let KM denote the AEC obtained by adding

constant symbols for M (see [Vas17b, 2.20] for the precise definition). Roughly
speaking, it is the AEC of models above M.

Lemma 5.2 (Main lemma). Let K be an AEC and let � > LS(K) be a strong limit
cardinal of countable cofinality. If :

(1) K� has weak amalgamation.
(2) K<� has coherent sequences.

3This will not be used in the present paper.
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(3) K≤� is LS(K)-tame.
(4) For every 
 < �, there exists � < � such that � = �
 and K is categorical in �.

Then for any nonmaximalM ∈ K�, KM has a type-full good–S�-frame.

Proof. ForN1 ≤K N2 both in K� and p ∈ S(N2), we say that p does not fork over
N1 if there exists N 0

1 ∈ K<� with N 0
1 ≤K N1 such that p does not split over N 0

1 . We
prove several claims:

• Nonforking is invariant under isomorphisms, and if N1 ≤K N2 ≤K N3 are all
in K� and p ∈ S(N3) does not fork over N1, then p � N2 does not fork over
N1 and p does not fork over N2. This is immediate from the definition and the
basic properties of splitting.

• If N1 ≤K N2 are both in K�, p, q ∈ S(N2) both do not fork over N1 and
p � N1 = q � N1, then p = q. To see this use the Löwenheim–Skolem axiom,
fix N 0

1 ≤K N1 such that N 0
1 ∈ K<� and both p and q do not split over N 0

1 .
By Lemma 4.3, all the models in K� are locally model-homogeneous, so in
particularN1 is locally universal overN 0

1 , so by tameness and weak uniqueness
(Lemma 4.7), p = q.

• If N ∈ K� and p ∈ S(N ), then p does not fork over N. This follows directly
from the definition of nice filtrations and Lemma 4.11.

• If N1 ≤K N2 are both in K� and p ∈ S(N1), then there exists q ∈ S(N2) such
that q extends p and q does not fork over N1. Moreover, q can be taken to be
nonalgebraic if p is nonalgebraic. To see this, first note that we have observed
previously that p does not fork over N1, hence there is M0 ∈ K[LS(K),�) such
that M0 ≤K N1 and p does not split over M0. Now we can pick M1 ≤K N1
with M0 ≤K M1, ‖M0‖ < ‖M1‖ < ‖N1‖, and ‖M1‖‖M0‖ = ‖M1‖, and K is
categorical in ‖M1‖. Then it follows thatM1 is locally universal overM0 (see
Fact 4.2). Also, Lemma 4.11 implies that N1 is nicely filtrable over M1. Now
apply Lemma 4.12, whereM,N there stand for N1, N2 here.

• If 	 < �+ is a limit ordinal, 〈Ni : i ≤ 	〉 is increasing continuous in K�, and p ∈
S(N	), then there exists i < 	 such that p does not fork overNi . Indeed, suppose
not. Assume without loss of generality that 	 is regular. In particular, 	 < �
and so 	+ < �. Let 
 := LS(K)+ + 	+. Pick � < � such that K is categorical in
� and �
 = �. By Fact 4.2, the model in K� is locally 
+-model-homogeneous.
Build 〈N 0

i : i < 	〉 and 〈N 1
i : i < 	〉 increasing in K� such that for all i < 	,

N 0
i ≤K Ni , N 0

i ≤K N
1
i ≤K N	 , N 1

i ∩Ni ⊆ N 0
i+1, p � N 1

i splits over N 0
i . This

is possible (see [Vas16a, 4.11] for a very similar construction). At the end, let
N�	 :=

⋃
i<	 N

�
i . Observe thatN 1

	 = N 0
	

so by Lemma 4.6, there exists i < 	 so
that p � N 1

	 does not split over N 0
i . This is a contradiction, since we assumed

that p � N 1
i splits over N 0

i .
• For anyN ∈ K�, |S(N )| ≤ �. Indeed, if 〈pi : i < �+〉 are types in S(N ), we can

first use Lemma 4.11 to find a nice filtration 〈Nj : j < �〉 of N. In particular,
for all i < �+ there exists ji < � with p not splitting over Nji . By the usual
pruning argument (using that � is strong limit to see that |S(Nj)| < � for each
j < �), there exists j < � and an unbounded subset X ⊆ �+ such that for
i1, i2 ∈ X , pi1 , pi2 both do not split over Nj and have the same restriction to
Nj+1. By weak uniqueness, pi1 = pi2 . This shows that |S(N )| ≤ �.
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Now fix a nonmaximalM ∈ K�. We identify any N ∈ K� such thatM ≤K N with
the corresponding member of KM (this will not yield to confusion). We define
nonforking in the frame using the nonforking relation defined above. The basic types
are the nonalgebraic types. We have just established that invariance, monotonicity,
uniqueness, extension, and local character hold in the frame. Therefore transitivity
and continuity automatically follow (see [She09a, II.2.17, II.2.18]). Also note that
KM is not empty (it contains a copy of M) and has no maximal models of cardinality
�: given M ≤K N in K�, we can fix a nonalgebraic p ∈ S(M ) (which exists as M
is not maximal) and take its nonforking extension to S(N ). We have observed this
extension is not algebraic, hence N cannot be maximal either. We have also seen
that K (hence KM ) is stable in �. Finally, K has amalgamation in �. This follows
from Fact 2.5 and the extension property of nonforking. We deduce that KM has
amalgamation in � and also joint embedding in �. �

Remark 5.3. By Lemma 3.1, any AEC satisfying the hypotheses of Lemma 5.2
will have a model in K�, but we do not in general know how to find a nonmaximal
one. Theorem 3.6 gives a way by assuming categoricity in more cardinals.

We deduce arbitrarily large models from categoricity in enough small cardinals:

Theorem 5.4. Let K be an LS(K)-tame AEC with weak amalgamation and coherent
sequences, and let � > LS(K) be a strong limit cardinal. If :

(1) Not every element of K� is maximal.
(2) For every 
 < � there exists � < � such that � = �
 and K is categorical in �.

Then K≥� has amalgamation and arbitrarily large models.

Proof. Assume without loss of generality that � has countable cofinality
(otherwise, it is easy to find a smaller cardinal which has countable cofinality and
still satisfies the hypotheses). Fix a nonmaximalM ∈ K�. By Lemma 5.2, there is a
good–S�-frame on KM . It is easy to check that KM has weak amalgamation and is
�-tame. Therefore by Fact 5.1, KM has amalgamation and arbitrarily large model.
In particular, K has arbitrarily large models and M is an amalgamation base in
K. Since any maximal model is an amalgamation base, we deduce that K≥� has
amalgamation. �

We now work toward transferring categoricity assuming arbitrarily large models.
We will use the following upward categoricity transfer of Grossberg and VanDieren
for tame AECs with both amalgamation and arbitrarily large models.

Fact 5.5 ([GV06a, 6.3]). Let K be an LS(K)-tame AEC with amalgamation
and arbitrarily large models. If K is categorical in LS(K) and in LS(K)+, then K is
categorical everywhere above LS(K).

Toward deriving global amalgamation, we show how to build a good frame assum-
ing arbitrarily large models and enough categoricity, tameness, and amalgamation
in low cardinals. We will use recent results from [BGVV17] and [Vas17a], but the
reader can regard them as black boxes.
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Lemma 5.6. Let K be an AEC. If :

(1) K has arbitrarily large models.
(2) K is categorical in LS(K).
(3) K is categorical in LS(K)+.
(4) KLS(K) has amalgamation.
(5) KLS(K)+ has weak amalgamation.
(6) K≤LS(K)+ is LS(K)-tame.

Then K has a good LS(K)+-frame.

Proof. Let � := LS(K). By [BGVV17], K is �-superstable (essentially, this means
that splitting has what is called the ℵ0-local character for universal chains in
[Vas16a]) and by [Vas17a, 5.7(1)], K has �-symmetry. We now attempt to build a
good–S -frame as in [Vas16a]. We can prove extension without using amalgamation in
�+, hence by Fact 2.5 we obtain amalgamation in �+, and hence obtain a good–S�+-
frame. Symmetry is then proven as in [BV17b, 6.8] (and is not needed for the present
paper). �

We can now prove a generalization of Fact 5.5 for tame AECs with only weak
amalgamation (but still with arbitrarily large models).

Theorem 5.7. Let K be an LS(K)-tame AEC with weak amalgamation and
arbitrarily large models. If KLS(K) has amalgamation, and K is categorical in both
LS(K) and LS(K)+, then K≥LS(K) has amalgamation and K is categorical everywhere
above LS(K).

Proof. By Lemma 5.6, K has a good LS(K)+-frame. By Fact 5.1, it follows that
K≥LS(K)+ (and hence K≥LS(K)) has amalgamation. Now apply Fact 5.5. �

Lemma 5.6 still asked for full amalgamation in one cardinal. However we can use
the weak diamond to derive it from successive categoricity:

Corollary 5.8. Let K be an LS(K)-tame AEC with weak amalgamation and
arbitrarily large models. Let 
 > LS(K) be least such that 2LS(K) < 2
 . If K is
categorical in every cardinal in [LS(K), 
], then K is categorical everywhere above
LS(K). Moreover, there exists � ∈ [LS(K), 
) such that K≥� has amalgamation.

Proof. Generalizing [She09a, I.3.8] (using the corresponding generalization of
the Devlin–Shelah weak diamond [DS78] as in [SV99, 1.2.4]), we can find � ∈
[LS(K), 
) such that K� has amalgamation. Now apply Theorem 5.7 to K≥�. �

Putting together all the results proven so far, we obtain the main result of the
paper:

Corollary 5.9. Let K be an LS(K)-tame AEC with weak amalgamation and
coherent sequences. If K is categorical in every cardinal in [LS(K),��(LS(K))), then
K is categorical everywhere above LS(K).
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Proof. Let � := ��(LS(K)). By Theorem 3.6, not every element of K�
is maximal. By Theorem 5.4, K has arbitrarily large models. Now apply
Corollary 5.8. �

Specializing to universal classes, we get:

Corollary 5.10. If a universal L�1,� sentence is categorical in an end segment of
cardinals strictly below �� , then it is also categorical everywhere above �� .

Proof. Let φ be a universal L�1,� sentence and let K be its the class of models
(ordered with substructure). Note that K has intersections (the closure operator
computed inside N is the closure under the functions of N). By Lemma 2.8, K has
coherent sequences. By Remark 2.4, K has weak amalgamation. By [Vas17b, 3.7],
K is LS(K)-tame. Let � ∈ [ℵ0,��) be such that K is categorical in every cardinal in
[�,��). Now apply Corollary 5.9 to K≥� . �

For completeness, we also point out that the last two results can be drastically
improved assuming the weak GCH (see also [MAV18] for how to improve even
more when the Löwenheim–Skolem–Tarski number is ℵ0). On �unif, see [She09b,
VII.0.4] for a definition and [She09b, VII.9.4] for what is known. It seems that for
all practical purposes the reader can take �unif(�++, 2�

+
) to mean 2�

++
.

Theorem 5.11. Let K be an AEC with Löwenheim–Skolem–Tarski number �.
Assume that K is �+-tame and has weak amalgamation. Assume further that 2� <
2�

+
< 2�

++
. If K is categorical in �, K is categorical in �+, and 1 ≤ I(K, �++) <

�unif(�++, 2�
+

), then K is categorical everywhere above �.

Proof. By results of Shelah on building good frames, there is a good �-frame on
K and K≤�+ is �-tame (see [Vas20, 7.1] for an outline of the proof). By Fact 5.1, K
has arbitrarily large models. Now apply Corollary 5.8. �
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