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Abstract
Objectives: We explore the policy implications of probabilistic sensitivity analysis in cost-effectiveness
analysis by applying simulation methods to a decision model.
Methods: We present the multiway sensitivity analysis results of a study of the cost-effectiveness of
vaccination against pneumococcal bacteremia in the elderly. We then execute a probabilistic sensitivity
analysis of the cost-effectiveness ratio by specifying posterior distributions for the uncertain parameters
in our decision analysis model. In order to estimate probability intervals, we rank the numerical values
of the simulated incremental cost-effectiveness ratios (ICERs) to take into account preferences along
the cost-effectiveness plane.
Results: The 95% probability intervals for the ICER were generally much narrower than the difference
between the best case and worst case results from a multiway sensitivity analysis. Although the
multiway sensitivity analysis had indicated that, in the worst case, vaccination in the 85 and older
age group was not acceptable from a policy standpoint, probabilistic methods indicated that the cost-
effectiveness of vaccination was below $50,000 per quality-adjusted life-year in greater than 92% of
the simulations and below $100,000 in greater than 95% of the simulations.
Conclusions: Probabilistic methods can supplement multiway sensitivity analyses to provide a more
comprehensive picture of the uncertainty associated with cost-effectiveness ratios and thereby inform
policy decisions.
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The incremental cost-effectiveness ratio (ICER) measures the incremental price of
obtaining a unit health effect from an intervention in comparison to an alternative.
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The U.S. Panel on Cost-Effectiveness in Health and Medicine has recommended
that analysts who perform model-based cost-effectiveness studies conduct univariate
and multiway sensitivity analyses, and where possible, estimate a confidence interval
through statistical or simulation methods (12). Univariate and multiway sensitivity
analyses explore the effects of uncertainty in single or multiple parameters on the
results of a cost-effectiveness study by systematically varying the parameters in the
model and re-analyzing the outcome. Because combinations of extreme parameters
are very unlikely to occur, global best and worst case studies are helpful primarily
in the pragmatic sense when they demonstrate results that are not substantially
different from those of the reference case.

Probabilistic sensitivity analysis attempts to quantify the uncertainty in the
ICER, by placing a probability distribution over parameter values. Several studies
have examined different methods of estimating uncertainty in ICERs, including
the delta method, Fieller’s method, Bonferroni methods, Bayesian estimation tech-
niques, and nonparametric bootstrapping (2;4;10;11;14;15;16;19). A number of inves-
tigators have applied these techniques to cost-effectiveness analyses of health care
interventions (2;3;4;5;7;9;10;11;12;15;17;19;20), which have been based both on clin-
ical trials and on decision models that use secondary data sources.

An important issue in the estimation of distributions for ICERs arises from
the treatment of negative values in the numerator, the denominator, or both. Chaud-
hary and Stearns (4) have characterized negative ratios as reflective of one of
the following:

• Cost savings where treatment costs are less and health is improved by an intervention; or

• A bad investment where treatment costs are greater and health is worse due to the inter-
vention.

These two situations represent very different meanings for a decision maker
who is interested in maximizing health benefits for resources spent. Therein lies a
problem with certain methods for estimating confidence intervals of ratios, such as
Fieller’s method and the delta method; they treat the confidence interval as if it
were continuous with respect to preference and as such do not distinguish between
the different kinds of negative ratios. Unless one explicitly qualifies the source of
the negative values, the interval is ambiguous. Even if the different types of negative
ratios are distinguished from each other, others postulate that they do not present
useful quantitative information for decision making (2;18). Given that ICERs with
negative lower confidence limits are making their way into the clinical literature
(4;11), the issue of differentiating among different types of negative ratios becomes
more important.

A second issue, unique to the estimation of uncertainty in decision models, is
the fact that they are usually not the result of primary data collection in a randomized
setting, and therefore cannot be used to estimate confidence intervals in the fre-
quentist sense. A frequentist 95% confidence interval is a realization of a random
interval that will cover the true value of a parameter in 95% of a hypothetical set
of replications (10); clearly, “confidence intervals” based on decision trees that use
multiple data sources may not be able to make this claim.

In light of the above limitations to interpreting uncertainty in the ICER, we
discuss the use of sensitivity analysis in a Markov model that analyzes the cost-
effectiveness of vaccination against pneumococcal bacteremia in the elderly. We
present a multiway sensitivity analysis as one method of reflecting parameter uncer-
tainty. Then, under two different methods of assigning probability densities to
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Table 1. Parameter Distributions in Probabilistic Sensitivity Analysis

Parameter Method 1 Method 2

Vaccination
Serotype coverage Uniform Logistic normal
Effectiveness Logistic normal Logistic normal

Bacteremia
Incidence Uniform Logistic normal
Case fatality rate Uniform Logistic normal

Costs
Vaccination Uniform Uniform
Inpatient bacteremia Uniform Uniform
Future medical costs Normal Normal

Discount rate Uniform Uniform

uncertain parameters, we execute a Bayesian probabilistic sensitivity analysis of
the ICER. We incorporate a reordering of simulation results conditioned on the
cost-effectiveness (C/E) plane that overcomes the difficulties posed by negative
values for the ICER and demonstrate how Bayesian probability intervals are infor-
mative for decision makers.

METHODS

The analysis employs a variety of secondary sources of data that were discussed in
our previous C/E analysis of vaccination against pneumococcal bacteremia in elderly
people (17). A Markov model, created using the computer software DATA (6),
compares bacteremia in vaccinated and unvaccinated cohorts. Outcomes are mea-
sured in U.S. dollars (costs) and quality-adjusted life-years (QALY) (health effects).
Separate analyses were performed using two models, one that included the future
medical costs of survivors, and one in which such costs were excluded. We did not
include costs that were separate from the health sector, such as consumption and
changes in production, in our analyses. We thereby followed the recommendations
of the U.S. Panel on Cost-Effectiveness in Health and Medicine on costs to include
in the reference case, which takes the societal perspective. At the same time,
conducting one analysis including the future medical costs of survivors and another
analysis without those costs takes into account the controversy surrounding their
inclusion and the difficulty of clearly separating future medical costs that are and
are not related to pneumococcal bacteremia. The uncertain parameters in the
decision-tree model included the following (Table 1): percentage of bacteremia-
causing pneumococci that the vaccine would cover; effectiveness of vaccination
against covered vaccine serotypes; incidence and case fatality rates from pneumo-
coccal bacteremia; cost of vaccination; cost of hospitalization for bacteremia; future
medical costs for survivors; and the discount rate.

Prior to the estimation of ICERs, best and worst case values were determined
for each parameter. Global best and worst case values for the ICER in each age
group were calculated by setting all the individual parameters in the model to their
best or worst case values, respectively, in a multiway sensitivity analysis.

Because the data that we entered into our model were based on different
secondary data sources as well as expert opinion, we incorporated uncertainty in
parameter values by means of a Bayesian probabilistic sensitivity analysis (1;10;15).
In Bayesian analysis, one summarizes uncertainty with a probability distribution
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Figure 1. Approach to probability interval estimation. Quadrants are represented by roman
numerals and by DC and DE for net costs and net health effects, respectively. PL denotes
probability limit.

over the parameter values, the posterior distribution, that one modifies in the light
of accumulating data. By comparison, frequentists fix parameter values and consider
the randomness that arises in hypothetical replications of the current study. Thus,
a Bayesian is 95% sure, given the data, that the parameter lies within his or her
95% probability interval after having seen the data; by comparison, a frequentist
is 95% sure that his or her 95% confidence interval will cover the true value of
the parameter, whatever it may be, and this degree of confidence is unchanged by
looking at the data. In this study, we assumed that posterior distributions had
been estimated, and used these to summarize uncertainty about parameters in our
decision model. Heitjan et al. (10) and Parmagiani et al. (15) provide further
discussion of Bayesian estimation of ICERs.

We defined probability intervals and the probability that the ratio fell within
meaningful limits in the cost-effectiveness plane by sampling from probability distri-
butions on model parameters.

We sampled from two separate sets of posterior distributions on parameters
(Table 1). In method 1, we assumed uniform distributions for those parameters
where the best and worst case values were estimated by expert judgment. High
and low bounds of the uniform distributions were the same as the best and worst
case values used in the multiway analysis. In method 2, we developed logistic normal
approximations to the posterior from random effects meta-analyses for incidence,
case fatality rate, and serotype coverage of the vaccine (8). The distributions for
the other parameters under this method were the same as under method 1. One
thousand simulations were performed in each age group and for each method. All
told, we executed 12 sets of 1,000 simulations.

Each simulation resulted in a single estimate for the ICER. In order to incorpo-
rate the meaning of different values for the ICER in our probabilistic sensitivity
analysis, we categorized the simulation results according to the cost-effectiveness
plane (Figure 1):
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Figure 2. Areas (shaded) in the cost-effectiveness plane representing incremental cost-
effectiveness ratios with negative costs and positive health effects or values less than
$50,000 per QALY and $100,000 per QALY.

• The lower right quadrant (IV), negative costs and positive health effects, designated as
DC(2), DE(1);

• The upper right quadrant (I), positive costs and positive health effects, designated as
DC(1), DE(1);

• The lower left quadrant (III), negative costs and negative health effects, designated as
DC(2), DE(2);

• The upper left quadrant (II), positive costs and negative health effects, designated as
DC(1), DE(2).

If a ratio was from quadrant II we labeled it according to the symbol
DC(1), DE(2) and ranked it at the high (less favorable) end of the distribution of
estimates for the ICER. If a ratio was from quadrant IV we labeled it according
to the symbol DC(2), DE(1) and ranked it at the low end of the distribution. We
constructed two-sided 100(12a)% probability intervals in each age group and for
each method by excluding the top and bottom [100(a/2)%] of the estimates in each
instance. To avoid the illusion of perfectly ordered intervals, we used symbols
(DC(2), DE(1) and DC(1), DE(2)) for probability limits in quadrants IV and II, respec-
tively. We also calculated the probability that the ratio represented negative costs
and positive health effects or was less than $50,000 per QALY and $100,000 per
QALY, respectively (Figure 2).

RESULTS

Reference case results and the global best case–worst case sensitivity analyses for
three age groups (65–74, 75–84, > 85 years) are presented in Table 2 (17). In the
reference case, vaccination against pneumococcal bacteremia actually resulted in
cost savings and health benefits in models that excluded survivors’ future medical
costs and was cost-effective by current standards in models that included survivors’
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Table 2. Multiway Sensitivity Analysis Results per Person Vaccinated: Best and Worst
Cases

Incremental Cost/effectiveness
effectiveness (incremental cost/

Incremental (quality-adjusted incremental quality-
Age cost ($) days gained) adjusted life-years)

Excluding future medical costs of survivors
65–74

Reference case 26.68 11.48 Cost-savinga

Best case 220.50 13.03 Cost-savinga

Worst case 118.21 10.26 $26,116
75–84

Reference case 210.91 10.97 Cost-savinga

Best case 237.45 12.87 Cost-savinga

Worst case 120.99 10.09 $87,572
>85

Reference case 28.58 10.58 Cost-savinga

Best case 252.55 12.12 Cost-savinga

Worst case 123.48 10.01 $579,065
Including future medical costs of survivors
65–74

Reference case 136.84 11.48 $9,090
Best case 170.12 13.03 $8,446
Worst case 124.98 10.26 $35,822

75–84
Reference case 130.82 10.97 $11,597
Best case 189.73 12.87 $11,394
Worst case 124.32 10.09 $101,470

>85
Reference case 122.68 10.58 $14,263
Worst case 162.93 12.12 $10,809
Worst case 124.27 10.01 $598,487

Source: Sisk et al. (17)
a “Cost-saving” denotes negative net costs and positive net health effects (DC(2), DE(1)).

future medical costs. In the global worst case analysis, for 65–74-year-olds, our
results suggested that the ICER was acceptable by current standards, regardless of
whether we included the cost of care for future survival. This was not so clearly
the case for the other age groups. In particular, when the future medical costs of
survivors were included, the worst case ICER for those aged 85 and older was
about $600,000 per QALY.

Tables 3 and 4 present the results of the simulations for each age group. Table
3 shows the probability of the ICER being in various quadrants or regions of interest
of the C/E plane. In all cases, there was zero probability that the intervention saved
costs at the expense of health effects (i.e., that the ratio extended into quadrant
III). The probability that the intervention offered an incremental benefit at either
a cost savings or at a rate of less than $50,000 per QALY was 0.92 or 0.95 for a
rate less than $100,000 per QALY. The probability of positive costs and negative
health effects (i.e., DC(1), DE(2)) was generally 0.01 or less; this was due to the small
probability of anaphylactic reaction to the vaccine.

Table 4 compares the results of the multiway sensitivity analysis with the proba-
bility intervals derived from the simulations. In each age group, the range of the
probability interval for the ICER was much narrower than the range established
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Table 3. Probability of ICER Being in Different Regions of the C/E Planea

Quadrant IV Quadrant IV
DC(2), DE(1) DC(2), DE(1)

or under or under
Quadrant IV $50,000/ $100,000/ Quadrant II
DC(2), DE(1) QALY QALY DC(1), DE(2)

Excluding future medical costs of survivors
65–74

Method 1 0.551 1.000 1.000 0.000
Method 2 0.544 1.000 1.000 0.000

75–84
Method 1 0.725 0.999 1.000 0.000
Method 2 0.675 1.000 1.000 0.000

85 and over
Method 1 0.650 0.958 0.975 0.008
Method 2 0.608 0.954 0.974 0.008

Including future medical costs of survivors
65–74

Method 1 0.000 1.000 1.000 0.000
Method 2 0.000 1.000 1.000 0.000

75–84
Method 1 0.000 0.999 1.000 0.000
Method 2 0.000 0.999 1.000 0.000

85 and over
Method 1 0.000 0.924 0.955 0.010
Method 2 0.000 0.921 0.954 0.010

a DC and DE denote net costs and net health effects, respectively. Methods 1 and 2 refer to the different
approaches to specifying probability distributions on the decision model parameters.

by a best and worst case analysis. For the group aged 85 and older, in particular,
the upper limit of the 95% probability intervals for the ICER was less than the
worst case value by almost $400.00 per QALY. The conservative nature of the
probabilistic analysis is evident from the median ICERs for the simulation ap-
proaches, which were uniformly higher than the reference case ICERs from the
multiway analysis (Table 4). This was the case regardless of whether method 1 or
2 was used to specify the parameter distributions in the model.

DISCUSSION

This probabilistic sensitivity analysis contributes fundamental insight to better in-
form the decision about whether to vaccinate groups over age 74. It is easy to
misinterpret the importance of a global worst case and best case sensitivity analysis,
but relatively straightforward to interpret a confidence interval or probability in-
terval derived using probabilistic methods. In this analysis, we found that, excluding
future medical costs of survivors, pneumococcal vaccination would save lives as
well as cost, under reference case and best case circumstances for all three age
groups. In our global worst case analysis, models with and without future medical
costs of survivors suggested that the ICER associated with vaccination against
pneumococcal bacteremia was acceptable by current standards for 65–74-year-olds,
but was less clear for other age groups. In particular, the $579,065–$598,487 worst
case range for 85-year-olds was clearly unacceptable to many decision makers.
However, when one examined the 95% probability interval, the strong likelihood
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Table 4. Multiway and Probabilistic Sensitivity Analyses, Results per Person Vaccinated
($/QALY)a

Multiway
sensitivity Simulations, Simulations,
analysis method 1 method 2

Excluding future medical costs of survivors
65–74

Reference case DC(2), DE(1) Median DC(2), DE(1) DC(2), DE(1)

Best case DC(2), DE(1) Lower 95% prob. limit DC(2), DE(1) DC(2), DE(1)

Worst case 26,116 Upper 95% prob. limit 3,597 3,658
75–84

Reference case DC(2), DE(1) Median DC(2), DE(1) DC(2), DE(1)

Best case DC(2), DE(1) Lower 95% prob. limit DC(2), DE(1) DC(2), DE(1)

Worst case 87,572 Upper 95% prob. limit 6,464 7,409
85 and over

Reference case DC(2), DE(1) Median DC(2), DE(1) DC(2), DE(1)

Best case DC(2), DE(1) Lower 95% prob. limit DC(2), DE(1) DC(2), DE(1)

Worst case 579,065 Upper 95% prob. limit 100,742 102,379
Upper 90%, prob. limit 38,981 41,244

Including future medical costs of survivors
65–74

Reference case 9,090 Median 10,306 10,138
Best case 8,466 Lower 95% prob. limit 7,241 6,974
Worst case 35,822 Upper 95% prob. limit 14,257 14,400

75–84
Reference case 11,597 Median 13,718 13,901
Best case 11,394 Lower 95% prob. limit 9,507 9,386
Worst case 101,470 Upper 95% prob. limit 21,792 23,344

85 and over
Reference case 14,263 Median 17,208 17,921
Best case 10,809 Lower 95% prob. limit 10,322 10,604
Worst case 598,487 Upper 95% prob. limit 250,688 271,626

Upper 90% prob. limit 86,879 96,125
a DC and DE denote net costs and net health effects, respectively.

was that vaccination would be cost-effective in all three age groups. From a policy
standpoint, the probabilistic analysis provided an added insight about the implica-
tions of vaccination that was important for an informed resource allocation decision.

Current computer software packages make probabilistic sensitivity analysis
much more accessible than it has been in the past; however, there is also the
potential for researchers to misinterpret the results of such analyses because equiva-
lently valued ICERs may represent very different trade-offs. It is critically important
to keep in mind the quadrant in the cost-effectiveness plane that a ratio lies in, so
that probability intervals can be ordered in a meaningful manner. The respective
medians and lower 95% probability limits of the cost-effectiveness ratio were cost-
saving and health-producing (DC(2), DE(1)) for all three age groups when the addi-
tional nonbacteremia costs of future survival were ignored. Thus, the negative ratios
here fell into quadrant IV in the cost-effectiveness plane and were important to
distinguish from similarly valued ratios from quadrant II, which represent a loss of
health at a dollar premium.

Our presentation of probability intervals on the ICER was considerably more
straightforward than it would have been had data from our simulations extended
into quadrant III. We are not aware of any cost-effectiveness analyses that focus
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on interventions where there are negative costs and negative health effects. This
may well become an important issue, however, as increased emphasis is placed on
conserving financial resources in the health sector. It is notable that when we
included the future medical costs of survivors in our analysis, best case estimates
of the ICER exceeded the calculated lower 95% probability limit of that ratio. This
paradoxical finding, a consequence of the parameter estimates selected for our
multiway sensitivity analysis, illustrates a potential pitfall in the multiway sensitivity
analysis process that probabilistic methods address. In particular, clinical experts
must specify the bounds for parameter values for sensitivity analysis ex-ante, when
the ultimate effect of their estimates on the outcome of the decision model cannot
always be predicted.

This is particularly true when the outcome measure is a ratio such as cost/
effectiveness. This was the case for our estimates of the fatality rate from bacteremia.
When our model did not include future medical costs of survivors, a higher case
fatality rate produced more “potential” health benefits from vaccination, and thus
a more favorable cost-effectiveness ratio. However, when the future medical costs
of survivors are included, the same “best case” fatality rate produces results with
higher costs as well as increased survival for vaccinees. The result is a less favorable
cost-effectiveness ratio. Thus, the multiway sensitivity analysis did not produce a
“best case” that was actually the lowest possible value for the cost-effectiveness
ratio. Under such circumstances, probabilistic sensitivity analysis helped to uncover
the unanticipated variability in the cost-effectiveness ratio, and was certainly more
expeditious and tractable than the multiple analyses that would have been necessary
to achieve the same insight from traditional multiway sensitivity analysis.

An issue in the use of Bayesian probability distributions in cost-effectiveness
is the use of posteriors. In this analysis we used two different methods, one based
on expert judgment and another based to a greater extent on our data sources, to
define posterior distributions for our model parameters. In this case there was not
a large difference in the size of the probability intervals despite differences in the
shapes of the posteriors used, and our policy conclusions would not have changed.
However, it may well be that under other circumstances the posteriors used will
have more of an effect on the results. With advances in simulation methods, it has
become much easier to compare the use of different posteriors based on different
sets of prior information and different likelihoods.

Cost-effectiveness increasingly influences the discussion of the appropriateness
of health care. Probabilistic sensitivity analysis represents a methodological advance
in reflecting parameter uncertainty in cost-effectiveness analysis. With the additional
information produced by this method, together with a meaningful way of interpre-
ting the results, policy makers may more accurately utilize the results of cost-
effectiveness analysis in health to evaluate technologies and allocate resources.
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