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SPECIFICATION TESTS FOR
MULTIPLICATIVE ERROR MODELS

INDEEWARA PERERA AND MERVYN J. SILVAPULLE
Monash University

The family of multiplicative error models is important for studying non-negative
variables such as realized volatility, trading volume, and duration between con-
secutive financial transactions. Methods are developed for testing the parametric
specification of a multiplicative error model, which consists of separate parametric
models for the conditional mean and the error distribution. The same method can
also be used for testing the specification of the error distribution provided the con-
ditional mean is correctly specified. A bootstrap method is proposed for computing
the p-values of the tests and is shown to be consistent. The proposed tests have non-
trivial asymptotic power against a class of O(n−1/2)-local alternatives. The tests
performed well in a simulation study, and they are illustrated using a data example
on realized volatility.

1. INTRODUCTION AND MOTIVATION

Statistical models for nonnegative random variables have been used in many
areas, including finance, economics, health sciences, and engineering. In finance,
the family of multiplicative error models for nonnegative variables plays a
central role (Pacurar, 2008). They have been used for modelling the duration be-
tween financial transactions (Engle and Russell, 1998), trading volume of orders
(Manganelli, 2005), high–low range of asset prices (Chou, 2005), and realized
volatility (Engle and Gallo, 2006; Brownlees, Cipollini, and Gallo, 2012). Our
main objective is to develop specification tests for multiplicative error models.

Let Zi denote a nonnegative random variable, for example, realized volatility, at
time i (i = . . . ,−1,0,1 . . .). A multiplicative error model [MEM] takes the form,

Zi = Ψiεi , (1)

where Ψi = E(Zi | Hi−1) is the mean of Zi conditional on the past informa-
tion Hi−1, and {. . . ,ε0,ε1, . . .} are independent and identically distributed [iid]
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with mean 1 and common distribution function F0. We develop new and easy-to-
use methods for testing the specification of a given parametric form of the entire
conditional distribution of Zi , thus simultaneously testing the parametric forms
of both, the conditional mean Ψi and the distribution function F0 of the error
term.

Several methods have been proposed in the literature for testing a given para-
metric specification of Ψi in MEM (e.g. Meitz and Teräsvirta, 2006; Chen and
Hsieh, 2010). However, relatively less attention has been given to specification
testing of the entire conditional distribution of Zi . Such tests are important when-
ever the statistical inference involves the entire conditional distribution of Zi

rather than only its conditional mean. An example of this situation is the fore-
casting of the conditional density of Zi by using an assumed parametric model.
The methods developed in the paper are suitable for testing the goodness-of-fit
of such parametric models. Other contexts where these tests would be useful in-
clude the following: (a) option pricing and risk management procedures that use
intraday volatility estimated from price duration models (Giot, 2000; Fernandes
and Grammig, 2005), (b) inference on the conditional quantiles of Zi , also known
as the value at risk in finance, and (c) modelling the link between duration and
volatility (Ghysels, Gouriéroux, and Jasiak, 2004; Engle, 2000).

Fernandes and Grammig (2005) developed a specification test for F0 under the
assumption that Ψi has a known finite dimensional parametric form. An attractive
feature of their test is that it is asymptotically distribution free. However, since
the test is based on a nonparametric kernel density estimator, it has asymptotic
power against local alternatives that converge slower than the regular parametric
rate n−1/2 but not against those that converge at the rate n−1/2.

Corradi and Swanson (2006) developed a method for testing a hypothesis that
the distribution of Zi conditional on Xi follows a given parametric form, under
the assumption that {(Zi , Xi )}∞i=−∞ is an observable stochastic process. Their
method is not applicable to the type of MEM in this paper because {Xi }∞i=−∞
may be unobservable. For example, for the model Ψi = φ1 +φ2 Zi−1 +φ3Ψi−1,
the variable Xi includes the unobservable conditional expectation Ψi−1. Other
references related to the testing problem include evaluating density-forecasts of
Zi (Diebold, Gunther, and Tay, 1998; Bauwens, Grammig, Veredas, and Giot,
2004).

We propose a method based on the classical Kolmogorov–Smirnov and
Cramer–von Mises type tests, except that our test statistics contain estimated
parameters. Therefore, the limiting null distributions of the test statistics depend
on unknown nuisance parameters, and hence, the critical values cannot be tabu-
lated for general use. Therefore, we propose a bootstrap method to implement the
tests. Establishing the validity of the bootstrap method forms the major technical
content of the paper. It is shown that the tests have nontrivial asymptotic power
against a sequence of local alternatives that converge at the regular parametric rate
O(n−1/2). In a comparative simulation study, the proposed tests performed better
than their competitors do. Our tests can also be used for testing the specification
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of the error distribution alone, as in Fernandes and Grammig (2005) and Chen
and Hsieh (2010).

The rest of the paper is structured as follows. Section 2 formulates the problem,
defines the test statistics, and provides several asymptotic results. Section 3 devel-
ops the bootstrap implementation of the tests, and Section 4 provides results on
the local power of the tests. Section 5 contains the results of the simulation study
to evaluate the finite sample performance of the tests. A real-data example in-
volving realized volatility is provided in Section 6. Section 7 concludes the paper.
The Appendix provides the regularity conditions and some of the proofs. For
the remaining proofs and some additional simulation results, readers may refer
to the supplementary material associated with this article, available at Cambridge
Journals Online (journals.cambridge.org); we refer to this simply as the online
Supplementary Material.

2. THE TEST STATISTICS AND THEIR ASYMPTOTIC NULL
DISTRIBUTIONS

Let the multiplicative error model [MEM] in (1) together with the definitions of
Zi ,εi ,Hi , and F0 be as in the previous section. Let F = {Fθ : θ ∈ � ⊂ Rq} be a
given parametric family of distributions and let fθ denote the probability density
function [pdf] corresponding to Fθ , where q is a positive integer and each Fθ has
mean 1 and finite variance. Further, let {Ψi (φ) : φ ∈ Φ ⊂ R

p} be a given para-
metric family, where Ψi (·) has a known functional form that may depend on the
past values {Zt : t ≤ i −1}, and p is a known positive integer. The notation Ψi (φ),
as opposed to Ψi without the argument ‘(·)’, implicitly refers to a parametric form
of the conditional mean, Ψi = E(Zi | Hi−1). We assume that the multiplicative
error term εi is independent of {(Ψt (φ), Zt−1) : t ≤ i}, and that Ψi (φ) is of the
form

Ψi (φ) =J {Zi−1, . . . , Zi−p1 ,Ψi−1(φ), . . . ,Ψi−p2(φ); φ}, (2)

where J (·; φ) is a known and twice continuously differentiable function, and p1
and p2 are known positive integers. The general form in (2) includes a large class
of conditional mean specifications of MEMs studied in the literature. For example,
the linear multiplicative error model of Engle and Russell (1998), which we de-
note by MEM(p1, p2), is given by Ψi (φ) = α+∑p1

j=1 βj Zi− j +∑p2
j=1 γjΨi− j (φ),

where φ = (α,β1, . . . ,βp1 ,γ1, . . . ,γp2)
� with ‘�’ denoting the transpose; it re-

sembles the well-known GARCH(p1, p2).
Let the null and alternative hypotheses be defined by

H0 : (Ψi , F0) = (
Ψi (φ0), Fθ0

)
for some (φ0,θ0) ∈ Φ ×�, and H1 : Not H0. (3)

To develop our tests of (3), we need to first estimate the model under H0 and
then construct a set of residuals. However, these computations encounter a hurdle
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because it may not be possible to compute Ψi (φ) by using only the ob-
served sample {Z1, . . . , Zn} and the value of φ. For example, for the MEM(1,1)
model Ψi (φ) = φ1 + φ2 Zi−1 + φ3Ψi−1(φ), we have Ψi (φ) = α(1 − γ )−1 +
β
∑∞

j=1 γ j−1 Zi− j , which depends on the unobserved part of the process
{. . . , Zi−2, Zi−1} extending back to the infinite past. Therefore, we introduce
some suitable starting values for the unobservable values {(Zi ,Ψi (φ)), i ≤
0} and approximate Ψi (φ) by Ψ̃i (φ) defined as follows: Ψ̃i (φ) = 1 and
Z̃i = Z̄ := [Z1 + ·· · + Zn]/n for i < 1, Z̃i = Zi for i ≥ 1, and Ψ̃i (φ) =
J {Z̃i−1, . . . , Z̃i−p1 , Ψ̃i−1(φ), . . . , Ψ̃i−p2(φ); φ} for i ≥ 1. The main theorems and
propositions presented in Sections 3 and 4 show that the effect of the starting val-
ues on the distributions of the test statistics becomes negligible in large samples.

Let φ̂ denote the quasimaximum likelihood estimator [QMLE] of φ0 based on
the standard exponential distribution, which is defined by

φ̂ = arg min
φ∈Φ

n∑
i=1

�i (φ), �i (φ) = log Ψ̃i (φ)+ Zi/Ψ̃i (φ). (4)

Let the corresponding residuals {̃εi ,1 ≤ i ≤ n} be defined by ε̃i = Zi/Ψ̃i (φ̂), i =
1, . . . ,n. We estimate θ0 by

θ̂ = argmax
θ∈�

n∑
i=1

gθ (̃εi ), (5)

where gθ (·) is a suitably chosen function (see Assumption (E2) in Appendix A).
For example, gθ (·) may be log fθ (·), where fθ is the pdf of Fθ (θ ∈ �). Let I (·)
denote the indicator function and let F̃n(x) = n−1∑n

i=1 I (̃εi ≤ x), x ≥ 0. Let the
residual empirical process W̃n estimated under the null hypothesis be defined by

W̃n(x) = √
n
{

F̃n(x)− Fθ̂ (x)
}
, x ≥ 0. (6)

Next, we provide a heuristic argument to indicate that a Kolmogorov–Smirnov
type test of H0 against H1 in (3) can be constructed based on W̃n(·).

If H0 is true, then Fθ̂ and F̃n are expected to be close to the unknown
distribution F0, and hence, W̃n(·) is likely to be close to zero. Now, suppose that
H1 is true. Then, either the conditional mean function Ψi (φ) or the parametric
form Fθ for the error distribution is misspecified. If Fθ is misspecified and Ψi (φ)
is correctly specified, then F̃n is expected to be close to F0 which is not close to
Fθ̂ . Hence, supx |W̃n(x)| is likely to be large. Alternatively, suppose that Ψi (φ)

is misspecified. Then, the estimator {Ψi (φ̂)} is not expected to be close to the
true conditional mean {Ψi }. Hence, F̃n and Fθ̂ are likely to be close to different
distribution functions, and supx |W̃n(x)| is expected to be large. These heuristic
arguments provide a sufficient basis for constructing test statistics that resemble
Kolomogorov–Smirnov type statistics based on W̃n .
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Let D+ = supx≥0 W̃n(x) and D− = − infx≥0 W̃n(x), and define the test
statistics

T1 ≡ K S = supx≥0 |W̃n(x)| = max{D+, D−} [Kolmogorov–Smirnov],
T2 ≡ K u = D+ + D− [Kuiper],
T3 ≡ CvM = ∫

W̃ 2
n (x)d Fθ̂ (x) [Cramér-von Mises],

T4 ≡ A2 = ∫
W̃ 2

n (x)[Fθ̂ (x){1− Fθ̂ (x)}]−1d Fθ̂ (x) [Anderson–Darling],
T5 ≡ U 2 = ∫ {W̃n(x)−∫

[W̃n(x)]d Fθ̂ (x)}2d Fθ̂ (x) [Watson].

Let us introduce some additional notation. For a differentiable function m(s, x)
on Φ ×R or on � ×R, the derivatives with respect to s and x are denoted by
ṁ(s, x) and m

′
(s, x), respectively. For example, f

′
θ (y) = ∂ fθ (y)/∂y and Ψ̇i (φ) =[

(∂/∂φ1)Ψi (φ), ..., (∂/∂φp)Ψi (φ)
]�. Let

λi (φ) = Ψ̇i (φ)/Ψi (φ), Ln(φ) =
n∑

i=1

�i (φ),

hθ (t) = {−E[(∂/∂θ)ġθ (ε1)]}−1ġθ (t),

where �i (·) and gθ (·) are as in (4) and (5), respectively. Let D[0,1] denote the
space of càdlàg functions on [0,1] equipped with the uniform metric, and let
f1 ◦ f2 denote the composition of the functions f1 and f2 defined by f1 ◦ f2(x) =
f1{ f2(x)}. Let Fn(x) = n−1∑n

i=1 I (εi ≤ x) denote the empirical distribution
function of the unobserved errors {ε1, . . . ,εn}, and let Wn(x) = √

n{Fn(x) −
Fθ0(x)} be the corresponding empirical process under the null hypothesis.

Assume that Conditions (C1)−(C5) and Assumptions (E1) and (E2), stated
in Appendix A, are satisfied and that the null hypothesis H0 holds. An important
result established under these assumptions in Appendix A.3, Lemma A.12, is that:

sup
x≥0

∣∣F̃n(x)− Fn(x)− (φ̂ −φ0)
�
E{λ1(φ0)}x fθ0(x)

∣∣ = op(n
−1/2). (7)

Hence, in first-order asymptotic arguments, the estimated empirical process
W̃n(x) may be replaced by the more tractable process Wn(x) + √

n
(φ̂ − φ0)

�
E{λ1(φ0)}x fθ0(x) + √

n(θ̂ − θ0)
� Ḟθ0(x). Our first main result is the

following:

THEOREM 1. Suppose that Conditions (C1)−(C5) and Assumptions (E1)
and (E2) are satisfied and that the null hypothesis H0 holds. Then, (a) the
estimated empirical process W̃n ◦ F−1

θ0
(·) converges weakly in D[0,1] to a cen-

tered Gaussian process G(·), (b) there exists a continuous functional hj on

D[0,1] such that Tj = hj (W̃n ◦ F−1
θ0

)+ op(1), and (c) Tj
d−→ hj (G) as n → ∞

( j = 1, . . . ,5).

Based on the preceding theorem, we propose the following asymptotic test: re-
ject H0 if Tj > cjα , where cjα is the (1 − α)th quantile of hj (G), j = 1, . . . ,5.
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Since the distribution of hj (G) depends on the unknown nuisance parameter
(θ0,φ0), the asymptotic critical values of Tj cannot be computed for general use
( j = 1, . . . ,5). It does not seem possible to adapt a martingale transformation
method as in Koul, Perera, and Silvapulle (2012) or a method based on an ana-
lytical approximation to compute critical values. Therefore, a bootstrap method is
proposed in the next section.

3. BOOTSTRAP TESTS

In this section, we propose a bootstrap algorithm to implement the tests proposed
in the previous section. Here, in order to highlight the fact that the bootstrap sam-
ples are generated from a process that starts at time −m, the superscript ‘∗(m)’
is used instead of the more familiar symbol ‘∗’; in Appendix A, we use the su-
perscript ∗ for ∗(∞). For j = 1, . . . ,5, the steps of the bootstrap algorithm are as
follows.

Step 1: Compute the estimates φ̂ and θ̂ based on the observed sample {Z1, . . . , Zn}
and obtain the residuals ε̃1, . . . , ε̃n , where ε̃i = Zi/Ψ̃i (φ̂), i = 1, · · · ,n.
Step 2: Compute the test statistic Tj .
Step 3: Generate m +n +1 independent observations, ε∗−m, . . . ,ε∗

n from Fθ̂ .

Step 4: Assign the starting values Ψ
∗(m)
i (φ) = 1 and Z∗(m)

i = (Z1 +·· ·+ Zn)/n for
i < −m, and compute Z∗(m)

−m , . . . , Z∗(m)
n recursively by using the model equation

(other suitable starting values may also be used). Now, discard the first m + 1
values {Z∗(m)

−m , . . . , Z∗(m)
0 }, and use {Z∗(m)

1 , . . . , Z∗(m)
n } as the bootstrap sample.

Step 5: Repeat step 1 for the bootstrap sample {Z∗(m)
1 , . . . , Z∗(m)

n }, and compute
the bootstrap counterparts of φ̂, {̃ε1, . . . , ε̃n}, θ̂ , F̃n and W̃n , which we denote by
φ̂∗(m), {̃ε∗(m)

1 , . . . , ε̃
∗(m)
n }, θ̂∗(m), F̃∗(m)

n , and W̃ ∗(m)
n , respectively. Then, compute

T ∗(m)
j , the bootstrap analogue of Tj .

Step 6: Repeat steps 3–5 a sufficiently large number of times and compute c∗(m)
jα ,

the (1 − α)th quantile of the sampled values of T ∗(m)
j . Now, the bootstrap test

based on Tj is the following: Reject H0 at significance level α if Tj > c∗(m)
jα .

Let P∗
n denote the bootstrap probability conditional on {Z1, . . . , Zn}. In what

follows, convergence results relating to bootstrapped processes such as W̃ ∗(m)
n ◦

F−1
θ̂

are in probability, and they are valid irrespective of whether H0 is true. Let

‘
d∗−→’ denote the convergence in distribution of bootstrap statistics. For example,

the statement ‘T ∗(m)
j

d∗→ hj (V)’ means that P∗
n (T ∗(m)

j ≤ z)−→P{hj (V) ≤ z}, in
probability, at every continuity point z of P{hj (V) ≤ z}. Similarly, we define the
bootstrap orders op∗

n
(1) and Op∗

n
(1) as follows: (a) X∗

n = op∗
n
(1) if P∗

n {|X∗
n | >

δ} p−→ 0 for all δ > 0, (b) X∗
n = Op∗

n
(1) if for any δ > 0, there exists a finite

M > 0 such that P{P∗
n (|X∗

n | > M) < δ} −→ 1 as n → ∞. Now, we have

THEOREM 2. Suppose that Conditions (C1)−(C6) and Assumptions
(E1)−(E3) are satisfied. Then, conditional on {Z1, . . . , Zn}, (a) the process
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W̃ ∗(m)
n ◦ F−1

θ̂
(·) converges weakly [in probability] in D[0,1] to a centered Gaus-

sian process V(·) with cov{V(s),V(t)} := min{s, t} − st +G(s, t,θ0,φ0), where

G(s, t,θ,φ) is given by (A.9) in Appendix A, and (b) T ∗(m)
j

d∗→ hj (V) as n → ∞
( j = 1, . . . ,5). If, in addition, H0 is also true then the Gaussian process G in
Theorem 1 and V have the same law.

In view of Theorem 2, under H0, the distribution of hj (V) is the same as that of
hj (G), the asymptotic null distribution of Tj . Therefore, the bootstrap test based
on Tj is a valid level α asymptotic test ( j = 1, . . . ,5). Next, suppose that H1 is

true. Then, as indicated in the previous section, Tj
p→ ∞, except in some patho-

logical situations ( j = 1, . . . ,5). However, the quantiles of hj (V) are finite because
V is a centered Gaussian process and hj is continuous. Therefore, the critical val-
ues computed by the bootstrap method are finite. Consequently, the bootstrap test
based on Tj has asymptotic power 1 against fixed alternatives ( j = 1, . . . ,5).

The proof of Theorem 2 requires several intermediate results of independent
interest. One that is worthy of special mention is an asymptotic result that is
crucial for establishing the weak convergence of W̃ ∗(m)

n ◦ F−1
θ̂

(·). To indicate

this, let ε̂
∗(m)
i = Z∗(m)

i /Ψ
∗(m)
i (φ̂∗(m)), F̂∗(m)

n (x) = n−1∑n
i=1 I (ε̂

∗(m)
i ≤ x), and

Ŵ ∗(m)
n (x) = √

n{F̂∗(m)
n (x)− Fθ̂∗(m) (x)}. The required result, Lemma A.13 in Ap-

pendix A, states that supx≥0 n1/2|F̃∗(m)
n (x)− F̂∗(m)

n (x)| = op∗
n
(1). Consequently,

W̃ ∗(m)
n (·) can be replaced by the more tractable process Ŵ ∗(m)

n (·) in first-order
asymptotic arguments. The process {Z∗(m)

i : i ∈ N} is not stationary and has a
complicated dependence pattern. Therefore, establishing the weak convergence
of Ŵ ∗(m)

n (·) is not a trivial task. The purpose of some of the technical lemmas
in Appendix A is to develop the preliminary results needed for establishing the
weak convergence of Ŵ ∗(m)

n (·). For example, from Lemmas A.6, A.7, and A.8 we
obtain that

√
n{φ̂∗(m) − φ̂} and

√
n{θ̂∗(m) − θ̂} have asymptotic expansions that

resemble those for
√

n{φ̂ − φ0} and
√

n{θ̂ − θ0}, respectively. We use these ex-
pansions in Lemmas A.9, A.10, and A.11 to develop the main technical results
needed for deriving the weak convergence of Ŵ ∗(m)

n (·).

4. ASYMPTOTIC LOCAL POWER

In this section, we study the asymptotic power of the tests against sequences of
local alternatives. To illustrate the main idea, let us consider the Kolmogorov–
Smirnov statistic K S = supt∈[0,1] |W̃n ◦ F−1

θ0
(t)|. Under a given sequence of local

alternatives, we show that W̃n ◦ F−1
θ0

converges weakly in D[0,1] to a process of
the form M +G, where G is the zero mean Gaussian process in Theorem 1 and M
is a nonstochastic term. Further, M is nonzero on a set of positive measure except
in some pathological cases. Since W̃n ◦ F−1

θ0
converges weakly to G under H0, M

captures the shift away from zero that appears in the limiting law of W̃n ◦ F−1
θ0

under the sequence of local alternatives. Since G has a zero mean, we conclude
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that supt∈[0,1] |M(t)+ G(t)| is stochastically larger than supt∈[0,1] |G(t)|. There-
fore, it follows that the K S test has nontrivial asymptotic local power.

We present the results for the following three types of local alternatives:
(a) departure in the error distribution only, (b) departure in the conditional mean
function only, and (c) departure in both. We consider them in turn.

Recall that, under H0, (φ0,θ0) denotes the true value. Let F(n) = (1 −
n−1/2δ)Fθ0 + n−1/2δ F̃ , where 0 < δ < 1, F̃ is a distribution function
satisfying the conditions imposed on the error distribution such that
[
∫ {g̈θ0(y)}−1 d Fθ0(y)

∫
ġθ0(ε) d F̃(ε)]� Ḟθ0 �= [Fθ0 − F̃] and F̃ �= F0. Consider

the sequence of local alternatives,

Han : Ψi = Ψi (φ0) and F0 = F(n). (8)

Thus, Han converges to H0 at the rate O(n−1/2) and only the error distribution is
misspecified under Han .

PROPOSITION 1. Suppose that Conditions (C1)−(C5) and Assump-
tions (E1) and (E2) are satisfied. Then, under Han, we have the following for
j = 1, . . . ,5:

(i) Tj
d→ hj (Wa) as n → ∞, where Wa(·) = ma(·)+ G(·) and ma(·) is a non-

random function. An expression for ma(·) is given in (A.15).

(ii) If (C6) and (E3) are also satisfied, then T ∗(m)
j

d∗→ hj (G) as n → ∞.

Next, consider a sequence of local alternatives for departures from the con-
ditional mean specification. To this end, let ri = r(Zi−1, Zi−2, · · · ) be a square
integrable and twice continuously differentiable function. Assume that {ri : i ∈Z}
forms a strictly stationary and ergodic process. Define a sequence of local hypoth-
esis by

Hbn : Ψi = Ψi (φ0)+ ri/n1/2 and F0 = Fθ0 ;
see Ling and Tong (2011) for similar local alternatives. For illustrative purposes,
we obtain explicit expressions for the asymptotic local power for the special case
when the error distribution is standard exponential. A general case is considered
later in Proposition 3. Let Qi (φ0,εi ) = n−1∑n

j=1 h
′
θ0

(εj )εj{λj (φ0)}�ξi (φ0,εi ),
where ξi (φ0,εi ) = τ(φ0)λi (φ0)(1− εi ). For t ∈ [0,1], let

gi (t) = ai (t)−bi (t)+ ci (t), (9)

mb(t) = E[g1(t){r1/Ψ1(φ0)}(ε1 −1)], (10)

where

ai (t) = I{εi ≤ F−1
θ0

(t)}− t, bi (t) = {hθ0(εi )−Qi (φ0,εi )}� Ḟθ0{F−1
θ0

(t)},
ci (t) = F−1

θ0
(t) fθ0{F−1

θ0
(t)}E[λ1(φ0)]

�ξi (φ0,εi ),

and the expectation E is taken under the null hypothesis H0.
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PROPOSITION 2. Suppose that Conditions (C1)−(C5) and Assump-
tions (E1) and (E2) are satisfied, and that Fθ0 is the standard exponential dis-
tribution. Then, under Hbn, we have the following for j = 1, . . . ,5:

(i) Tj
d→ hj (Wb) as n → ∞, where Wb(·) = mb(·)+ G(·).

(ii) If (C6) and (E3) are also satisfied, then T ∗(m)
j

d∗→ hj (G) as n → ∞.

To obtain the local power against departures of both the conditional mean and
the error distribution, let us consider the sequence of local alternatives

Hcn : Zi =
[
Ψi (φ0)+ ri/n1/2

]
εi , εi ∼ F(n),

where F(n) is as in (8).

PROPOSITION 3. Suppose that Conditions (C1)−(C5) and Assumptions
(E1) and (E2) are satisfied, and mc(t) := limn→∞ −n−1∑

i< j≤n
E[gi (t){rj/Ψj (φ0)}] exists for each t ∈ [0,1] under H0. Then, under Hcn,
we have the following for j = 1, . . . ,5:

(i) Tj
d→ hj (Wc) as n → ∞, where Wc(·) = mc(·)+ma(·)+ G(·), with ma as in

Proposition 1. (ii) If (C6) and (E3) are also satisfied, then T ∗(m)
j

d∗→ hj (G) as
n → ∞.

It follows from Propositions 1, 2, and 3 that the proposed bootstrap tests have
nontrivial asymptotic power against Han, Hbn, and Hcn , respectively.

5. SIMULATION STUDY

We conducted a simulation study to compare the proposed tests with their com-
petitors in terms of size, power, and relevance to density forecasting. Tests were
evaluated when the parametric form Ψi (φ) under H0 was MEM(1,1): Ψi (φ) =
φ1 +φ2 Zi−1 +φ3Ψi−1(φ), φ1 > 0,φ2,φ3 ≥ 0,φ2 +φ3 < 1. For the error distri-
bution, we considered the following five families: Gamma, Weibull, Exponential,
Generalized Gamma, and Burr. For the conditional mean Ψi of the true data gen-
erating process [DGP] under H0 and under H1, we considered the following five
cases:

1. MEM(1,1): Ψi = 0.20+0.10Zi−1 +0.70Ψi−1,
2. MEM(2,1): Ψi = 0.10+0.20Zi−1 +0.10Zi−2 +0.60Ψi−1,
3. log-MEM(1,1): lnΨi = −0.10+0.06ln Zi−1 +0.90lnΨi−1,
4. Exp-MEM(1,1): lnΨi = −0.10+0.15εi−1 +0.35 | εi−1 −1 | +0.60lnΨi−1,
5. Threshold-MEM(1,1):

Ψi =

⎧⎪⎨⎪⎩
1.05+0.09Zi−1 +0.90Ψi−1 for 0 < Zi−1 < 0.25,

0.50+0.55Zi−1 +0.10Ψi−1 for 0.25 ≤ Zi−1 < 1.5,

0.05+0.05Zi−1 +0.60Ψi−1 for 1.5 ≤ Zi−1 < ∞.
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Fernandes and Grammig (2005) proposed a class of goodness-of-fit tests for
multiplicative error models. In a numerical study, they compared several com-
peting tests and observed that what was referred to as the D-test performed
the best overall. Therefore, we included this test in our simulations for compar-
ison, but we refer to it as the FG test to avoid confusion with the D+ and D−
statistics introduced in Section 2. We also included the test in Janssen, Swanepoel,
and Veraverbeke (2005) with their εi replaced by our ε̃i , 1 ≤ i ≤ n. This is denoted
by JG. Although the validity of the bootstrap method for the JG test has not yet
been established for multiplicative error models, we included it in our study.

The sample sizes n = 1000, 2000, and 3000 were considered in the simulations.
To start the recursive data generating process, the initial value of Ψi was set equal
to its unconditional mean. To reduce the effect of initialization, we generated (n +
300) observations, discarded the first 300, and used the remaining n observations
for the Monte Carlo sample. For the estimator θ̂ in (5), we used gθ = log fθ , where
fθ is the pdf of Fθ . Type I error rates and estimates of power were obtained using
5000 Monte Carlo samples. To reduce the computational burden, we adopted the
‘Warp-Speed’ Monte Carlo method of Giacomini, Politis, and White (2013).

The results for n = 1000 and 5% significance level are given in Table 1. The
main observations are as follows:
(a) All the tests performed well in terms of type I error rate at the nominal 5%
significance level (see the top band in Table 1). The conclusion is the same for the
tests at other levels of significance and sample sizes.
(b) Our tests exhibited higher power than JG and FG tests when the conditional
mean was correctly specified and the error distribution was misspecified. In par-
ticular, the Anderson–Darling type A2 test exhibited the best overall performance,
followed by the Cramér–von Mises type test CvM.
(c) When the conditional mean was misspecified, our tests exhibited higher power
than JG and FG tests did, with the A2-test performing significantly better in most
cases, and at least as well in the rest.
Thus, in terms of size and power, the tests introduced in this paper performed
better than their competitors, with A2 performing the best.

In parametric density forecasting, our tests can be used for testing the goodness-
of-fit of the parametric model. To evaluate the potential contribution of the tests in
this regard, a simulation study was performed in which we estimated the ‘loss’ in
using an incorrect parametric family when the tests have adequate power to reject
the incorrect family. Details of the study are provided in the online Supplementary
Material.

6. AN EMPIRICAL ILLUSTRATION

We consider an example on realized volatility. The data for the example were
obtained from Christian T. Brownlees. The dataset is based on 1989 observa-
tions of United Technologies [UTX] daily stock returns between January 2, 2001,
and December 31, 2008. For details on the construction of realized volatility, see
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TABLE 1. Performance of goodness-of-fit tests of ‘H0 : MEM(1,1) with error
distribution Fθ ’ at 5% significance level

True DGP Tests

Cond. Mean Error df Fθ (in H0) JG FG CvM U2 A2 K S K u

Type I error rates (%)

MEM(1,1) Exponential Exponential 5.1 4.5 4.7 4.9 5.1 4.7 4.6
Weibull 4.9 4.4 4.5 4.5 4.6 4.2 4.1

Gamma Gamma 5.8 5.4 5.0 4.5 5.2 4.7 4.3
Gen. Gamma 4.8 4.6 4.6 4.6 4.3 6.0 4.9

Weibull Weibull 4.3 5.7 5.5 5.6 5.4 5.3 4.7
Gen. Gamma 4.2 5.5 4.6 4.7 4.6 5.2 5.1

Gen. Gamma Gen. Gamma 5.5 5.2 5.0 4.9 5.3 5.6 5.5

Burr Burr 5.8 4.6 4.8 5.0 4.7 4.7 5.2

Estimated power (%)

MEM(2,1) Gamma Weibull 29 25 59 55 73 41 49
Weibull Gamma 93 29 99 96 99 96 94
Gen. Gamma Weibull 75 53 96 94 99 86 90

log-MEM Gamma Weibull 36 28 74 66 83 54 60
Weibull Weibull 26 6 33 22 34 29 19
Burr Gen. Gamma 18 12 45 43 53 32 35

MEM(1,1) Gamma Weibull 28 22 59 54 75 42 48
Weibull Gamma 92 26 99 96 99 94 92
Burr Gen. Gamma 15 12 43 43 52 28 35

Threshold-MEM Gamma Gamma 22 11 42 30 47 30 24
Exponential Gamma 30 13 52 39 58 40 30

Exponential 74 12 83 56 81 71 57
Burr Gen. Gamma 15 14 43 43 49 31 34

Exp-MEM Gamma Weibull 45 38 81 77 91 64 73
Weibull Gen. Gamma 59 17 63 54 61 60 51

Burr 54 18 60 50 59 57 47

Note: (1) The error distribution Fθ in the third column completely determines the null hypothesis, ‘H0: MEM(1,1)
with error distribution Fθ ’. (2) The abbreviation Gen. Gamma refers to Generalized Gamma. (3) The test statistics
are Cramér–von Mises [CvM], Watson’s [U2], Anderson-Darling [A2], Kolmogorov–Smirnov [K S], Kuiper [K u],
Janssen et al. (2005) [JG], and the D-test of Fernandes and Grammig (2005) [FG]; for more details about the tests,
see Section 2. (4) The sample size n is 1000.

Brownlees et al. (2012) and Brownlees and Gallo (2006). We are interested in
evaluating the goodness-of-fit of several MEMs and to illustrate the relevance of
the tests in density forecasting.
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Goodness-of-fit of parametric models
First, we evaluate the goodness-of-fit of MEM(1,1) for the mean Ψi with un-

specified error distribution. To this end, we considered the Ljung-Box Q test with
lags 5, 10, 15, and 20 (Ljung and Box, 1978, Engle and Russell, 1998), a La-
grange multiplier [LM] test with MEM(2,1) as the alternative (see Theorem 1 in
Meitz and Teräsvirta, 2006), and the generalized moment test of Chen and Hsieh
(2010) with (εi−1 − 1) as the ‘misspecification indicator’. The smallest p-value
for these six tests was 0.56. Therefore, the MEM(1,1) model appears to provide a
good fit for the conditional mean, as further confirmed by visual inspection of the
residual plots and the correlogram. In response to a reviewer’s comment, we also
evaluated the Asymmetric MEM model of Fernandes and Grammig (2006) that
appears as model number 4 in their Table 1, but it did not improve the fit. There-
fore, for the rest of this section, we restrict our attention to the simpler MEM(1,1)
model for Ψi and evaluate it in combination with different error distributions.

We considered the six error distributions, Exponential, Weibull, Gamma, Gen-
eralized Gamma, Burr, and a mixture of Burr and Generalized Gamma. Further,
we applied the seven tests studied in the simulations. For every test, the p-value
corresponding to the first four error distributions (Exponential, Weibull, Gamma,
Generalized Gamma) turned out to be nearly zero (see Table 2). Therefore, we
rule out these four distributions and focus on Burr distribution and a mixture of
Burr and Generalized Gamma distributions. In the previous section, we observed
that the Anderson-Darling type statistic A2 performed the best overall. Hence, we
restrict our attention to A2; the conclusions are practically the same for Cramer–
von Mises and Kolmogorov–Smirnov tests as well. It appears from the results for
A2 in Table 2 that a mixture of Burr and Generalized Gamma provides the best
fit, at least based on the p-values.

Apart from the p-values, it is also of interest to evaluate graphically the
goodness-of-fit of each parametric error distribution. To this end, we constructed
the QQ-plots of the residuals for every error distribution. Figure 1 shows the plots

TABLE 2. Goodness-of-fit of ‘H0 : MEM(1,1) with error distribution Fθ ’ for
UTX realized volatility, and its performance in conditional-density forecasting

Tests

JG FG CvM U2 A2 K S K u
Fθ (in H0) p-values Log-score

Exponential 0.00 0.00 0.00 0.00 0.01 0.00 0.00 −2.03
Weibull 0.00 0.00 0.00 0.00 0.00 0.00 0.00 −1.78
Gamma 0.00 0.00 0.00 0.00 0.00 0.00 0.00 −1.66
Generalized Gamma 0.00 0.00 0.00 0.00 0.00 0.00 0.00 −1.60
Burr 0.97 0.34 0.21 0.37 0.10 0.46 0.85 −1.56
Mixture of Burr

Generalized Gamma 0.45 0.35 0.45 0.36 0.37 0.45 0.40 −0.57
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FIGURE 1. QQ plots of residuals when (a) the mean function is MEM(1,1) and the error
distribution is Generalized Gamma [∗], and (b) the mean function is MEM(1,1) and the
error distribution is a mixture of Burr and Generalized Gamma [�].

for the Generalized Gamma and the mixture of Burr and Generalized Gamma er-
ror distributions. The latter is significantly closer to a straight line than the former
is, confirming the conclusion based on the goodness-of-fit tests. Other plots not
included here also indicated that Exponential, Weibull, Gamma, and Generalized
Gamma error distributions do not fit as well as the Burr or mixture of Burr and
Generalized Gamma distributions do. In summary, MEM(1,1) with a mixture of
Burr and Generalized Gamma for the error distribution appears to provide the
best fit.

Density/distribution forecasting:
We wish to evaluate how well the models in Table 2 perform in out-of-sample

forecasting and the extent to which the forecast performance corresponds to mea-
sures of goodness-of-fit.

To evaluate the density forecasts, we applied a method of Diebold et al. (1998).
To this end, first note that the one-step-ahead density forecast produced by
an MEM, using information available up to time i − 1, is f̂i (x |Hi−1) :=
{Ψ̃i (φ̂)}−1 fθ̂ (x/Ψ̃i (φ̂)), and the probability integral transform of Zi is

F̂i (Zi |Hi−1) := ∫ Zi
0 f̂i (x |Hi−1)dx = Fθ̂ (Zi/Ψ̃i (φ̂)), where Zi is the variable to

be forecast at time i . If the density forecast is correct, then the sequence of prob-
ability integral transforms {F̂i (Zi |Hi−1)}n

i=1 is iid uniform on the unit interval
(Diebold et al., 1998). Therefore, density forecasts may be evaluated by using
methods to detect departures of the empirical distribution of {F̂i (Zi |Hi−1)}n

i=1
from the uniform distribution (see Bauwens et al., 2004; Corsi, Mittnik, Pigorsch,
and Pigorsch, 2008).

To apply the preceding method, we first estimated the six models correspond-
ing to the six error distributions by using only the observations, which we denote
by {Z1, . . . , Zj }, for the subperiod, January 2, 2001 to June 29, 2007. Then, we
re-estimated the model for the subsample {Z1, . . . , Zj+1}, thus expanding the time
period by 1. We repeated the process until the entire period was covered, and then
examined the empirical cumulative distributions of the corresponding probability
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integral transforms. The main results are summarized in Appendix D of the on-
line Supplementary Material. The plots (not included) for Exponential, Weibull
and Gamma error distributions deviate significantly from that for the uniform dis-
tribution. The plot for Generalized Gamma also deviates from the uniform dis-
tribution. However, the plots for Burr and for mixture of Burr and Generalized
Gamma are somewhat closer to being uniformly distributed, and therefore these
two error distributions appear to have performed better for forecasting than the
other four.

To complement the preceding visual inspections, we also considered the loga-
rithmic score to evaluate the density forecasts (e.g. Corsi et al., 2008). The loga-
rithmic score is S = n−1∑n

t=1 log{ f̂i (Zi |Hi−1)}. A large S value implies better
predictive ability. Ranking of the models in terms of S turned out to be approx-
imately in the order in which the goodness-of-fit tests also ranked them in terms
of p-values (see Table 2). The consistency of the results between forecast per-
formance and the goodness-of-fit tests illustrates the importance of the proposed
tests for density forecasting.

7. DISCUSSION AND CONCLUSION

We have developed a family of Kolmogorov–Smirnov and Cramér–von Mises
type tests for the specification of the multiplicative error models, which includes
the well-known family of autoregressive conditional duration models. In a simu-
lation study, the proposed tests performed better than their competitors did. A data
example illustrated that the tests adequately complement the residual diagnostics,
such as the QQ plots, for evaluating goodness-of-fit. Further, the empirical exam-
ple and the simulations presented in the previous two sections illustrated that the
use of the goodness-of-fit tests in density/distribution forecasting can be expected
to reduce loss resulting from the use of a misspecified model.

Throughout, we assumed that the null model was estimated by the QMLE cor-
responding to the standard exponential error distribution; see also Fernandes and
Grammig (2005). Another obvious possibility is to use a maximum likelihood es-
timator [MLE] based on the null model. However, an (unreported) Monte Carlo
simulation based on a range of error distributions showed that none of the two
approaches dominates the other. A third approach, based on MLE of a finite di-
mensional regular parametric model that nests both the null and the alternative,
is likely to be asymptotically optimal; however, since in our setting the alterna-
tive hypothesis does not specify such a parametric model, in this paper we do not
pursue this approach.

If for some j ∈ {1, . . . ,5}, the test based on Tj rejects H0, then the source of the
misspecification of the model may be Ψi (φ) and/or Fθ . Unfortunately, the value
of the test statistic Tj does not guide us to the particular source of the violation.
Thus, a natural question that arises is, what would be a reasonable further step
if H0 is rejected by a Tj ? We recommend a procedure that is similar to the one
illustrated in the empirical example of Section 6. More specifically, we suggest
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that tests designed only for the specification of Ψi (φ) be applied first. Once a
suitable specification for Ψi (φ) has been chosen, our tests can be used to test each
of the several possible error distributions combined with the Ψi (φ) chosen using
other tests.

NOTE

1. A set F ⊂ R
+ ∪{0} is called a δ-net of

(
R

+ ∪{0},μB
b

)
if and only if for each x ∈ R+ ∪{0},

there exists a y ∈ F such that μB
b (x, y) ≤ δ. A minimal δ-net has the smallest cardinality amongst all

possible δ-nets of
(
R

+ ∪{0},μB
b

)
.
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APPENDIX A: Assumptions, preliminary results and
main proofs

In this Appendix, we provide proofs for the main results stated in Sections 2, 3, and 4,
together with several preliminary lemmas. Proofs of some of the results are given in the
online Supplementary Material. Let ‘plim’ denote the probability limit operator. For any

nonnegative integer m, let
{
Ψ

(m)
i (φ), Z (m)

i

}
denote the process that starts with Ψ

(m)
i (φ) =

1 and Z (m)
i = Z̄ for i < −m and follows the model defined by (1) and (2) for i ≥ −m,

with conditional mean Ψ
(m)
i = Ψ

(m)
i (φ0) and error distribution Fθ0 , where (φ0,θ0) =

plim
(
φ̂, θ̂

)
. Let Ψ̃

(m)
i (φ) denote the analogue of Ψ̃i (φ) for

{
Z (m)

i : i ∈ N}, where N :=
{1,2,3, · · · }. We say that a sequence of random variables {Xi : i = 1,2, · · · } converges

exponentially almost surely [e.a.s] to zero, denoted Xi
e.a.s.→ 0, if there exists a γ > 1 such

that γ i Xi
a.s.→ 0 as i → ∞ (see Straumann and Mikosch, 2006).

First, we state two sets of regularity conditions.

Condition C.

(C1). The process {Zi : i ∈ Z} is strictly stationary and ergodic, and E(Z2+d
i ) < ∞ for

some d > 0. The function Ψi (φ) is twice continuously differentiable with respect to φ (a.s.).
For each φ ∈ Φ and i ≥ 1, Ψi (φ) is bounded away from zero with probability one, and
E[Ψi (φ)2+d ] and E[‖λi (φ)‖2+d ] are finite. The parameter space Φ is a compact subset
of Rp and φ0 = plim φ̂ is an interior point of Φ.

(C2). For each K < ∞, sup
√

n | Ψi (t)−Ψi (s)− (t − s)�Ψ̇i (s) | /Ψi (φ0) = op(1), where
the supremum is taken over 1 ≤ i ≤ n and over {(t,s) : t,s ∈ Φ,

√
n‖t − s‖ ≤ K }.
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(C3). (i) For each θ ∈ Θ , Fθ has a positive density fθ almost everywhere (a.e.).
(ii) F0 has a positive density f 0 (a.e.).
(iii) fθ (y), Fθ (y), F−1

θ (y) and f 0(y) are twice continuously differentiable in (θ, y).
(iv) There exists an open neighbourhood B of θ0, such that supy≥0,θ∈B(1 +
y) fθ (y), supy≥0,θ∈B ‖Ḟθ (y)‖1+d , supy≥0,θ∈B ‖(∂2/∂θ∂θT )Fθ (y)‖1+d , supθ∈B

∫ |1 −
y|1+d fθ (y)dy are all finite for some d > 0.
(v) There exists an a > 0 such that supy≥0,|u|<a(1+ y2) f ′{(1+u)y} < ∞, and

supθ∈�

∫
y2 f (y)dy < ∞, where f may be the true density of the error term εi or a mem-

ber of the parametric family { fθ : θ ∈ �}. Further, ‖ ḟθ (y)‖ ≤ Kθ (y) for some function
Kθ (y) satisfying supθ∈B

∫
Kθ (y)dy < ∞.

(C4). supφ∈Φ |Ψ̃i (φ)−Ψi (φ)| e.a.s.→ 0, and there exists an open neighbourhood B of φ0

such that supφ∈B ‖ ˙̃Ψ i (φ)− Ψ̇i (φ)‖ e.a.s.→ 0, as i → ∞.

(C5). max1≤i≤n n−1/2‖λi (φ0)‖ = op(1).

(C6). (i) supφ∈Φ |Ψ (m)
i (φ)−Ψ

(∞)
i (φ)|, supφ∈Φ |Ψ̃ (m)

i (φ)−Ψ
(m)
i (φ)| e.a.s.→ 0 as i → ∞.

(ii) There exists an open neighbourhood B of φ0 such that, as i → ∞,

(a) supφ∈B ‖Ψ̇ (m)
i (φ)− Ψ̇

(∞)
i (φ)‖ e.a.s.→ 0, and (b) supφ∈B ‖ ˙̃Ψ (m)

i (φ)− Ψ̇
(m)
i (φ)‖ e.a.s.→ 0.

Assumption E.

(E1). If Ψi is of the form Ψi (φ) then φ0 is the true value satisfying Ψi = Ψi (φ0).
Otherwise, Ψi �= Ψi (φ0). There exists an open neighbourhood B of φ0 such that, (a)
limE{−n−1Ln(φ)} has a maximum at φ = φ0 on B, (b) the eigenvalues of the hessian of
−n−1Ln(φ) for φ ∈ B are all less than −ξ for some ξ > 0, with probability tending to one,
and (c) ‖√n(φ̂ − φ0) − [n−1/2τ(φ0)

∑n
i=1 λi (φ0)(1 − εi )]‖ = op(1), where τ(φ) is a

p × p matrix that is uniformly continuous as a function of φ on B.

(E2). The parameter space � is compact, and the estimator θ̂ converges in probability to
an interior point θ0 of �. If H0 is true, then θ0 is the true value satisfying F0 = Fθ0 .

Otherwise, F0 �= Fθ0 . The function gθ (t) is twice continuously differentiable with re-
spect to both θ and t and it satisfies (a) E[ġθ0(ε1)] = 0 where ġθ (t) := (∂/∂θ)gθ (t),
and (b) there exist d > 0, 0 < K0 < ∞, and an open neighbourhood B of θ0, such that
supθ∈B

∫ ‖{E[(∂/∂θ)ġθ (ε1)]}−1 ġθ (t)‖2+d fθ (t)dt < K0.

(E3). The Conditions (C1)–(C6) and Assumptions (E1)–(E2) continue to hold when
(F0,φ0) is replaced by (Fθn ,φn), where (φn,θn) → (φ0,θ0) as n → ∞.

The asymptotic expansion of
√

n(φ̂ −φ0) in Assumption (E1) is typically satisfied by
the QML estimator with τ(φ) = {E[−λi (φ)λi (φ)�]}−1 (see Bauwens and Giot, 2001;
Hautsch, 2011). We would expect (C2) to be satisfied by a large class of multiplica-
tive error models because it essentially says that the remainder term in a one-term
Taylor expansion of Ψi (φ) is small compared to Ψi (φ0). These two conditions imply
that n1/2{Ψi (φ̂)−Ψi (φ0)}/Ψi (φ0) is bounded in probability with asymptotic mean zero.
For most parametric families, Assumption (E2) would typically be satisfied if gθ = log fθ .
Condition (C3) introduces some smoothness and tail conditions on Fθ and F0. Condi-
tions (C4)–(C6) will be used in the Appendix to obtain certain technical results, for ex-
ample, to show that a metric entropy is small and residual empirical processes converge
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uniformly (see the proof of Lemma A.5). The preceding regularity conditions are satisfied
by the well-known MEM(p1, p2) model.

A.1. A general result for weighted empirical processes based on
triangular arrays of nonnegative random variables

This section obtains some general results on empirical processes for residuals from a non-
linear time series when the data generating process depends on the sample size and hence
takes the form of a triangular array. These results are required to derive the asymptotic dis-
tributions of the test statistics, T1, . . . ,T5, and to establish the consistency of the bootstrap.
To formulate the setting, let us introduce Assumption T.

Assumption T [A general setting for triangular arrays]:

(a) Θ is a compact subset of Rq , and ϑ0 is an interior point of Θ .

(b) {Hϑ : ϑ ∈ Θ ⊂ Rq } is a family of distribution functions on [0,∞).

(c) Hϑ (x) is continuous in ϑ , twice continuously differentiable in x , and it has positive
density hϑ (x) (a.e) for every ϑ ∈ Θ .

(d) supϑ∈Θ supx≥0 hϑ (x) < ∞, supϑ∈Θ

∫
x≥0 |x |hϑ (x) dx < ∞.

(e) (ηni ,γni ,ρni ),1 ≤ i ≤ n, is an array of random variables defined on a probability
space (�,A, Pn), and ηni is independent of (γni ,ρni ),1 ≤ i ≤ n.

(f) {ηni ,1 ≤ i ≤ n} is iid with distribution function Hϑn , ϑn → ϑ0 as n → ∞.

(g) There exists a triangular array of sub sigma-fields {Fni } such that Fni ⊂ Fn(i+1)
for 1 ≤ i < n, {ηn,i−1,γni ,ρni ,2 ≤ i ≤ j} are Fnj -measurable for 2 ≤ j ≤ n,
(γn1,ρn1) is Fn1-measurable, and ηnj is independent of Fnj .

(h) n−1∑n
i=1 γ 2

ni = Opn (1), max1≤i≤n n−1/2|γni | = opn (1), max1≤i≤n |ρni | =
opn (1).

Let us define

Un(x) = n−1/2
n∑

i=1

γni [I (ηni ≤ x)− Hϑn (x)],

Ũn(x) = n−1/2
n∑

i=1

γni [I (ηni ≤ x + xρni )− Hϑn (x + xρni )], x ≥ 0.

The main result of this subsection is that supx≥0 |Ũn(x)−Un(x)| = opn (1). Since the proof
of this result is long, we segment it into a few lemmas.

LEMMA A.1. Let Mn = ∑n
i=1 Dni be a sum of martingale differences defined on the

triangular array of sub sigma-fields {Ani }, where Ani ⊂An(i+1),1 ≤ i ≤ n. Assume that
|Dni | ≤ a (a.s.) for 1 ≤ i ≤ n. Then, for any η,α > 0, we have that
Pn{[Mn > η]∩ [

∑n
i=1E(D2

ni |An(i−1)) ≤ α]} ≤ exp{−η2/2(aη+α)}.
The proof of the lemma follows from Proposition 2.1 in Freedman (1975). This is a

general result on the sum of martingale differences defined in the form of a triangular
array; it is not specifically for MEM.

LEMMA A.2. Suppose that Assumption T is satisfied. Let a > 0,b > 0 and x ≥ 0, such
that supϑn∈B sup|z|≤b |Hϑn {x(1+ z)}− Hϑn (x)| < a. Let B be an open neighbourhood of
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the limit ϑ0, and let �n = {maxi |γni | ≤ an1/2}∩{maxi |ρni | ≤ b}∩{n−1∑n
i=1 γ 2

ni ≤ c}.
Then, for η,c > 0 and ϑn ∈ B, we have that

Pn
(
[|Ũn(x)−Un(x)| > η]∩�n

) ≤ exp{−η2/2a(η+ c)}.

Proof. Detailed proof is given in the online Supplementary Material. The main part
is to show that the quadratic variation of Ũn(x) − Un(x) is bounded from above by
(a/n)

∑n
i=1 γ 2

ni . Then, the proof follows by applying Lemma A.1. n

The proofs of Lemmas A.3 and A.4 stated below are given in the online Supplemen-
tary Material. Lemmas A.3 states the asymptotic equivalence of Ũn and Un at a given
point x . This is similar to Corollary 2.1 of Koul and Ossiander (1994) for the analogous
location problem.

LEMMA A.3. Suppose that Assumption T is satisfied. Then, for each fixed x ≥ 0,
|Ũn(x)−Un(x)| = opn (1).

The next lemma is the analogue of condition (A5) of Theorem 1.1 in Koul and Ossiander
(1994) for the current setup. This is the crucial result needed for the chaining argument used
in the proof of Lemma A.5 given below.

LEMMA A.4. Let Hϑ ,ϑ0, and � be as in Assumption T. Let B be a given open neigh-
bourhood of ϑ0, and μB

b (x, y) = supϑ∈B sup|z|≤b | Hϑ{x(1 + z)} − Hϑ{y(1 + z)} |1/2 .

Then, μB
b forms a totally bounded pseudo-metric on R+ ∪{0} for every b > 0. Let the en-

tropy integral be defined as I (b) := ∫ 1
0 [logN (δ,b)]1/2dδ < ∞ for all 0 ≤ b < 1, where

N (δ,b) is the cardinal number of a minimal δ-net of (R+ ∪{0},μB
b ).1 Then, I (b) < ∞.

The next lemma is the main result of this subsection. This is an extension of Theorem 4.1
of Koul and Ling (2006) and Theorem 1.1 of Koul and Ossiander (1994).

LEMMA A.5. Suppose that Assumption T holds. Then, supx≥0 |Ũn(x) − Un(x)| =
opn (1).

Proof. Let D(b)
ni (x) = [I{ηni ≤ x(1 + ρni )} − Hϑn {x(1 + ρni )}]I{maxi |ρni | ≤ b} for

1 ≤ i ≤ n. By using Lemma A.4 and a method of stratification and chaining based onD(b)
ni ,

for example as in Section 3 of Ossiander (1987), it may be shown that the processes Ũn and
Un are asymptotically uniformly equicontinuous in the μB

b metric, 0 ≤ b < 1. Therefore,
for every 0 ≤ b < 1 and ε > 0, there exists δ > 0 such that

limsup
n→∞

P̄n

⎛⎝ sup
μB

b (x,y)≤δ, x,y≥0
| Ũn(x)− Ũn(y) |> ε

⎞⎠ < ε, (A.1)

limsup
n→∞

P̄n

⎛⎝ sup
μB

b (x,y)≤δ, x,y≥0
| Un(x)−Un(y) |> ε

⎞⎠ < ε, (A.2)

where P̄n denotes the outer probability. In the sequel, for brevity of notation, we omit the
bar in P̄n .

Next, let �n := {maxi |γni | ≤ an1/2} ∩ {maxi |ρni | ≤ b} ∩ {n−1∑γ 2
ni ≤ c}. Fix an

ε > 0 and 0 ≤ b0 < 1. Then, I (b) < ∞ and (A.1) and (A.2) hold for every 0 ≤ b ≤ b0.
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Therefore, it may be argued as in the proof of Theorem 1.1 in (Koul and Ossian-
der, 1994, pp. 556–557) that there exist constants a,δ > 0, c ≥ 1 and b ≤ b0 with
exp{−ε2/2a(ε + c)} ≤ ε2/N (δ,b) and limsupn Pn(n−1∑

i γ 2
ni > c) < ε, such that for

all n > 16c{1+ lnN (u,b)}/δ2,

Pn

{[
sup
x≥0

|Ũn(x)−Un(x)| > 3ε

]
∩�n

}
≤N (δ,b) sup

x≥0
Pn

{[|Ũn(x)−Un(x)| > ε
]∩�n

}+2ε.

Because n−1∑n
i=1 γ 2

ni = Opn (1), max1≤i≤n n−1/2|γni | = opn (1) and max1≤i≤n |ρni | =
opn (1), one obtains that limsupn Pn(�c

n) = limsupn Pn(n−1∑
i γ 2

ni > c) < ε. Further, by
Lemmas A.1 and A.2,

supx≥0 Pn
{[|Ũn(x)−Un(x)| > ε

]∩�n
} ≤ exp

{
−ε2/2a(ε + c)

}
≤ ε2/N (δ,b).

Since ε is arbitrary and limsupn Pn(�c
n) < ε, supx≥0 |Ũn(x)−Un(x)| = opn (1). n

A.2. Some asymptotic representations and convergence results for
bootstrap estimators and test statistics

Throughout this subsection, we assume that Conditions (C1) – (C6) and Assumptions (E1)
– (E3) are satisfied. The uniform metric is assumed for weak convergence in D[0,1]. When
the DGP is the MEM in (1) with Ψi = Ψi (φn) and F0 = Fθn , we say that the DGP corre-
sponds to (φn,θn) and denote the probability measure by Pn .

LEMMA A.6. Let (φn,θn) be a given sequence converging to (φ0,θ0) as n → ∞, and
let vni (φ) = {Ψi (φ) − Ψi (φn)}/Ψi (φn). Suppose that the DGP corresponds to (φn,θn).
Let Bn(x) = x fθn (x)n1/2(φ −φn)�E{λ1(φn)}. Then, for any M < ∞,

sup
x,φ,M

|n−1/2
n∑

i=1

[
Fθn {x + xvni (φ)}− Fθn (x)

]− Bn(x)| = opn (1),

where supx,φ,M is the supremum over {(x,φ) : x ≥ 0,φ ∈ Φ
√

n‖φ −φn‖ ≤ M}.

Proof. A detailed proof is given in the online Supplementary Material. The main strategy
is to first expand Fθn {x + xvni (φ)} as

Fθn {x + xvni (φ)} = Fθn (x)+ xvni (φ) fθn (x)+opn (1). (A.3)

Then, express vni (φ) as a linear term in (φn −φ) such that

vni (φ) = {Ψi (φn)}−1{Ψi (φ)−Ψi (φn)} ≈ (φ −φn)�Ψ̇i (φn)/Ψi (φn). (A.4)

The remainder terms in (A.4) are all opn (1) uniformly over {√n‖φ −φn‖ ≤ M}. Hence,
the desired result can be obtained by combining (A.3) and (A.4). n
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Recall that, in Section 3, we used the superscript ‘∗(m)’ for the bootstrap process that
starts at time −m. Now, for the limiting case m = ∞, we use the superscript ‘∗’ in-

stead of ‘∗(∞)’; for example, (Z∗
i ,Ψ ∗

i ) denotes (Z∗(∞)
i ,Ψ

∗(∞)
i ) and (φ̂∗, θ̂∗) denotes

(φ̂∗(∞), θ̂∗(∞)). We establish that the bootstrap is valid for ∗ and show that the error result-
ing from using ∗(m) in place of ∗, becomes negligible for large n. Some of the preliminary
results required for this are obtained in the next few lemmas.

LEMMA A.7. Suppose that Conditions (C1), (C2), (C4), (C5), and Assumptions (E1)
and (E2) are satisfied. Then, under H0, for each j = 1, . . . ,q,

θ̂j − θ0 j = n−1∑n
i=1

{
hθ0 j (εi )−

(
φ̂ −φ0

)�
εi λi (φ0)h

′
θ0 j (εi )

}
+op

(
n−1/2

)
,

where hθ (t) = {−E[(∂/∂θ)ġθ (ε1)]}−1 ġθ (t) = [hθ1(t), . . . ,hθq (t)]�. Further, if Assump-
tion (E3) is also satisfied then, under H0 and under H1,

θ̂∗
j − θ̂j = n−1

n∑
i=1

{
h∗
θ̂j

(ε∗
i )−

(
φ̂∗ − φ̂

)�
ε∗

i λ∗
i

(
φ̂
)

h∗′
θ̂j

(
ε∗

i
)}+op∗

n

(
n−1/2

)
, (A.5)

in probability, where h∗
θ (t) = −{E∗[(∂/∂θ)ġθ (ε∗

1)]}−1 ġθ (t) = [h∗
θ1(t), . . . ,h∗

θq (t)]� and

E∗ is the bootstrap expectation for the DGP corresponds to (φ̂, θ̂ ).

Proof. See the online Supplementary Material. n

The Lemmas A.8–A.11 below are obtained without imposing the null hypothesis.
Lemma A.8 yields that the differences (φ̂∗(m) − φ̂∗) and (θ̂∗(m) − θ̂∗) converge to zero
faster than n−1/2. Consequently, we are able to replace (φ̂∗, θ̂∗) by (φ̂∗(m), θ̂∗(m)) in
asymptotic arguments. The proofs of these results make use of the power of the stronger

form of convergence
e.a.s.→ 0 introduced in Section 2. These results form an important part

in establishing that the nonstationary bootstrap process that starts at time −m and the more
tractable stationary hypothetical bootstrap process that starts at time −∞ are close. The
proofs of Lemmas A.8 and A.9 are given in the online Supplementary Material.

LEMMA A.8. There exists an η > 0.5 such that the following hold in probability:

(a) nη supφ∈Φ |(∂/∂φ){n−1L∗(m)
n (φ)−n−1L∗

n(φ)}| a.s.→ 0, (b) φ̂∗(m) − φ̂∗ = Op∗
n
(n−η),

(c) θ̂∗(m) − θ̂∗ = op∗
n
(n−η).

The next lemma yields an asymptotic uniform expansion for the bootstrap process
n1/2{F̂∗

n (x) − F∗
n (x)}. We use the resulting expansion in the proof of Lemma A.10 for

showing that the process Ŵ∗
n converges weakly.

LEMMA A.9. Let U∗
n (x) = n1/2{F̂∗

n (x) − F∗
n (x)} where F∗

n (x) = n−1∑n
i=1 I (ε∗

i ≤
x). Then supx≥0 |U∗

n (x)−n1/2(φ̂∗ − φ̂)�xE∗{λ∗
1(φ̂)} f

θ̂
(x)| = op∗

n
(1), in probability.

The weak convergence of Ŵ∗
n is established in the next lemma.

LEMMA A.10. Conditional on {Z1, . . . , Zn}, the hypothetical bootstrap empirical pro-
cess Ŵ∗

n ◦ F−1
θ̂

(·) = n1/2[F̂∗
n
{

F−1
θ̂

(·)}− F
θ̂∗
{

F−1
θ̂

(·)}] converges weakly to V(·) [in prob-

ability], where V(·) is as in Theorem 2.
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Proof. For showing that a quantity is op∗
n
(1) in probability, one may assume without

loss of generality that (φ̂, θ̂ ) → (φ0,θ0) along almost all sample paths; this is explained in
the online Supplementary Material. In what follows, we restrict attention to such a fixed
sample path. First, partition the process Ŵ∗

n (·) = n1/2{F̂∗
n (·)− F

θ̂∗(·)} as

Ŵ∗
n (·) = n1/2

{
F∗

n (·)− F
θ̂
(·)
}

−n1/2
{

F
θ̂∗(·)− F

θ̂
(·)
}

+n1/2
{

F̂∗
n (·)− F∗

n (·)
}
. (A.6)

Because F∗
n (x) = n−1∑n

i=1 I
(
ε∗

i ≤ x
)
, the first term on the right hand side of (A.6) may

be written as n1/2{F∗
n (x)− F

θ̂
(x)

}= n−1/2∑n
i=1

{
I (ε∗

i ≤ x)− F
θ̂
(x)

}
. Next, we obtain

asymptotic uniform expansions for the last two terms in (A.6).
Let ξ∗

i

(
φ̂,ε∗

i

) = τ(φ̂)λ∗
i (φ̂)

(
1 − ε∗

i

)
. Then, φ̂∗ − φ̂ = n−1∑n

i=1 ξ∗
i

(
φ̂,ε∗

i

) +
op∗

n

(
n−1/2). By expanding F

θ̂∗(x) about θ̂ and substituting an asymptotic representation

for n1/2(θ̂∗ − θ̂
)
, one obtains that uniformly in x ≥ 0,

n1/2
{

F
θ̂∗(x)− F

θ̂
(x)

}
= n−1/2

n∑
i=1

{
h∗
θ̂

(
ε∗

i
)−Q∗

ni

(
φ̂,ε∗

i

)}�
Ḟ
θ̂
(x)+op∗

n
(1), (A.7)

whereQ∗
ni (φ̂,ε∗

i ) = n−1∑n
j=1 h∗′

θ̂
(ε∗

j )ε∗
j {λ∗

j (φ̂)}�ξ∗
i (φ̂,ε∗

i ) and h∗
θ is as in Lemma A.7.

Substituting n1/2(φ̂∗ − φ̂) = n−1/2∑n
i=1 ξ∗

i (φ̂,ε∗
i )+ op∗

n
(1) in the uniform expansion

of Lemma A.9 yields that, uniformly in x ≥ 0,

n1/2
{

F̂∗
n (x)− F∗

n (x)
}

= x f
θ̂
(x)E∗

[
λ∗

1(φ̂)
]�

n−1/2
n∑

i=1

ξ∗
i

(
φ̂,ε∗

i

)
+op∗

n
(1). (A.8)

Let G∗
n(t) := n−1/2∑n

i=1 g∗
ni (t), where

g∗
ni (t) = I

(
ε∗

i ≤ F−1
θ̂

(t)
)

− t −
{

h∗
θ̂

(
ε∗

i
)−Q∗

ni

(
φ̂,ε∗

i

)}�
Ḟ
θ̂

(
F−1
θ̂

(t)
)

+ F−1
θ̂

(t) f
θ̂

(
F−1
θ̂

(t)
)
E∗

[
λ∗

1(φ̂)
]�

ξ∗
i

(
φ̂,ε∗

i

)
.

In view of (A.7) and (A.8), Ŵ∗
n ◦ F−1

θ̂
(t) = G∗

n(t)+op∗
n
(1), uniformly in t ∈ [0,1]. There-

fore, the weak convergence of Ŵ∗
n ◦ F−1

θ̂
(·) follows from that of G∗

n(·).
Let

G(s, t,θ,φ) :=
q∑

j=1

q∑
l=1

[
∂ Fθ

∂θj

(
F−1
θ (t)

) ∂ Fθ

∂θl

(
F−1
θ (s)

)
E
{
hθj (ε1)hθl (ε1)

}]
+E

{[
λ1(φ)

]�}
τ(φ)E

{[
λ1(φ)

][
λ1(φ)

]�}
τ(φ)�

×E[λ1(φ)
]
σ 2
θ Cθ

(
F−1
θ (t)

)
Cθ

(
F−1
θ (s)

)
−

q∑
j=1

[
∂ Fθ

∂θj

(
F−1

θ (t)
)∫ s

0
hθj

(
F−1
θ (u)

)
du

]

−
q∑

j=1

[
∂ Fθ

∂θj

(
F−1

θ (s)
)∫ t

0
hθj

(
F−1
θ (u)

)
du

]
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+Kθ

(
t −

∫ t

0
F−1
θ (u)du

)
Cθ

(
F−1

θ (s)
)

+ Kθ

(
s −

∫ s

0
F−1

θ (u)du

)
Cθ

(
F−1

θ (t)
)

+ Kθ

q∑
j=1

[
Cθ

(
F−1

θ (s)
) ∂ Fθ

∂θj

(
F−1

θ (t)
)

+Cθ

(
F−1
θ (t)

) ∂ Fθ

∂θj

(
F−1
θ (s)

)]
×E

{
ε1hθj (ε1)

}
, (A.9)

with σ 2
θ := ∫

(x −1)2 fθ (x)dx, Kθ := E{[λ1(φ)
]�}

τ(φ)E[λ1(φ)],

hθj (t) := {−E[(∂/∂θj )ġθ (ε1)
]}−1 ġθ (t), j = 1, . . . ,q, and

Cθ (y) := ∑q
j=1(∂/∂θj )Fθ (y)

∫
xh

′
θj

(x) fθ (x)dx + y fθ (y).

It may be verified that cov∗{G∗
n(s),G∗

n(t)
}

:= min{s, t}− st +G(s, t,θ0,φ0)+ op(1).
Hence, cov∗{G∗

n(s),G∗
n(t)

}= cov
{V(s),V(t)

}+op(1). It follows from a martingale CLT
that the finite dimensional distributions of G∗

n(·) converge in probability to those of V(·)
as n → ∞. By Markov’s inequality and using Conditions (C3), (C5), (E2), and (E3), one
also obtains that n−1/2∑gni (t) is asymptotically stochastically equicontinuous. There-
fore, G∗

n(·) converges weakly to V(·) [in probability]. n

Lemma A.10 and the continuous mapping theorem imply that the bootstrap tests based
on Ŵ∗

n are asymptotically valid. However, we are interested in the truncated process

Ŵ∗(m)
n . We wish to show that the error resulting from substituting ∗(m) for ∗ becomes neg-

ligible for large n, more specifically, supy≥0 |Ŵ∗
n (y)− Ŵ∗(m)

n (y)| = op∗
n
(1). To this end,

it suffices to show that the differences (F̂∗(m)
n − F̂∗

n ) and (F
θ̂∗(m) − F

θ̂∗) converge to zero

uniformly, at a rate faster than n−1/2. These two sufficient conditions are obtained in the
next lemma; proof is in the online Supplementary Material.

LEMMA A.11. The following hold in probability:

(a) supy≥0 n1/2
∣∣F̂∗(m)

n (y) − F̂∗
n (y)

∣∣ = op∗
n
(1), (b) supy≥0 n1/2

∣∣F
θ̂∗(m) (y) − F

θ̂∗(y)
∣∣ =

op∗
n
(1).

A.3. Proofs of the main results stated in Sections 2 and 3

LEMMA A.12. Suppose that Conditions (C1)−(C5) are satisfied. Then, under the null
hypothesis, supx≥0

∣∣F̃n(x)− Fn(x)− (φ̂ −φ0)�E{λ1(φ0)}x fθ0(x)
∣∣ = op

(
n−1/2).

Proof. A simplified version of the proof of Lemma A.9 with (φ̂, θ̂ ) = (φ0,θ0) yields that

supx≥0
∣∣{F̂n(x)− Fn(x)

}
−
(
φ̂ −φ0

)�
E{λ1(φ0)} x fθ0(x)

∣∣ = op

(
n−1/2

)
. (A.10)

By arguing as in the proof of Lemma A.11 with
(
φ̂, θ̂

) = (φ0,θ0), one also obtains that

supx≥0 n1/2
∣∣F̃n(x) − F̂n(x)

∣∣ = op(1). Hence, the statement in (A.10) continues to hold

when F̂n is replaced by F̃n . n

Proof of Theorem 1. Partition W̃n(x) = n1/2{F̃n(x)− F
θ̂
(x)} as

W̃n(·) = n1/2 {Fn(·)− Fθ0(·)
}−n1/2

{
F

θ̂
(·)− Fθ0(·)

}
+n1/2 {F̃n(·)− Fn(·)} . (A.11)
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Since Fn(x) = n−1∑n
i=1 I (εi ≤ x), the first term on the right hand side of (A.11) is

n1/2{Fn(x) − Fθ0(x)
} = n−1/2∑n

i=1
{

I (εi ≤ x) − Fθ0(x)
}
. By expanding F

θ̂
(x) about

θ0 and substituting an asymptotic representation for n1/2(θ̂ − θ0), we have, uniformly
in x ≥ 0,

n1/2
{

F
θ̂
(x)− Fθ0(x)

}
= n−1/2

n∑
i=1

{
hθ0(εi )−Qi (φ0,εi )

}� Ḟθ0(x)+op(1),

whereQi (φ0,εi ) = n−1∑n
j=1 h

′
θ0

(
εj
)
εj
{
λj (φ0)

}�{
τ(φ0)λi (φ0)(1− εi )

}
.

Next, consider the last term n1/2{F̃n(·)− Fn(·)} in (A.11). By applying Lemma A.12

and using an asymptotic representation for n1/2(φ̂ − φ0), similar to the one used for
n1/2(φ̂∗ − φ̂

)
in the proof of Lemma A.10, one obtains that uniformly in x ≥ 0,

n1/2{F̃n(x)− Fn(x)
} = x fθ0(x)E[λ1(φ0)]�n−1/2

n∑
i=1

{
τ(φ0)λi (φ0)(1− εi )

}+op(1).

By using these asymptotic expansions and mimicking the arguments in the proof
of Lemma A.10 for the special case (φ̂, θ̂ ) = (φ0,θ0), we obtain that the process
W̃n(·) converges weakly to the centered Gaussian process G(·) with covariance kernel
cov{G(s),G(t)} := min{s, t}− st +G(s, t,θ0,φ0), where G(s, t,θ,φ) is as in (A.9). This
completes the proof of part (a).

Let us illustrate part (b) for the CvM statistic T3 = ∫
W̃ 2

n (x)d F
θ̂
(x). Write

T3 = n
∫ {

F̃n(x)− F
θ̂
(x)

}2
d Fθ0(x)+n

∫ {
F̃n(x)− F

θ̂
(x)

}2 (
f
θ̂
(x)− fθ0(x)

)
dx .

The term n
∣∣∫ {F̃n(x)− F

θ̂
(x)

}2
( f

θ̂
(x)− fθ0(x))dx

∣∣ is bounded from above by(
sup

x

∣∣∣√n
{

F̃n(x)− F
θ̂
(x)

}∣∣∣)2 ∫ ∣∣∣ f
θ̂
(x)− fθ0(x)

∣∣∣dx .

One obtains by part (a) and the continuous mapping theorem that (supx |√n{F̃n(x) −
F
θ̂
(x)}|)2 = Op(1). Let B be an open neighbourhood of θ0 as in Condition (C3). Then, by

Condition (C3) and applying the mean value theorem, for every θ ∈ B,∫ ∣∣ fθ (x)− fθ0(x)
∣∣dx ≤

q∑
j=1

∣∣∣θj − θ0 j

∣∣∣∫ K θ̄ (x)dx (A.12)

for some θ̄ ∈ B satisfying ‖θ̄ − θ0‖ ≤ ‖θ − θ0‖, with the function Kθ as in (C3). Since
n1/2(θ̂ − θ0) = Op(1) and supθ∈B

∫
Kθ (y)dy < ∞ by (C3), one obtains by (A.12) that∫ | f

θ̂
(x)− fθ0(x)|dx = op(1). Hence, n

∫ {
F̃n(x)− F

θ̂
(x)

}2
( f

θ̂
(x)− fθ0(x))dx = op(1).

Therefore, we have T3 = h3
(
W̃n ◦ F−1

θ0

)+op(1) with h3(a) := ∫ 1
0 {a(t)}2dt for a ∈ D[0,1].

Using similar arguments, one also obtains that part (b) holds for j = 1,2,4, and 5. Part (c)
follows from parts (a), (b) and the continuous mapping theorem. n

The relevance of the next lemma was discussed in the last paragraph of Section 3.

LEMMA A.13. Suppose that Conditions (C1)−(C6) and Assumptions (E1)−(E3) are

satisfied. Then, supy≥0 n1/2
∣∣F̃∗(m)

n (y)− F̂∗(m)
n (y)

∣∣ = op∗
n
(1), in probability.

https://doi.org/10.1017/S026646661500047X Published online by Cambridge University Press

https://doi.org/10.1017/S026646661500047X


MULTIPLICATIVE ERROR MODELS 437

Proof. In the following arguments, for brevity, a statement such as ‘X∗
n = op∗

n
(1), in

probability’, is abbreviated to ‘X∗
n = op∗

n
(1)’. Let

ṽ
∗(m)
ni = n1/2

[
Ψ̃

∗(m)
i

(
φ̂∗(m)

)
−Ψ

∗(m)
i (φ̂)

]
/Ψ

∗(m)
i (φ̂).

By (E3) and Conditions (C1) and (C6), for some open neighbourhood B of φ0,

supφ∈B
∥∥ ˙̃Ψ ∗(m)

i (φ) − Ψ̇
∗(m)
i (φ)

∥∥ e.a.s.→ 0 and supφ∈Φ

∣∣Ψ̃ ∗(m)
i (φ) −Ψ

∗(m)
i (φ)

∣∣ e.a.s.→ 0, as
i → ∞. Hence, Lemma 2.1 of Straumann and Mikosch (2006) imply that

n∑
i=1

∣∣∣Ψ̃ ∗(m)
i

(
φ̂∗(m)

)
− Ψ̃

∗(m)
i (φ̂)

∣∣∣/Ψ
∗(m)
i (φ̂) = Op∗

n
(1).

Therefore, by a one-term Taylor expansion, ṽ
∗(m)
ni = n1/2(φ̂∗(m) − φ̂)�λ

∗(m)
i (φ̂)+ r̃∗(m)

ni ,

for some random array
{̃
r∗(m)
ni

}
satisfying n−1∑n

i=1 r̃∗(m)
ni = Op∗

n

(
n−1/2).

Let v
∗(m)
ni = n1/2[Ψ ∗(m)

i

(
φ̂∗(m)

) − Ψ
∗(m)
i (φ̂)

]
/Ψ

∗(m)
i (φ̂). From the proof of

Lemma A.11 we have max1≤i≤n
∣∣n−1/2v

∗(m)
ni

∣∣ = op∗
n
(1). By Lemma A.8, n1/2(φ̂∗(m) −

φ̂
) = Op∗

n
(1). Hence,

max
1≤i≤n

∣∣∣n−1/2ṽ
∗(m)
ni

∣∣∣ ≤ n−1/2 max
1≤i≤n

∣∣∣̃v∗(m)
ni − v

∗(m)
ni

∣∣∣+ max
1≤i≤n

∣∣∣n−1/2v
∗(m)
ni

∣∣∣ = op∗
n
(1).

Therefore, by Lemma A.5 with γni = 1 and ρni = n−1/2ṽ
∗(m)
ni , we have the following,

uniformly in y ≥ 0:

n1/2 F̃∗(m)
n (y) = n−1/2

n∑
i=1

I
(̃
ε
∗(m)
i ≤ y

)
= n−1/2

n∑
i=1

I
{
ε∗

i ≤ y + yn−1/2ṽ
∗(m)
ni

}

= n1/2 F∗(m)
n (y)+n−1/2

n∑
i=1

{
F
θ̂

(
y + yn−1/2ṽ

∗(m)
ni

)
− F

θ̂
(y)

}
+op∗

n
(1)

= n1/2 F∗(m)
n (y)+ y f

θ̂
(y)n1/2

(
φ̂∗(m) − φ̂

)�
n−1

n∑
i=1

λ̃
∗(m)
i (φ̂)

+op∗
n
(1). (A.13)

From the proof of Lemma A.11 we have that

sup
y≥0

∣∣∣∣∣∣F̂∗(m)
n (y)− F∗(m)

n (y)− y f
θ̂
(y)

(
φ̂∗(m) − φ̂

)�
n−1

n∑
i=1

λ
∗(m)
i

(
φ̂
)∣∣∣∣∣∣

= op∗
n

(
n−1/2

)
. (A.14)

Since supφ∈B
∥∥̃λ∗(m)

i (φ)−λ
∗(m)
i (φ)

∥∥ e.a.s.→ 0 and supθ∈B,y≥0(1+ y) fθ (y) < ∞ for some
open neighbourhood B of θ0, it follows from (A.13), (A.14) and Lemma 2.1 of Straumann

and Mikosch (2006) that supy≥0 n1/2|F̃∗(m)
n (y)− F̂∗(m)

n (y)| = op∗
n
(1). n
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Proof of Theorem 2. Part (a) follows from Lemmas A.10, A.11, and A.13. Since Tj =
hj (W̃∗(m)

n ◦ F−1
θ̂

)+op∗
n
(1), in probability ( j = 1, · · · ,5), part (b) follows from part (a) and

the continuous mapping theorem. n

The next lemma is used for deriving the results on local power stated in Section 4.

LEMMA A.14. Suppose that Conditions (C1)−(C5) and Assumptions (E1) and (E2)
are satisfied. Then, under Han, W̃n ◦ F−1

θ0
(·) converges weakly to the Gaussian process

Wa(·) given by Wa(·) = ma(·)+ G(·), with G(·) is as in Theorem 1, and

ma(t) := δ
{

F̃
[

F−1
θ0

(t)
]
− t −R� Ḟθ0

[
F−1
θ0

(t)
]}

, t ∈ [0,1], (A.15)

where R := [∫ {g̈θ0(y)}−1 d Fθ0(y)
][∫

ġθ0(ε) d F̃(ε)
]
. Further, if (C6) and (E3) are also

satisfied, then conditional on {Z1, · · · , Zn}, under Han, W̃∗(m)
n ◦ F−1

θ̂
(·) converges weakly

to G(·) [in probability].

Proof. See the online Supplementary Material. n

Proof of Proposition 1. Because Tj = hj
(
W̃n ◦ F−1

θ0

)+op(1) and T ∗(m)
j = hj

(
W̃∗(m)

n ◦
F−1
θ̂

)+ op∗(1) [in probability], the proof follows from Lemma A.14 and the continuous

mapping theorem. n

Proofs of Propositions 2 and 3 are given in the online Supplementary Material.
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