
Introduction

Thomas (1973a, 1973b) introduced the concept of back
stress to account for reduced spreading rates on the Brunt
Ice Shelf in Coats Land, Antarctica. Back stress is defined
qualitatively as stress induced by anything that resists
forward motion of glacial ice, such as local pinning
(grounding) points on an ice shelf, side shear on a glacier
flowing through the confines of a fjord, and lateral drag
from slower moving ice bordering a faster moving ice
stream. A major cause of back stress is the buttressing effect
an ice stream experiences as it flows into a large pinned and
confined floating ice shelf, as is the case at many locations
in Antarctica. Following Rist et al. (1996, 1999, 2002), this
study uses fracture mechanics; first, to assess the
magnitudes of the back stress along the floating portion of
Byrd Glacier, shown in Fig.1 as it enters the Ross Ice Shelf,
and second, to generate transverse fractures that lead to
iceberg calving after the back stress diminishes. 

Stresses in floating ice

Rist et al. (2002) did a quantitative analysis of back stress
on the Ronne Ice Shelf using fracture mechanics. Field data
were taken along a flowline on the floating ice, with ice
cores recovered to determine density profiles and fracture
toughness. Measurements of basal crevasse penetrations
were made using radar profiling.

In order to employ a fracture mechanics analysis, the
stresses in floating ice need to be determined. Longitudinal
stress σxx in the x direction of ice flow can be written as:
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Fig. 1. Byrd Glacier and its flowband on the Ross Ice Shelf. Inset
map shows location. From Jezek 1998. 
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(1)

where is the longitudinal deviator stress, the y
direction is transverse to ice flow, and the z direction is
vertical. Incompressibility of ice, such that strain rates

requires that

(2)

which allows the simplification that, averaged through the
ice thickness, σ'xx << σxx ≈ σyy ≈ σzz. Then Eq. (1) is
approximated by:

(3)

where σzz is the (negative) ice overburden pressure. The
deviator stress is determined by the flow law of ice, as
formulated by Thomas (1973a, 1973b):

(4)

The term in parentheses is the contribution to the stress due
to creep in the ice, while the variable B represents the ice
hardness parameter, which is dependent on temperature, and
therefore on depth z through the ice, n is a viscoplastic
parameter, and Θ denotes the relative contribution to creep
of shear and transverse deviator stresses. With these
substitutions in Eq. (1), the stress in the horizontal direction
of ice flow can be written as, for n = 3:

(5)

Weertman (1957) demonstrated that the term in parentheses
is a positive constant; indicating that an unconfined ice shelf
must lengthen due to creep. This constant term is obtained
by balancing the force exerted by the ice column and that
due to water pressure, i.e.

(6)
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where ρw is water density, g is gravity acceleration, and b
and s represent the base and surface of a floating ice shelf
with z vertical and positive upward in a coordinate system
originating at sea level (Fig. 2). Substituting Eq. (5) into
Eq. (6) and integrating the right hand side explicitly gives

(7)

for ice with total thickness H and height h above sea level.
Since ice density ρi is not constant with depth (Paterson
1994, Rist et al. 1996, 1999, 2002), ice overburden pressure
is written as:

(8)

and the height above sea level to which a floating ice
column will rise is: 

(9)

Substituting these values into Eq. (7) and solving for the
constant term gives:

(10)

which can then be inserted into the original expression for
the longitudinal stress in Eq. (5) to yield:

(11)

This relation is an explicit formula for the longitudinal
stress acting at any depth z in floating ice. It is a non-linear
relation determined by the dependence of density on depth
and the dependence of B on depth through the depth
dependence of ice temperature. Both of these effects will be
explicitly addressed later.

Back stresses in floating ice

Back stress can be included in the treatment by considering
a longitudinal compressive back stress σc of the form
(Thomas & MacAyeal 1982):

(12)

This can then be subtracted from the longitudinal extending
stress σ'xx in Eq. (3), as expressed in Eq. (11), to give a final
depth dependent stress:
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Fig. 2. Geometry for stress and fracture mechanics analysis.
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(13)

The inclusion of a back stress term allows for a general
description of the stresses acting on the ice. In a fracture
mechanics framework, the stress described by Eq. (13) lets
one calculate the stresses acting on a crevasse within the ice.
A non water-filled crevasse (most likely a surface crevasse
in the presence of little or no surface melting) transverse to
ice flow will be subject to a tensile stress given σ by

σ = σxx (14)
while a for water filled crevasse (on the surface or at the
base), σ will be given by

σ = σxx + σw = σxx – ρw g z (15)
As written, σc incorporates any effect that resists forward
progress of the ice. It can assess magnitude but not causes of
back stress. Assessing causes requires knowing the stress
tensor in three dimensions, which is beyond the scope of
this study.

Fracture mechanics

Following Rist et al. (2002), we employ a stress intensity
factor (SIF) that is derived for a depth-dependent tensile
stress σ. In order to do this, it is necessary to rewrite the
depth dependent stress in terms of a polynomial of order N

(16)

With the stress written in this form, the SIF for mode I
cracks, those cracks that open in tension, is KI and is given
by (Fett et al. 1990):

(17)

where a is the crevasse depth and the FN are weighting
functions determined to be 

(18)
with Γ representing the standard gamma function.

This expression is determined by Fett et al. (1990) to be
valid for N ≤ 5 and normalized crevasse depths α = a/H ≤
0.9. The Ai are polynomials in α given by (correction in A3
by Rist et al. 2002)

(19a)

(19b)
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The application of Eq. (17), plotted in Fig. 3, is simply a
matter of fitting the stress given by Eq. (14) or Eq. (15) to a
polynomial of order 5 and substituting the fitted
coefficients. Stress σ increases linearly with depth when ice
density is constant, and is nearly linear when density varies
according to Eq. (20).

Back stresses on Byrd Glacier

Thomas & MacAyeal (1982) determined back stress on the
Ross Ice Shelf, mainly for the western portion, and
converted it into contours of a “retarding force.” They
measured strain rates at a number of field stations and
numerically computed the retarding force necessary to
rectify these strain rates with what an unopposed ice shelf of
Weertman (1957) type would experience. Byrd Glacier
dominates flow on the eastern portion of the ice shelf. As
seen in Fig. 1, Byrd Glacier begins in the East Antarctic Ice
Sheet and enters the Ross Ice Shelf in a fjord through the
Transantarctic Mountains. The Ross Ice Shelf exerts a back
stress on the floating lower portion of Byrd Glacier, causing
compressive flow (Brecher 1982). Transverse crevasses do
not form in this region. Extending and divergent flow
becomes apparent after Byrd Glacier leaves the fjord and
transverse crevasses appear. Crevasse depths depend on the
longitudinal tensile stress, so if the depths are known, or
assumed to be some value, the stress at any given point
along the flowline can be deduced for specified ice
properties.

Data necessary to apply Eq. (14) include knowledge of
the relation of density with depth, the thickness of the
floating portions of the ice and some idea of how the flow

A3 = –0.3012 + 0.9970α – 0.5156α 2 – 2.0149α 3 + 1.8843α 4( )/ 1– α( )5/ 2
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Fig. 3. The weight function given by Eq. (17) for an edge crack
subjected to constant tensile stress. Tensile stress σ = 0.1 Mpa
and sample thickness H = 100 m.
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law parameter B varies with depth. An exponential relation
best describes the density as a function of depth (Paterson
1994):

(20)
where ρi is the density of pure ice, ρs is density of snow and
firn at the surface, d is the depth below the surface and c is a
constant determined by experiment. 

Ice hardness parameter B is a function of temperature T,
which varies with depth. The relation between T and z can
be quite complicated so a numerical solution to B is
necessary, using the Arrhenius relation :

(21)

with n the viscoplastic parameter in Eq. (4), R the universal
gas constant (8.31 J mol-1 K) and Q the activation energy for
creep in ice, which is double-valued, depending on
temperature. The values most commonly chosen are Q = 6 x
104 J mol-1 when T < -10°C and Q = 13.9 x 104 J mol-1 when
T ≥ -10°C. The value of Bo is chosen so that the function is
continuous (but not necessarily differentiable) at the point
where the transition in Q takes place. Weis et al. (1999)
modeled the temperature profile through a floating glacier
as it enters an ice shelf. As Byrd Glacier enters the Ross Ice
Shelf, the surface temperature is -25°C (Thomas 1976,
Thomas et al. 1984). Basal temperatures for ice in contact
with seawater, are near -3°C. The temperature profile for the
high basal melting rates in the floating lower part of Byrd
Glacier, as determined by Kenneally (2003), is shown in
Fig. 4.

Surface crevasses

Zero unstable surface crevasse growth is considered in
analysing the back stresses of Byrd Glacier. This case would

B = Bo exp
Q

nRT z( )
 
  

 
  

ρi z( ) = ρi – ρi – ρs( )e− d /c

result in the minimum back stress required for surface
crevassing to remain within the stable regions of crack
growth determined by Kenneally (2003), following Rist
et al. (2002). The magnitude of the stress intensity factor for
the crack would remain below the fracture toughness for all
crack depths a.

Values of the back stress can be found by application of
Eq. (14), represented by Eq. (16), and iterating through the
back stress until surface crevasse depths found using
Eq. (17) match what is observed or is posited to exist. The
floating length of Byrd Glacier is undergoing compressive
flow in the lower part of the fjord, so crevasse formation is
completely retarded in this region. Floating ice thicknesses
in the fjord are inferred using the non-linear density relation
given by Eq. (20) and ice-surface elevation measurements
by Brecher (1982). Thicknesses range from 800 m to 350 m.
Utilizing Eq. (13) for various ice thicknesses H results in
longitudinal stresses present in the floating ice. There are
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Fig. 5. Stress intensity factor as a function of crevasse depth for a
range of back stresses.

Fig. 4. The temperature profile as a function of depth for a glacier
of thickness 500 m experiencing basal melting. Surface
temperature is -25°C and basal temperature is -3°C.
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three unique components to stress σxx; the tensile deviator
stress σ'xx due to creep, the ice overburden stress σzz, and the
compressive back stress σc. The mode I stress intensity
factor for tensile cracks is found by recalling that the net
stress intensity factor is the sum of the individual stress
intensity factors contributing to the stress

(22)
where each Ki is found using Eq. (17), subscript I for each K
is assumed to be understood, thus is omitted for clarity. 

Calculated stress intensity factors for ice of thicknesses 
H = 400 m and H = 750 m are shown in Fig. 5. In each
figure, the dashed line represents the fracture toughness of
ice KIc determined by Rist et al. (2002) to be 0.15 MPa m1/2.
In each case, a stress intensity factor (SIF) for a given back
stress is shown that is tangent to the fracture toughness. The
value of σc that results in this tangent SIF is the minimum
back stress necessary to retard unstable crack growth

Ktotal = Ki = Ktensile + Koverburden + Kback
i

∑

entirely. A map of the back stresses necessary for this
condition to hold is shown in Fig. 6.

This example demonstrates the procedure for determining
the back stresses along a flowline in floating ice. It can be
applied to any field data that are collected, so when a
crevasse is measured to be at some depth aobserved, the
procedure can be carried out by iterating the back stress
until the stress intensity factor intercepts the fracture
toughness curve, thereby matching the observation. Back
stresses found here are consistent with those in previous
work (Rist et al. 2002, Thomas & MacAyeal 1982). These
iterations begin with zero back stress, see Fig. 7.

Basal crevasses

This analysis can also be applied to basal crevasses by using
Eq. (15) and proceeding in the same way. A basal crevasse is
the most obvious example of a water-filled crevasse, since
sea-water will rise into the crevasse as it penetrates the ice.
Water-filled crevasses are inherently unstable due to the
difference in the densities of water and ice. The ice
overburden pressure is not sufficient to close a crevasse that
is filled with the denser water, as illustrated in Fig. 8 for
zero back stress. This instability leads to the observation
that floating ice in a location where there is little or no back
stress cannot exist when water filled crevasses are
prevalent. The recent breakup of the Larsen B Ice Shelf on
the Antarctic Peninsula is such an example (MacAyeal et al.
2003). Local warming resulted in extensive meltwater
production, causing surface crevasses to fill with water.
Back stresses that may have been present, including the
pressure of pack ice in the Weddell Sea, where unable to
prevent catastrophic breakup of the ice shelf.
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Fig. 6. Back stresses at locations along the floating portion of Byrd
Glacier is such that no crevasse growth can occur.

Fig. 7. Maximum crevasse penetration as a function of ice
thickness for zero back stress.

Fig. 8. Stress intensity factor for a basal crevasse as a function of
penetration depth, measured from the base of the ice, for σc = 0.
Overburden stress on its own is insufficient to pinch shut a crack
once growth is initiated, because K1 increases with crevasse
depth without bound.
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Constant ice properties with depth

Ice hardness B depends on the variation of temperature T(z)
with depth through the ice, and ice density ρi has a depth-
dependence given by Eq. (20). The situation where B and ρi
are constant with depth is shown here for comparison. In
this case Eqs (11) & (13) simplify to

(23)
and

(24)

Results using ρi = 917 kg m-3, ρw = 1002 kg m-3, and 
H = 500 m are shown in Fig. 9, which shows that the critical
back stress is higher when density and temperature are
constant. Thus, greater gravitational forcing induces greater
resistance. One notable difference between the stresses in
Fig. 9a is the flotation height of the ice. The constant density
solution results in a flotation height h ≈ 54 m, while h ≈ 71
m for the parameterized density. The non-linearity of the
true stress is also clear in this picture and this no doubt
influences the stress intensity factor.

Crevasse initiation

How a new crevasse forms in glacial ice is unclear, but
some possibilities may include the effects of bed conditions
for grounded ice or tidal flexure at a grounding line for
floating ice (Lingle et al. 1981). In particular, crevasses
formed at grounding lines can have their growth stifled if, as
in the case of Byrd Glacier, flow is compressive for some
downstream distance and then crevasse growth is
reactivated at a farther distance when flow becomes
extensive.

The direction of crack propagation has been discussed by
Sih (1991), using the strain energy density concept. The first
hypothesis of this concept states crack initiation will start in
a radial direction along which the strain energy density is a
minimum. The strain energy density is given by

(25)S = a11k1
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Fig. 10. Minimum crack depths required to achieve unstable crack
growth for a range of ice thicknesses.

Fig. 9. a. Comparison of the stresses in floating ice of thickness
500 m depth dependent and constant ice density. Stress intensity
factors are shown with the critical back stress necessary to retard
fracture for b. the constant density case, and c. the depth
dependent density case.

a.

b.

c.

https://doi.org/10.1017/S0954102004002056 Published online by Cambridge University Press

https://doi.org/10.1017/S0954102004002056


where the aij are functions of the angle θ from the crack tip
to the infinitesimal volume element being analysed,
Poisson’s ratio is ν and the shear modulus of elasticity is µ.
The ki represent normalized stress intensity factors for mode
I, II, and III cracks. In the case of mode I fracture, Eq. (25)
takes the form

(26)

where  ki = σ a1/2 and k2 = k3 = 0. In order to find the
minimum of Eq. (26), the derivative with respect to θ is
taken and set equal to zero. This yields solutions θ  = 0 and
cos θ = 1 − 2ν.   Inserting these values into the second
derivative of S determines whether the value is a maximum
or minimum. Using this criteria, θ = 0 is found to be a
minimum. The hypothesis requires that cracks grow in a
direction along the axis of the initial crack, and
perpendicular to the applied stress.

An examination of the SIF functions is necessary to
determine the actual size of a “starter” crevasse. Figure 5
shows that the general shape of the SIF is convex, so the SIF
curve will intercept the fracture toughness line at two
locations. The point where the SIF intercepts fracture
toughness KIc for the second time has already been
discussed and is used to calculate the maximum depth to
which a crevasse will penetrate. Points along the SIF curve
that exceed the toughness are unstable, so the crack grows
from the first to the second intersection almost instantly.
Cracks that are very shallow will not propagate in this
unstable fashion unless they achieve a depth such that the
SIF becomes greater than the fracture toughness, which is
located graphically at the point where the SIF curve first
intersects the fracture toughness line. The minimum
crevasse depths required for unstable growth are shown in
Fig. 10. The deepest initial crevasse that can form will be
the one that results when the back stress σc is just below its
critical value σcr. This crevasse depth, symbolized by a0,
will be the maximum initial crevasse depth that can form,
since values of the back stress less than σcr will result in
more shallow starter crevasses (see Fig. 5). Explicitly, a0
can be found by solving

(27)
for some ice thickness H and its corresponding critical back
stress σcr, as calculated in the Surface Crevasses section.
The range of starter crevasse depths amin for σc < σcr will
then be 0 ≤ amin ≤ a0.

Crevasse propagation

When ice becomes afloat, the longitudinal strain rate
induced by stresses can be written for linear ice flow with
constant ice temperature and density as (Thomas 1973a,
1973b):

K a0; H, σ c( )= KIc

S =
σ 2a
16µ

3 – 4ν – cosθ( ) 1+ cos θ( )[ ]

(28)

where H is the total thickness of the ice, B is the ice
hardness parameter and σc is the compressive back stress in
the ice. Contained within this expression is the overall
longitudinal deviator stress for linear ice flow:

(29)
for which 2σ'xx = σxx – σzz.

Assume that the ratio of crevasse width w to spacing s is
constant as the crevasse migrates downstream, i.e.

(30)

where subscript i and f refer to initial and final conditions.
The initial width wi of newly formed crevasses is
determined by dislocation theory applied to a ductile zone at
the crevasse tip (Weertman 1996, p. 377). The initial
spacing si of newly formed crevasses was given by
Weertman (1977):

(31)

where smin denotes the minimum spacing required to have
any crevasse growth in ice with fracture toughness Kc. This
equation is a simplification of a relation describing crevasse
spacing as a function of crevasse depth a (Weertman 1977,
p. 41):

(32)

Solving Eq. (32) for s as a function of crevasse depth a
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Fig. 11. Minimum spacing necessary to allow crevasse growth
according to Eq. (33). Spacings for three values of the
longitudinal deviator stress σ'xx are shown.
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results in 

(33)

where the density is now also a function of crevasse depth.
Results for Eq. (33) as a function of crevasse depth can be
seen in Fig. 11 for a range of values of longitudinal deviator
stress σ’xx. In order to get final spacing sf the final width of
the crevasse is needed. This can be found by calculating the
strain rate in the ice using Eq. (28) and applying it
appropriately to the initial crevasse width.

Strain rates on the Ross Ice Shelf can be calculated from
data presented in Table I obtained by Thomas & MacAyeal
(1982) and Bentley & Jezek (1981) for the flowband that
originates at Byrd Glacier and travels towards the calving
ice front. Using these data, strain rates in Fig. 12 were
calculated at three locations along the flowband using
Eq. (28). The largest extending strain rate occurs at the
location nearest the fjord entrance, but 50 km downstream,
and is = 1.1 + 10-2 yr-1. It takes ice exiting the fjord
approximately 67 years to reach this point, for an average
velocity of 750 m yr-1. The strain rate can be converted to a

ε&
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8π
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σ'xx –aρi a( )g
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3

2
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σ 'xx –aρi a( )g
 
  

 
  

2

strain by the simple relation

for ∆t = 67 years. When this strain is applied to an initial
crevasse width of 1 mm the final width at the ice margin is
at most only twice the initial width, since strains farther
downstream are very small and contribute negligibly to
widening. From Eq. (30), this results in final crevasse
spacings that are only double the initial spacing, at most,
which itself is on the order of tens of metres. This exercise
shows that extending flow does not determine crevasse
spacing.

An alternative mechanism relates crevasse width w to
depth a by a relation 

w = f(a) a (34)

txxxx ∆= εε &
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Fig. 13. Illustration of crevasse widening as crevasse depth
increases. The depth grows from the situation labelled by 1 to
that in 4, which represents its maximum penetration depth as
determined by fracture mechanics. The crevasse widens from wi
to wf during the time it is penetrating into the ice.

Fig. 14. Final crevasse spacing under the current analysis. Two
values for final crevasse width wf result in spacings on the order
of the largest tabular icebergs.

Table I. Ross Ice Shelf data. Ice thickness is taken from Bentley & Jezek
(1981) while retarding force and ice hardness parameter are taken from
Thomas & MacAyeal (1982).

Distance from Ice Retarding Calculated Ice hardness
fjord entrance thickness force back stress parameter

(km) (m) (MN/m) (k Pa) (107 Pa s1/3)

50 600 560 83 15
175 400 45 112 17
350 300 10 33 19

Fig. 12. Calculated strain rates along the Byrd Glacier flowband
onto the Ross Ice Shelf. Larger strain rates farther upstream may
be the controlling mechanism for large scale iceberg formation,
while smaller strains nearer the calving front may control the
smaller and more frequent calving events.
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where f(a) is an enhancement factor that is dependent on
depth. This mechanism is illustrated in Fig. 13. Consider
data in Table I for the 50 km location. This is where the
largest extending strains occur; thus it can be inferred that
crevasses can form at this point and may be the controlling
factors in large iceberg formation. The measured back stress
is 83 kPa and the ice is 600 m thick. The Surface Crevasse
section showed how crevasse penetration depth could be
determined for various back stresses. In this case, σc = 83
kPa allows a maximum crevasse depth of amax ≈ 30 m. If this
value of amax is inserted into Eq. (33) with density given by
Eq. (20), then initial spacing necessary to allow for crack
growth is found to be si ≈ 20 m. Equation (30) can now be
combined with Eq. (34), using observed initial crevasse
widths (Swithinbank 1999) so that final spacing is:

(35)

Equation (35) gives sf/si ratios between 103 and 104. This
gives values of the final spacing that are certainly large
enough to result in the full size range of tabular icebergs.
The relation in Eq. (35) is plotted in Fig. 14 for two values
at the lower end of observed final widths wf.. Initial width in
each case is taken to be only 1 mm, as observed by
Swithinbank (1999, p. 96) and calculated using dislocation
theory for a ductile crack tip (Weertman 1996, p. 377). The
size and shape of the ductile zone is calculated from
plasticity theory, see Appendix A.

Conclusions

Any discussion that attempts to explicitly determine a
relation describing calving processes from a theoretical
standpoint is a precarious venture. This is especially true for
calving from ice shelves, given their complex boundaries
and flow regimes (Weis et al. 1999). The flowband of Byrd
Glacier on the Ross Ice Shelf is close to an idealized
flowband and considerable data are available to make
worthwhile a first-order investigation of the relationship
between longitudinal gravitational extension and side shear
that resists extension of the flowband. A standard linear
elastic analysis of cracking is combined with ductile
deformation at the crack tip to produce transverse crevasses
that allow tabular icebergs to calve at spacings of 20 km to
200 km. This encompasses the largest Antarctic icebergs.
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Appendix A: Size of the plastic zone at a crack tip

A determination of the size of the plastic zone surrounding a
ductile crack tip begins with specifying a yield criterion.
The von Mises yield criterion states that, for a specimen
under uniaxial tension, yielding will occur when the yield
stress σY is given by the square root of the second invariant
of deviator stresses.

(A1)

where σ1, σ2, and σ3, are the principal stresses of the
system. They can be related to the stress intensity factor K1
for a tensile crack. Since the systems under consideration
here are very thick, any-out-of plane deformation will be
assumed small compared to overall thickness and plane
strain can be assumed (Weis et al. 1999). The principal
stresses, with σ3 = ν (σ1 + σ2) using Poisson’s ration ν for
plane strain, then become infinite for r = 0 at the crack tip:

( ) ( ) ( )[ ] 2/12
31

2
32

2
212

1 σσσσσσσ −+−+−=Y

(A2a)

(A2b)

(A2c)

These results can be substituted into Eq. (A1) and the extent
rP of the plastic zone, within which σY is finite can be
determined:

(A3)

with the coordinate system origin at the crack tip.
Equation (A3) contains the stress intensity factor for the

system being studied. Because of this it is difficult to make
an a priori estimate of the plastic zone because of the SIF
dependence on factors like specimen thickness and crack
length. These results validate the assumption that the plastic
zone is small. A plot of Eq. (A3) is shown in Fig. A1 with a
yield stress σY = 1 bar, for ice of thickness H = 3000 m and
crack depth a = 32 m.

Differentiating Eq. (A3) with respect to θ gives the angle
θmax ≈ 1.512 rad, which maximizes the radial value defining
the plastic zone for plane strain. When this value is
combined with the maximum value of the stress intensity
factor K1 found by differentiating and solving for the
crevasse depth (see the convex profile of the stress intensity
function in Fig. 9), the maximum extent of the plastic zone
is shown to be 0.001 to 0.003 of ice thickness, for 
H = 3000 m and H = 1000 m, respectively.
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Fig. A1. Polar plot of the plastic zone rp, measured in metres, for
plane strain conditions.
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