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We study the structure of the thermal boundary layer (BL) in Rayleigh–Bénard
convection for Prandtl number (Pr) 0.021 by conducting direct numerical simulations
in a two-dimensional square box for Rayleigh numbers (Ra) up to 109. The large-scale
circulation in the flow divides the horizontal plates into three distinct regions, and we
observe that the local thermal BL thicknesses in the plume-ejection region are larger than
those in the plume-impact and shear-dominated regions. Moreover, the local BL width
decreases as Ra−β(x), with β(x) depending on the position at the plate. We find that the
values of β(x) are nearly the same in the impact and shear regions, and are larger in
the ejection region. Thus, the local BL width decreases faster in the ejection region than
in the shear and impact regions, and we estimate that the thermal BL structure would
be uniform throughout the horizontal plate for Ra ≥ 8 × 1012 in our low-Pr convection.
We compare the thermal BL profiles measured at various positions at the plate with
the Prandtl–Blasius–Pohlhausen (PBP) profile and find deviations everywhere for all the
Rayleigh numbers. However, the dynamically rescaled profiles, as suggested by Zhou &
Xia (Phys. Rev. Lett., vol. 104, 2010, 104301), agree well with the PBP profile in the shear
and impact regions for all the Rayleigh numbers, whereas they still deviate in the ejection
region. We also find that, despite the growing fluctuations with increasing Ra, thermal
boundary layers in our low-Pr convection are transitional and not yet fully turbulent.
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1. Introduction

Turbulent flows driven by thermal convection occur commonly in nature. For example,
the flows in the convection zone of the Sun and the Earth’s outer core are driven
primarily by the buoyancy force arising due to the inhomogeneous temperature field
(Hanasoge, Gizon & Sreenivasan 2016; Pandey, Scheel & Schumacher 2018a; Schumacher
& Sreenivasan 2020). The Prandtl number (Pr), which is the ratio of the kinematic
viscosity ν and the thermal diffusivity κ of a fluid, is approximately 10−6 in the solar
convection zone (Schumacher & Sreenivasan 2020) and Pr ≈ 10−2 in the Earth’s outer
core (Schumacher, Götzfried & Scheel 2015). Rayleigh–Bénard convection (RBC) is
a paradigm of turbulent convection flows in nature, where a fluid kept between two
horizontal plates is heated from below and cooled from above (Ahlers, Grossmann &
Lohse 2009; Chillà & Schumacher 2012; Verma, Kumar & Pandey 2017; Verma 2018).
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The main governing parameters of RBC are the Prandtl and Rayleigh numbers, where the
Rayleigh number Ra indicates the strength of the thermal driving force compared to the
viscous dissipative forces in the flow. Thin viscous and thermal boundary layers (BLs)
near the isothermal horizontal plates exist in RBC, and the behaviour of the flow in the
BL region remains laminar-like even up to very large Ra despite a highly turbulent flow in
the bulk region away from the walls. Properties of low-Pr convection flows differ in certain
aspects from those of high-Pr flows. In low-Pr RBC, the thermal BL is thicker compared
to the viscous BL, and therefore directly interacts with the turbulent bulk flow. Moreover,
low-Pr RBC is dominated by the inertial effects and is highly turbulent compared to
high-Pr convection flows at the same Ra (Schumacher et al. 2015; Pandey & Verma 2016;
Scheel & Schumacher 2017; Shishkina et al. 2017; Pandey et al. 2018a). The structure of
the thermal BL has primarily been explored for moderate- (Shi, Emran & Schumacher
2012; Wagner, Shishkina & Wagner 2012; Scheel & Schumacher 2014) and high-Pr RBC
(Werne 1993; Lui & Xia 1998; Wang & Xia 2003; Zhou et al. 2011), where the thermal
BL is either of a similar width to the viscous BL or nested within the latter. In this paper,
we study the horizontal structure of the thermal BL in a low-Pr RBC.

Characterization of the thermal BL is important as it controls the global heat transport,
which is quantified using the Nusselt number (Nu) (Grossmann & Lohse 2000). In RBC,
the mean thermal BL width can be computed as H/(2Nu) (Ahlers et al. 2009; Chillà
& Schumacher 2012), and this relation has been verified for a wide range of Ra and Pr
(Stevens, Lohse & Verzicco 2011; Scheel, Kim & White 2012; Zhou & Xia 2013; Scheel &
Schumacher 2014, 2016; Schumacher et al. 2016; Scheel & Schumacher 2017; Zhang et al.
2017a; Bhattacharya, Samtaney & Verma 2019). This relation arises from the definition
of the thermal BL thickness using the slope method (Wagner et al. 2012) and from the
fact that the heat transport is purely diffusive at the horizontal plates. The thermal BL
thickness, however, is a local quantity and varies in magnitude at the horizontal plates. For
high-Pr RBC, local BL thickness has been observed to be the smallest near the center of
the plate and to increase symmetrically (Lui & Xia 1998) or asymmetrically (Werne 1993;
Wang & Xia 2003; Zhou et al. 2011) in the plane of the large-scale circulation (LSC)
as the sidewalls are approached. For moderate-Pr RBC, Wagner et al. (2012) observed
that the local BL thickness increases almost linearly along the direction of LSC, whereas
Scheel & Schumacher (2014) observed that the local BL thicknesses are larger at the
plume-detachment locations. In this paper, we find that the local BL thickness in low-Pr
RBC varies asymmetrically along the plate, and its relative variation in the central region
of the plate decreases from around 3.1 at Ra = 5 × 105 to around 1.6 at Ra = 109.

In turbulent RBC, nearly all the imposed temperature difference occurs primarily in the
thin thermal BLs, whereas the bulk region remains mostly isothermal. The thermal BL
profiles in RBC have been compared with the Prandtl–Blasius–Pohlhausen (PBP) profile,
which was originally proposed for a laminar shear flow on a semi-infinite heated plate
(Landau & Lifshitz 1987; Shishkina et al. 2010), and systematic deviations with increasing
Ra and decreasing Pr have been reported (Shishkina & Thess 2009; Zhou et al. 2010,
2011; Shi et al. 2012; Stevens et al. 2012; Shishkina et al. 2015; Ovsyannikov et al. 2016;
Wang, He & Tong 2016; Shishkina et al. 2017; Wang et al. 2018). As the Prandtl–Blasius
BL theory is based on the two-dimensional (2-D) equations, the BL profiles obtained
from 2-D flows are more likely to be closer to the PBP profile. Van der Poel, Stevens
& Lohse (2013) compared the thermal BL profiles at the center of the horizontal plate
in two- and three-dimensional (3-D) RBC for Pr = 4.38 and Ra ≈ 108, and observed
that the BL profile in 2-D is indeed closer to the PBP profile compared to that in 3-D.
They credited the larger deviation from the PBP profile in 3-D RBC to increased plume
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activity compared to that in 2-D RBC. The agreement with the PBP profile has been
observed to improve if the profiles are averaged in a dynamical frame of reference based
on the instantaneous BL thicknesses (Zhou et al. 2010, 2011; Scheel et al. 2012; Shi
et al. 2012; Stevens et al. 2012). Nonetheless, persistent deviations even after using this
dynamic rescaling have been reported in 3-D RBC for moderate- and high-Pr RBC (Scheel
et al. 2012; Shi et al. 2012; Stevens et al. 2012). The local thermal BL profiles have not
been compared with the PBP profile in low-Pr RBC, except for the horizontally-averaged
profiles, which exhibit increasing deviation with decreasing Pr (Scheel & Schumacher
2016; Shishkina et al. 2017; Ching et al. 2019). Therefore, we measure the temperature
profiles at various horizontal positions in our low-Pr RBC and observe deviations from
the PBP profile everywhere, with the degree of deviation depending on the measurement
position.

As mentioned above, the properties of the near-wall temperature field have mostly
been studied in moderate- and high-Pr RBC, as the investigations of low-Pr convection
are inhibited by several experimental and numerical challenges. On the one hand, the
opaqueness of low-Pr fluids, such as mercury, gallium or liquid sodium, restricts the use of
optical measurement techniques (Cioni, Ciliberto & Sommeria 1997; Glazier et al. 1999;
Zürner et al. 2019). On the other hand, numerical investigations of low-Pr convection
require massive computational resources, as very small length and time scales need to be
resolved accurately to prudently study them (Pandey & Verma 2016; Scheel & Schumacher
2016; Schumacher et al. 2016; Scheel & Schumacher 2017; Shishkina et al. 2017;
Pandey et al. 2018a). Note that exploring convection in very high-Pr fluids also requires
significant computational resources, as the smallest length scale in the temperature field,
the Batchelor scale ηB, becomes much finer compared to the Kolmogorov length scale ηK ,
which is the smallest length scale in the velocity field (Silano, Sreenivasan & Verzicco
2010; Horn, Shishkina & Wagner 2013; van der Poel et al. 2013; Pandey, Verma & Mishra
2014; Shishkina et al. 2015, 2017). These two length scales are related by ηB = ηK/

√
Pr

(Shishkina et al. 2010), and thus, it is the Batchelor scale that needs to be resolved properly
to prudently study high-Pr convection. Thanks to growing computational resources,
properties of the temperature field in the BL region have been explored only recently in
low-Pr RBC (Scheel & Schumacher 2016; Schumacher et al. 2016; Scheel & Schumacher
2017; Shishkina et al. 2017).

Scheel & Schumacher (2016) computed the local thermal BL thicknesses in a cylindrical
cell of aspect ratio unity for Pr = 0.005, 0.021, 0.7 using the local vertical temperature
gradient at the horizontal plates and observed that the mean BL thicknesses are larger
when the regions near the sidewall are included. They also observed that the horizontally-
and temporally-averaged thermal BL profile for the lower Prandtl numbers deviates
from the corresponding profile for Pr = 0.7. Scheel & Schumacher (2017) computed the
displacement thicknesses and shape factors (defined respectively in (5.11) and (5.10) here)
of the mean temperature profiles and found that the displacement thicknesses increase
with decreasing Pr and the shape factors deviate from those of the corresponding PBP
profiles. Schumacher et al. (2016) and Scheel & Schumacher (2017) compared the mean
temperature profiles in low-Pr RBC with the fully turbulent BL profile, which exhibits
a logarithmic region, and observed that the region where the logarithmic scaling is
observed in the profiles increases with increasing Ra. Shishkina et al. (2017) proposed
an analytical form of the mean thermal BL profile by incorporating the effects of
turbulent fluctuations in the BL equations, and observed very good agreement with
their numerically computed profiles in a cylindrical RBC cell of aspect ratio unity for
Pr between 0.01 and 2547.9. The detailed horizontal structure of the thermal BL in
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low-Pr convection is, however, still unexplored and is the primary objective of this
paper.

In this work, we conduct direct numerical simulations (DNS) of RBC in a low-Pr fluid at
high Rayleigh numbers and study the structure of the thermal BL. We simulate convection
flows for Pr = 0.021, which is a typical Prandtl number for mercury or gallium, and
for Ra = 5 × 105 to Ra = 109 in a 2-D square box. Although turbulent flows in nature
are 3-D, the characteristics of some of them can be understood using 2-D or quasi-2-D
models. For instance, turbulent convective flows under the effects of a strong rotation or a
strong magnetic field behave similarly to quasi-2-D flows (Chandrasekhar 1981). In RBC
of aspect ratio around unity, the LSC is usually the strongest flow structure, and the BL
structure has primarily been explored along the direction of LSC (Lui & Xia 1998; Wang
& Xia 2003; Wagner et al. 2012). However, the plane of LSC does not remain fixed in 3-D
RBC, which poses an additional challenge in the study of the BL structure as one has to
be in the direction of LSC at every instant. Furthermore, we choose a 2-D geometry as (i)
almost all the BL theories have been developed for 2-D flows; (ii) the measurement probes
always remain in the plane of LSC, in contrast to RBC in a cylindrical cell, where the plane
of LSC exhibits reorientation (Wagner et al. 2012; Schumacher et al. 2016; Zürner et al.
2019); and (iii) high Rayleigh numbers can be achieved even with moderate computational
resources; the highest Ra explored in this work has not been achieved in 3-D DNS at this
Pr (Scheel & Schumacher 2017). Note that 2-D RBC has been utilized to better understand
some of the important phenomena in convection, e.g. the properties of flow reversals
(Sugiyama et al. 2010; Chandra & Verma 2013; Podvin & Sergent 2015; Pandey, Verma
& Barma 2018b; Zhang et al. 2020), the onset of the ultimate regime of convection (Zhu
et al. 2018), and the logarithmic temperature profiles (van der Poel et al. 2015; Zhu et al.
2018). We detect LSC in our simulations, which yields three different regions, namely,
the plume-ejection, shear-dominated and plume-impact regions, at the horizontal plates
(van der Poel et al. 2015; Schumacher et al. 2016; Zhu et al. 2018). Using our DNS data,
we explore the horizontal dependence of the local thermal BL thickness and find that
the local thicknesses in the ejection region are larger than those in the shear and impact
regions. We measure the temperature profiles in the aforementioned regions and observe
that they deviate from the PBP profile for all Ra. However, once the profiles in the shear
and impact regions are dynamically rescaled (Zhou & Xia 2010), they agree very well with
the PBP profile. We also find that due to growing turbulent fluctuations with increasing
Ra, the local temperature profiles in the ejection region become increasingly similar to the
fully turbulent thermal BL profile. However, the explored Rayleigh numbers are still not
large enough to yield a fully turbulent thermal BL.

2. Details of direct numerical simulations

Conservation of momentum, internal energy and mass lead to equations that govern
the dynamics of RBC (Chillà & Schumacher 2012; Verma et al. 2017; Verma 2018). The
non-dimensional governing equations under the Oberbeck–Boussinesq approximations are

∂u
∂t

+ u · ∇u = −∇p + T ẑ +
√

Pr
Ra

∇2u, (2.1)

∂T
∂t

+ u · ∇T = 1√
RaPr

∇2T, (2.2)

∇ · u = 0, (2.3)
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Run Ra Ne N Nbl Nu ± ΔNu NuεT Nuεu Re ± ΔRe
Δmax

ηK
ttotal (tf ) Ns

1 5 × 105 5184 7 180 5.2 ± 0.01 5.2 5.2 6012 ± 1 2.8 121 575
1a 5 × 105 52 900 3 100 5.2 ± 0.01 5.2 5.2 6011 ± 1 0.58 114 125
2 106 5184 7 170 6.3 ± 0.05 6.3 6.3 6806 ± 13 3.5 111 400
2a 106 52 900 3 90 6.3 ± 0.01 6.3 6.3 6775 ± 82 0.74 133 250
3 107 52 900 9 210 10.8 ± 0.01 10.8 10.7 22 473 ± 410 0.56 101 340
3a 107 52 900 5 120 11.1 ± 0.5 11.1 11.0 22 187 ± 110 0.98 132 400
4 108 52 900 11 215 19.6 ± 0.1 19.7 19.3 97 118 ± 1566 0.97 97 590
5 109 198 916 13 360 35.4 ± 1.6 36.6 33.9 432 930 ± 191 0.85 8.6 452
5a 109 198 916 7 190 36.2 ± 0.1 37.4 34.7 433 305 ± 420 1.5 14.4 717

TABLE 1. Important parameters of our DNS runs at a fixed Pr = 0.021 in a 2-D unit square
box. Here, Ne is the total number of spectral elements in the flow domain; N is the order of
Legendre interpolation polynomials within each element; Nbl is the number of grid points within
each thermal BL; Nu, NuεT and Nuεu are the globally- and temporally-averaged Nusselt numbers
computed using (2.5), (2.7) and (2.6), respectively; Re is the Reynolds number computed using
the root-mean-square (rms) velocity; Δmax/ηK is the ratio of the maximum grid spacing to
the Kolmogorov length scale in the flow; ttotal is the total integration time after reaching the
statistically steady state in units of the free-fall time tf ; and Ns is total number of equidistant
snapshots stored for the duration ttotal and used for the analyses in this paper. The error bars in
Nu and Re indicate the differences between the mean values computed over the first and second
halves of the datasets.

where u = (ux , uz), T and p are respectively the velocity, temperature and pressure fields
defined on a 2-D bounded domain. The above equations are non-dimensionalized using
H, ΔT , uf and tf as the length, temperature, velocity and time scales, respectively, where
uf = √

αgΔTH is the free-fall velocity and tf = H/uf is the free-fall time. The Rayleigh
number is defined as Ra = αgΔTH3/νκ , where α is the thermal expansion coefficient of
the working fluid, g is the acceleration due to gravity, and ΔT is the temperature difference
between the top and bottom plates separated by distance H.

We perform DNS in a 2-D square box of length L = H = 1 by integrating (2.1)–(2.3).
We employ the no-slip condition for the velocity field on all the boundaries. The horizontal
plates are isothermal and the sidewalls are adiabatic. We use a spectral element solver
NEK5000 (Fischer 1997; Scheel, Emran & Schumacher 2013) to simulate the RBC flow
for Pr = 0.021 for Ra = 5 × 105 to Ra = 109. The flow domain is divided into Ne spectral
elements, and the turbulence fields are expanded within each element using Nth-order
Legendre polynomials. Thus, we probe our flow domain with NeN2 mesh cells. We use
a denser grid near all the boundaries to capture the strong variations of the velocity
and temperature fields in the BLs. The important parameters of our simulations are
summarized in table 1.

We start our simulations from the conduction state with random perturbations and
wait until a statistically steady state is reached, i.e. when the time-averaged values of
the global quantities, such as the convective heat flux and total kinetic energy, do not
change significantly. For instance, we separately compute Nu and Re for the first and
second halves of the datasets and denote the difference between the mean values over the
two halves as ΔNu and ΔRe, respectively (Scheel & Schumacher 2014, 2016). In table 1,
we list ΔNu and ΔRe as the error bars in Nu and Re, which show that the mean values
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of the global quantities in our simulations do not vary by more than 5 % in the steady
state. Due to a larger time scale for the momentum diffusion compared to that for the
heat diffusion, the smallest structures in the velocity field in low-Pr convection are much
finer than the smallest structures in the temperature field (Pandey & Verma 2016; Scheel
& Schumacher 2016). Therefore, it is crucial to adequately resolve very fine spatial and
temporal Kolmogorov scales in low-Pr RBC. The Kolmogorov length scale is computed
as ηK = (ν3/εu)

1/4, where εu is the viscous dissipation rate, defined by

εu(x) = ν

2

(
∂ui

∂xj
+ ∂uj

∂xi

)2

. (2.4)

Here, ui is the component of the velocity in the xi-direction. For a well-resolved simulation,
the maximum grid spacing Δmax in the entire flow domain should be smaller than or
comparable to ηK and ηB. The Batchelor scale in our low-Pr flow is coarser than the
Kolmogorov scale. Therefore, we estimate the Kolmogorov scale using the globally- and
temporally-averaged viscous dissipation rate and list the ratio Δmax/ηK in table 1. We can
see that for most of our simulations Δmax/ηK is smaller than one, which indicates that the
smallest length scales in our flow are resolved adequately.

An important quantity in RBC is the Nusselt number, which is defined as the ratio of
the total heat transport to that occurring through conduction alone (Ahlers et al. 2009;
Chillà & Schumacher 2012; Verma 2018). The globally- and temporally-averaged Nusselt
number in our non-dimensional units is computed as

Nu = 1 +
√

RaPr〈uzT〉A,t, (2.5)

where 〈·〉A,t denotes the average over the entire simulation domain and the integration time.
The Nusselt number can also be computed using the exact relations in RBC, as follows
(Shraiman & Siggia 1990; Zhang, Zhou & Sun 2017b):

Nuεu = 1 + H4

ν3

Pr2

Ra
〈εu〉A,t, (2.6)

NuεT = H2

κ(ΔT)2
〈εT〉A,t. (2.7)

Here εT is the thermal dissipation rate, defined as the rate of loss of thermal energy per
unit mass, and computed as

εT(x) = κ

[(
∂T
∂x

)2

+
(

∂T
∂z

)2
]

. (2.8)

The requirement of resolving very fine Kolmogorov scales significantly increases the
computational effort needed to explore convection at low Prandtl numbers (van der Poel
et al. 2013; Schumacher et al. 2015; Pandey & Verma 2016; Scheel & Schumacher 2016;
Schumacher et al. 2016; Scheel & Schumacher 2017; Pandey et al. 2018a; Zwirner et al.
2020). Due to inadequate spatial resolution, the velocity and temperature derivatives,
and, in turn, the viscous and thermal dissipation rates, are inaccurately estimated. In
our spectral element simulations, this inadequacy of spatial resolution is reflected in
the vertical profiles of the dissipation rates, which do not vary smoothly at the element
boundaries (Scheel et al. 2013). Moreover, the Nusselt numbers obtained from the
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dissipation rates using (2.6)–(2.7) differ from Nu computed using (2.5). Therefore, the
adequacy of the spatial resolution can also be ensured by comparing the values of Nu
computed using the aforementioned three methods. In table 1, we list Nuεu and NuεT

along with Nu for all the simulations, and find that they agree reasonably well; the largest
difference appears for Ra = 109, which is due to a limited statistics for this simulation.
Furthermore, due to strong variations of the velocity and temperature fields within the
BLs, the number of mesh cells should be sufficient in these regions (Shishkina et al.
2010). Table 1 shows that the number of grid points within the thermal BL is huge for
all the Rayleigh numbers, thus indicating that the thermal BLs are resolved very well in
our simulations. In addition, we check the grid-sensitivity by performing simulations for
Ra equal to 5 × 105, 106, 107 and 109 with different spatial resolutions, and find that the
integral quantities, such as the Nusselt and Reynolds numbers, as well as the BL structure,
remain nearly the same, which also indicates that our flows are properly resolved.

3. Global transports and flow structure

3.1. Global quantities
As we study low-Pr convection in a 2-D domain, we first compare the scaling of the global
quantities in our simulations with those observed in 3-D RBC for Pr ≈ 0.021.

The Reynolds number Re, which is a measure of the turbulent momentum transport in
the flow, is another important global quantity in RBC. We compute Re in our flow as

Re =
√

Ra/Pr urms, (3.1)

with the rms velocity urms defined as

urms =
√

〈u2
x + u2

z 〉A,t. (3.2)

Important theoretical models in RBC that yield the scaling relations for global quantities
such as Nu and Re (Shraiman & Siggia 1990; Grossmann & Lohse 2000) assume the
existence of a large-scale structure of the order of the size of the cell. For instance,
the Shraiman & Siggia (1990) theory provides the scalings of Nu and Re by considering
the properties of (2-D) viscous and thermal BLs generated due to the shear applied by the
LSC. Similarly, the Grossmann–Lohse model (Grossmann & Lohse 2000) is based on the
existence of an LSC in the convection cell, which is characterized by a single velocity
scale. Thus, the above scaling theories are applicable in both 2-D and 3-D RBC (van der
Poel et al. 2013; Zhu et al. 2018). As the LSC also exists in our low-Pr 2-D RBC for all
the Rayleigh numbers, it is interesting to compare the global quantities in our flow with
those observed in 3-D RBC for similar governing parameters, where the LSC structure is
also observed.

We compute the Nusselt and Reynolds numbers using (2.5) and (3.1) for all our
simulation runs and plot them as a function of Ra in figure 1. To compare our Nu
and Re with those obtained in a 3-D RBC, we also show Nu and Re for Pr = 0.021
from Scheel & Schumacher (2017), who investigated low-Pr RBC in a cylindrical
cell of aspect ratio one from Ra = 3 × 105 to Ra = 4 × 108. Thus their governing
parameters are very similar to the parameters in the present study, and due to the
existence of a similar large-scale structure in both these flows, it is interesting to compare
the global heat and momentum transports between these flows. Figure 1(a) reveals
that Nu in our 2-D RBC increases as Raγ and agrees reasonably well with that of
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106

101

104

105

6 × 100

2 × 101

3 × 101

107 108 109 106 107 108 109

Ra Ra

ReNu

Present work

(0.20 ± 0.004)Ra0.25 ± 0.003

(1.47 ± 0.24)Ra0.60 ± 0.02

Scheel & Schumacher

(a) (b)

FIGURE 1. The Nusselt and Reynolds numbers as a function of Ra in our 2-D RBC (circles) and
those obtained by Scheel & Schumacher (2017) for Pr = 0.021 in a cylindrical cell of aspect ratio
unity (squares). A reasonably good agreement of Nu in both 2-D and 3-D RBC for Pr = 0.021
is observed.

Scheel & Schumacher (2017). The best fit to our data yields Nu = (0.20 ±
0.004)Ra0.25 ± 0.003, which is close to Nu = (0.13 ± 0.04)Ra0.27 ± 0.01 as observed by Scheel
& Schumacher (2017) for nearly the same range of Ra. The exponent γ = 0.25 in our
flow is smaller than the exponent γ ≈ 0.30 observed for Pr = 0.7 and Pr = 5.3 in 2-D
RBC with a similar flow configuration (Zhang et al. 2017b). The lower γ in our low-Pr
2-D RBC is similar to that observed in 3-D RBC, where γ also decreases with decreasing
Pr (Scheel & Schumacher 2017). Note that the Grossmann–Lohse theory (Grossmann &
Lohse 2000) also predicts a lower γ for convection in low-Pr fluids than for convection in
moderate- and high-Pr fluids.

We would like to point out that even the magnitudes of Nu obtained in our 2-D flows
are very similar to those obtained by Scheel & Schumacher (2017). This is remarkable and
indicates that, at least in the present range of parameters, the LSC is probably the most
dominant mode of heat transport in both the 2-D and the 3-D RBC. Van der Poel et al.
(2013) also compared Nu between 2-D and 3-D RBC with similar flow configurations
and noticed that the values of Nu at Ra = 108 are closer in 2-D and 3-D RBC for low
Prandtl numbers, whereas a stronger deviation was observed at moderate Prandtl numbers.
In an earlier study, however, Schmalzl, Breuer & Hansen (2004) observed that the integral
quantities in 2-D and 3-D RBC differ for low Prandtl numbers, whereas they are similar
for high Prandtl numbers (van der Poel et al. 2013; Pandey et al. 2016). However, the
sizes of the flow domains in the 2-D and 3-D cases were different, and a smaller Ra =
106 was used in Schmalzl et al. (2004). Interestingly, the scaling Nu ∼ Ra0.25 in our 2-D
RBC agrees well with the existing literature for Pr ≈ 0.021 in 3-D RBC, as γ ≈ 0.25
has been observed in various earlier investigations (Cioni et al. 1997; Glazier et al. 1999;
Grossmann & Lohse 2000; Pandey & Verma 2016; Zürner et al. 2019). Note, however, that
the structure and the characteristics of LSC are more complex in 3-D RBC, where it has
a quasi-2-D character and exhibits twisting and sloshing modes in addition to azimuthal
reorientations in a cylindrical cell (Wagner et al. 2012; Schumacher et al. 2016; Zwirner
et al. 2020), which are clearly absent in 2-D RBC. Therefore, the observed similarity
between the Nu–Ra scaling in our low-Pr convection and that in 3-D RBC requires a more
detailed investigation, which is beyond the scope of the present work.
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Figure 1(b) exhibits the Reynolds number in our simulations as a function of Ra, along
with the Re for Pr = 0.021 from Scheel & Schumacher (2017). It is clear that the Reynolds
numbers in our 2-D RBC are consistently higher than those in the 3-D RBC, for all Ra.
The best fit in the range of Ra from 106 to 109 yields Re = (1.47 ± 0.24)Ra0.60 ± 0.02, which
is different from the result Re ∼ Ra0.45 observed in 3-D RBC for Pr ≈ 0.021 (Pandey
& Verma 2016; Scheel & Schumacher 2017). Note that the magnitude of the Reynolds
numbers and the exponent in the Re–Ra scaling in 2-D RBC have also been observed to be
higher than those in 3-D RBC for moderate and high Prandtl numbers (van der Poel et al.
2013; Zhang et al. 2017b). Thus, the exponent in the Re–Ra scaling in 2-D RBC appears
to remain nearly the same (≈ 0.6) for a wide range of Prandtl numbers (van der Poel et al.
2013; Pandey et al. 2016; Zhang et al. 2017b). The larger magnitude of Re in our flow is
probably due to the more coherent motion of the thermal plumes in 2-D RBC than in 3-D
RBC (Zhang et al. 2017a).

To summarize, the scaling of Nu in our 2-D RBC, which is related to the scaling of the
mean thermal BL thickness, is very similar to that observed in 3-D RBC for Pr ≈ 0.021.
Therefore, the characteristics of the thermal BL in our 2-D convection may also be similar
to those in 3-D RBC for low Prandtl numbers.

3.2. Flow structure
The thermal plumes emitted from the top and bottom plates in an RBC cell of aspect ratio
around unity move coherently by forming an LSC, which we also detect in our simulations.
For all the Rayleigh numbers, we observe that the LSC rotates in a single direction for the
entire duration of the simulation and thus does not exhibit any flow reversal (Sugiyama
et al. 2010; Chandra & Verma 2013; Podvin & Sergent 2015; Pandey et al. 2018b; Zhang
et al. 2020). Specifically, in our simulations the LSC rotates in the clockwise direction for
Ra = 106, Ra = 108 and Ra = 109, and in the counterclockwise direction for Ra = 5 × 105

and Ra = 107. Therefore, for the consistency of our further analyses and discussions, we
transform the horizontal velocity and temperature fields for Ra = 5 × 105 and Ra = 107

by reflecting them about the plane x = L/2, which changes the direction of LSC. As a
result, the LSC rotates in the clockwise direction in all our simulations.

We exhibit the instantaneous temperature field for Ra = 106 to Ra = 109 in figure 2,
along with the instantaneous velocity vectors. We observe that because the Kolmogorov
and Batchelor length scales decrease with increasing Re or Ra, the finest thermal structures
in the flow, which are coarser for Ra = 106, become finer with increasing Ra. Also, the
thickness of the thermal plumes, which are emitted mostly from the bottom left and
top right parts of the plates, decreases with increasing Ra. This is because the width of
the thermal plumes is similar to the thickness of the thermal BLs (Zhou, Sun & Xia
2007; Shishkina & Wagner 2008), which decreases with increasing Ra. We also show
the time-averaged flow structure for Ra = 106 to Ra = 109 in figure 3, which reveals that
the mean LSC structure is octagonal (or circular) in our low-Pr RBC. The corner flow
structures become weaker and the LSC becomes increasingly squarish with increasing Ra
in our flow. The mean flow structure in our low-Pr RBC is different from the mean flow
structures in moderate- and high-Pr 2-D RBC for similar Rayleigh numbers, where the
LSC is usually observed to be aligned along a diagonal of the cell (Sugiyama et al. 2010;
Zhou et al. 2011; Chandra & Verma 2013; Zhang et al. 2017a,b).

Figure 2 also shows that, in addition to a large-scale structure, smaller structures are
also present in the flow. The strengths of the flow structures of various sizes, also known
as the flow modes, vary during the evolution of the flow due to the nonlinear interactions
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FIGURE 2. Instantaneous temperature (colours) and velocity (vector) fields in the entire
simulation domain for (a) Ra = 106, (b) Ra = 107, (c) Ra = 108 and (d) Ra = 109. Increasingly
finer thermal structures are observed in the flow with increasing Ra. Also, the primary flow
structure, i.e. the LSC, becomes stronger, whereas the secondary structures become weaker with
increasing Ra.

(Chandra & Verma 2013). See also the supplementary movies available at https://doi.org/
10.1017/jfm.2020.961, which show the temporal evolution of our low-Pr flow for each Ra.
We estimate the strengths of various flow modes by computing their kinetic energy content
by projecting the velocity field on a sine–cosine basis (Wagner & Shishkina 2013; Chen
et al. 2019) as follows:

ux(x, t) =
∑
m,n

ûx(m, n, t)[−2 sin(mπx) cos(nπz)], (3.3)

uz(x, t) =
∑
m,n

ûz(m, n, t)[2 cos(mπx) sin(nπz)]. (3.4)
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FIGURE 3. Time-averaged flow structure for (a) Ra = 106, (b) Ra = 107, (c) Ra = 108 and
(d) Ra = 109. The temperature (colours) and the velocity (vector) fields, averaged for the entire
duration of simulations, exhibit that the LSC structure gets increasingly developed, i.e. occupies
a larger fraction of the flow domain, with increasing Ra.

Here m, n ∈ I, i.e. they are positive integers. A flow mode with indices (m, n) represents
the flow structure with m horizontally-stacked rolls and n vertically-stacked rolls. Thus, the
LSC is represented by the (1, 1)-mode, and the smaller flow structures, such as the corner
rolls, are represented by modes with higher indices (Chandra & Verma 2013; Wagner &
Shishkina 2013; Pandey et al. 2018b; Chen et al. 2019). We exhibit the flow structures
corresponding to a few dominant modes in our flow in figure 4(a–d).

The amplitude of the modes is computed as ûx(m, n) = 〈−2ux(x) sin(mπx) cos(nπz)〉A
and ûz(m, n) = 〈2uz(x) cos(mπx) sin(nπz)〉A, and the kinetic energy contained in a mode
(m, n) is given by

E(m, n) = |ûx(m, n)|2 + |ûz(m, n)|2. (3.5)

We compute the time-averaged kinetic energy of various flow modes by considering
m, n = 1–10, and plot the fraction of the total kinetic energy E = 〈u2

x + u2
z 〉A,t contained

in a few strongest modes in our flow as a function of Ra in figure 4(e). Figure 4(e) reveals
that for Ra = 5 × 105, the flow is primarily dominated by one large-scale structure, which
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FIGURE 4. Flow structures corresponding to the (a) (1, 1)-mode, (b) (3, 1)-mode,
(c) (1, 3)-mode and (d) (2, 2)-mode. (e) Fraction of the total kinetic energy contained in these
flow modes as a function of Ra. In the turbulent regime, i.e. for Ra ≥ 107, the strength of the
LSC, which is represented by the (1, 1)-mode, increases with increasing Ra. Moreover, strong
corner flow structures, approximately represented by the (2,2)-mode, are present in the flow for
Ra = 106.

becomes weaker for Ra = 106 due to the growth of the smaller flow structures. This can be
confirmed from the supplementary movies and from figure 2(a), which show that strong
corner flow structures (represented approximately by the (2,2)-mode) are present in the
flow at Ra = 106. The strength of the LSC further decreases for Ra = 107 as even smaller
structures are generated due to the increased Reynolds number of the flow. However, for
Ra ≥ 107, the strength of the LSC (i.e. of the (1,1)-mode) grows and the total strength
of the small-scale structures decays with increasing Ra (Sugiyama et al. 2010; Chandra
& Verma 2013). This indicates that with increasing Ra the LSC structure gets more and
more squarish and increasingly fills the entire domain in our low-Pr RBC (Lui & Xia
1998; Niemela & Sreenivasan 2003).

Furthermore, we observe that the evolution of the flow for Ra = 5 × 105 is unsteady and
periodic time-dependent, while for Ra = 106 it is nearly periodic, i.e. some non-periodicity
sets in the flow. To depict this, we look at the time trace of the temperature field at a
fixed probe in the flow. Figure 5 shows a segment of the temperature trace at a probe
located at the centre of the bottom plate near the thermal BL height, i.e. at x0 = L/2,
z0 ≈ δ〈T〉. Figure 5(a) reveals that the temperature signal is periodic for Ra = 5 × 105,
whereas figure 5(b) shows that some non-periodicity appears in the signal for Ra = 106.
The temperature field at the probe for Ra ≥ 107 varies chaotically, indicating that the flow
for Ra ≥ 107 is turbulent (see also supplementary movies).

Unlike the flow in a pipe or channel, the RBC flow in a confined domain is not
homogeneous in the horizontal directions. Instead, the horizontal plates can be divided
into three distinct flow regions. For RBC in a domain of aspect ratio around unity, the
hot plumes are generated primarily near one of the sidewalls and ascend towards the cold
plate along that sidewall. Similarly, the cold plumes detaching from the top plate descend
towards the hot plate along the opposite sidewall. These two regions are called respectively
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FIGURE 5. A segment of the time traces of the temperature field at a fixed probe near the centre
of the bottom plate at the thermal BL height, i.e. at x0 = L/2, z0 ≈ δ〈T〉, for (a) Ra = 5 × 105,
(b) Ra = 106, (c) Ra = 107, (d) Ra = 108 and (e) Ra = 109 (taken from run 5a). Panel (a) shows
that the flow is periodic for Ra = 5 × 105, whereas the flow is nearly periodic for Ra = 106, as
indicated by the signal in panel (b). The temperature at the probe varies chaotically in (c–e),
indicating that the flow is turbulent for Ra ≥ 107.

the plume-ejection and plume-impact regions (van der Poel et al. 2015; Schumacher et al.
2016; Zhu et al. 2018). In between these two regions, there exists a shear-dominated
region, where the LSC is nearly parallel to the horizontal plates. We also depict these
regions in our flow in a caricature in figure 6. Due to this specific flow morphology
of RBC in a confined domain, the thermal and viscous BL profiles have often been
studied in the shear-dominated central region (Zhou et al. 2010; van der Poel et al. 2013;
Schumacher et al. 2016; Wang et al. 2018). In this study, however, we compute the local
temperature profiles in the aforementioned three regions and find that the BL profiles
in the shear and impact regions are similar, and differ from the profiles in the ejection
region.
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FIGURE 6. A caricature exhibiting the plume-ejection, shear-dominated and plume-impact
regions at the top and bottom plates in our low-Pr 2-D RBC. An instantaneous snapshot of
the temperature field for Ra = 109 is used to depict these regions.

4. Thermal boundary layer thicknesses

In this section, we discuss the scaling of the thermal BL width computed using the local
as well as the horizontally-averaged temperature profiles.

4.1. Local boundary layer thicknesses
We observe for all Ra that the central region near the plates is dominated by shear
generated due to LSC, and therefore, the flow properties at x ≈ L/2 are similar to those
in a shear flow. The locations x = L/4 and x = 3L/4 at the bottom plate in our flow
approximately correspond to the plume-ejection and plume-impact regions; i.e. the hot
plumes are ejected from the bottom plate mostly at x ≈ L/4 and the cold plumes impact
at the bottom plate mostly at x ≈ 3L/4 (see figure 2). The situation is reversed at the top
plate; i.e. the physical location of the ejection region at the bottom corresponds to the
impact region at the top, and vice versa. (See also figure 6, where we have summarized
these flow regions at the plates in a caricature.) We have analysed the properties of the
temperature profiles measured at several locations in the flow. However, for clarity, we
will mainly discuss the profiles measured at x = L/4, x = L/2 and x = 3L/4, as these
positions at the bottom plate typically correspond to the ejection, shear and impact regions,
respectively. We would like to point out that the large-scale structures in our flow fluctuate
strongly in time (see supplementary movies), which causes the flow properties at the
aforementioned locations to be occasionally influenced by the properties from the other
regions. Therefore, we inevitably sample a mixed statistics due to the use of an immovable
observational window in the flow.

We show the time-averaged temperature profiles at x = L/4, x = L/2 and x = 3L/4
for Ra = 106 to Ra = 109 in figure 7. To reduce the scatter, we average the profiles
in a tiny neighbourhood around the aforementioned locations. Specifically, the profile
at x0 is averaged in the region corresponding to x0 − 0.02L ≤ x ≤ x0 + 0.02L, where
x0 = L/4, L/2, 3L/4. Figure 7 shows that the profiles at x = L/2 are nearly symmetric
about the midplane, as x ≈ L/2 corresponds to the shear-dominated region at both the
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FIGURE 7. Time-averaged temperature profiles measured at different horizontal positions for
(a) Ra = 106, (b) Ra = 107, (c) Ra = 108 and (d) Ra = 109. For all Ra, profiles at x = L/2 are
symmetric about the midplane, whereas those at x /= L/2 do not exhibit symmetry, because of
the differing flow properties at the opposite plates at the particular physical location. In all the
panels, blue curves near the bottom plate are similar to green curves near the top plate, and vice
versa.

top and bottom plates. The profiles at x /= L/2, however, are not symmetric about the
midplane. For instance, we can see in figure 7(d) for Ra = 109 that the profile near the
bottom (top) plate at x = L/4 (x = 3L/4), which corresponds to the ejection region,
approaches the bulk temperature slowly compared to the profiles in the other two regions.
This is because the hot (cold) plumes that are ejected from the bottom (top) plate in the
ejection region carry their thermal energy for a longer time and travel farther in the bulk
region before losing their heat due to thermal diffusion. Moreover, the profile near the
bottom (top) plate at x = 3L/4 (x = L/4), which corresponds to the impact region, looks
similar to that at x = L/2 in the shear region. Figure 7 shows that the local profiles for
all the Rayleigh numbers exhibit similar behaviour. Thus, to conclude, the temperature
profiles in the impact and shear regions are similar, whereas the temperature profile in the
ejection region differs from them. Therefore, from now on, we will discuss the properties
of the temperature profiles based on whether they belong to the impact, ejection or shear
region, and not based on their physical location in the flow domain.

We compute the local thermal BL width δT(x) using the slope method (Zhou et al. 2011;
Scheel et al. 2012; Wagner et al. 2012), where δT(x) is estimated as the distance from the
plate where the slope of the temperature profile drawn at the plate meets the horizontal
line passing through the first minimum of the profile. In figure 8, we demonstrate this
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FIGURE 8. Instantaneous local temperature profiles (a,b) and their magnifications near the
bottom plate (c,d) to demonstrate the determination of the instantaneous local thermal
BL thickness using the slope method. Panels (a) and (c) show a profile measured in the
shear-dominated region at x0 = L/2 for Ra = 108; panels (b) and (d) show a profile measured in
the plume-ejection region at x0 = L/4 for Ra = 109. Position of the intersection of the horizontal
line drawn at the first minimum with the slope at the plate yields δT(x0, t). Panels (a) and (b)
show that the temperature at the first minimum may differ from Tbulk = ΔT/2. Inset in (c,d)
indicates the linear variation of temperature in the vicinity of the bottom plate.

method of determining the BL thickness from the instantaneous temperature profiles
measured at two different positions at the plate. Figure 8 shows that the profiles do not
always approach the bulk temperature monotonically, and the first minimum may differ
from the bulk temperature. We also compute the instantaneous BL thicknesses using the
local vertical temperature gradient at the plate as δT(x) = 0.5/|∂T(x)/∂z|z=0, which is
equivalent to computing the BL thickness using the slope method with the horizontal
line drawn at the mean temperature ΔT/2. We find that the mean (and most of the time
instantaneous) BL thicknesses determined using this method are nearly the same as those
obtained using the first minimum method. However, we prefer the first minimum method
to include the instantaneous variation of the profiles, as the temperature in the bulk region
may instantaneously differ from ΔT/2.

To explore the structure of the thermal BL, we compute the local BL thicknesses δ〈T〉(x)
at both the plates using the time-averaged temperature profiles. Figure 9 shows the local
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FIGURE 9. (a) Variation of the normalized local BL thicknesses along the horizontal plate
computed using the time-averaged profiles. Except very close to the sidewalls, the local
thicknesses δ〈T〉(x) are larger in the ejection region and decrease as the impact region is
approached; i.e. the thickness grows in the direction of LSC. (b) Magnification of (a) exhibiting
the BL structure in the central region away from the sidewalls, which shows that the BL structure
is nearly independent of Ra in the impact and shear regions.

BL width averaged over the top and bottom plates and normalized with the BL width at
x = L/2. Note that due to the interchange of the ejection and impact regions, local BL
thickness at a position x in figure 9 is the average of δ〈T〉(x) at the bottom and δ〈T〉(L − x)

at the top plate. Figure 9 reveals that the BL structure is similar for all the explored Ra in
our low-Pr RBC. We observe that δ〈T〉(x) is the largest near the sidewalls and decreases
as one moves towards the central region. Moreover, the local thicknesses are larger in the
ejection region than in the other two regions, as indicated in figure 9(a). We also find
that the values of δ〈T〉(x) in the impact region are a bit smaller than those in the shear
region. To show the BL structure away from the sidewalls, we plot δ〈T〉(x) for 0.2L ≤ x ≤
0.8L in figure 9(b), which reveals that the BL structure is nearly independent of Ra in the
impact and shear regions. In the ejection region, however, the variation of the normalized
BL thickness depends on Ra. We quantify the relative variation of the BL thicknesses
exhibited in figure 9(b) as

R = [δ〈T〉(x)]max − [δ〈T〉(x)]min

[δ〈T〉(x)]min
, (4.1)

where [δ〈T〉(x)]max and [δ〈T〉(x)]min are respectively the maximum and minimum BL
thicknesses over the central region, i.e. in the region 0.2L ≤ x ≤ 0.8L at the plate. We
find R = 3.1, 1.9, 1.5, 1.0, 1.6 respectively for Ra = 5 × 105, 106, 107, 108, 109, which
indicates that R generally decreases with increasing Ra in our flow. Our data at Ra = 109

do not follow the decreasing trend very well, which might be due to a limited statistics
available for this Ra. A few more simulations at intermediate Rayleigh numbers would
probably yield a better picture of the BL structure in the ejection region in our low-Pr
flow.

According to the Prandtl–Blasius BL theory, the BL thickness grows as
√

x in the
downstream direction for a laminar BL, whereas it grows linearly with x for a turbulent
BL (Schlichting & Gersten 2004). In our 2-D RBC, the hotter or colder fluid impinges
on the plate in the impact region and then moves along the plate towards the ejection
region. We thus also observe a growth of the BL thickness in the downstream direction,
i.e. in the direction of the LSC on the plate. However, δ〈T〉(x) in our low-Pr RBC does not
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FIGURE 10. (a) Local thermal BL thicknesses averaged over both the plates vary as Ra−β(x) in
the ejection, shear and impact regions, with β(x0) being larger in the ejection region. The black
dashed line indicates the scaling of the BL thickness δ〈T〉 computed using the horizontally- and
temporally-averaged profiles (shown in figure 12b). If these scalings hold for the larger Rayleigh
numbers, the blue line will intersect the red or green line at Ra∗ ≈ 8 × 1012, beyond which the
thermal BL might become uniform at the plate. (b) Variation of the local scaling exponent β(x)
along the plate obtained from the BL thicknesses averaged over the top and bottom plates. The
dashed horizontal line indicates the scaling exponent of the mean BL thickness. The direction of
LSC and the ejection, shear and impact regions are also indicated.

follow either of the aforementioned scalings. Possible reasons for a different BL structure
in our flow might be the assumptions in the Prandtl–Blasius BL theory, which are not
totally satisfied in our 2-D convection flow. For example, the BLs in our flow are not
entirely laminar and the turbulent fluctuations within the BL region become stronger
with increasing Ra (see figure 16b). We moreover observe that the BL structure is not
symmetric about the centre of the plate, which is qualitatively similar to observations made
for high-Pr 2-D RBC (Werne 1993; Zhou et al. 2011). Our observations of the BL structure
in our low-Pr convection are also qualitatively similar to those of Wagner et al. (2012) in a
cylindrical cell of aspect ratio one, where the BL width increases in the direction of LSC,
as well as to the observations of Scheel & Schumacher (2014) that the local BL widths are
larger in the plume-ejection region. Wagner et al. (2012), however, observed a nearly linear
growth of the BL thickness along the direction of LSC. Our results are also different from
those of Lui & Xia (1998), who studied the thermal BL structure in a cylindrical cell of
aspect ratio one filled with water and observed that, in the plane of LSC, the BL width is
minimum at the centre of the plate and increases symmetrically towards the sidewalls. The
aforementioned differences between the BL structure in our 2-D RBC and those observed
in 3-D RBC, therefore, indicate that the quasi-2-D nature and other characteristics of LSC
in 3-D RBC also affect the BL structure.

We compute the local thermal BL thicknesses δ〈T〉(x0) at x0 = L/4, x0 = L/2 and
x0 = 3L/4 using the time-averaged profiles exhibited in figure 7 and find that δ〈T〉(x0)

decreases with increasing Ra as Ra−β(x0), with the exponent β(x0) depending on the
position at the plate. In figure 10(a), we plot δ〈T〉(x0) averaged over the corresponding
regions at the top and bottom plates as a function of Ra, which reveals that the BL
thicknesses in the impact and shear regions are similar for all Ra. This is consistent with
the fact that the profiles in the shear and impact regions exhibited in figure 7 are also
similar. The best fit yields that δ〈T〉(x0)/H varies as (1.4 ± 0.2)Ra−0.23 ± 0.01 in the shear
region and as (1.5 ± 0.1)Ra−0.24 ± 0.01 in the impact region. The local BL thicknesses in
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FIGURE 11. Vertical profiles of the fraction Fdiff (x0) of the total heat flux carried by the thermal
diffusion in (a) the ejection region and (b) the shear region (solid curves) and impact region
(dash-dot curves) within the BL. The values of Fdiff (x0) at the plate are smaller in the ejection
region than in the shear and impact regions, and with increasing Ra, Fdiff (x0) is generally
increasing in the ejection region and decreasing in the other two regions.

the ejection region, however, are larger than those in the other two regions for all Ra, and
scale as (8.9 ± 1.1)Ra−0.30 ± 0.02.

We further explore the variation of the local exponent β(x) at the plate by computing it
from the local BL thicknesses. Figure 10(b) exhibits the local exponents β(x) computed
from the averaged BL thicknesses at both the plates in the central region far from the
sidewalls. We observe that the β(x) values are larger in the ejection region than in the shear
and impact regions, where they are nearly the same. Note that the thermal BL thickness
is related to the diffusive heat flux at the plate. To understand the position-dependent
variation of the properties of the thermal BL, we compute the diffusive fraction of the
total heat flux as Fdiff (x0) = (H∂〈T〉t(x0)/∂z)/(NuΔT) in the ejection, shear and impact
regions. Figure 11(a) shows Fdiff (x0) as a function of z/δ〈T〉 in the ejection region, while
figure 11(b) shows Fdiff (x0) in the shear region (solid curves) and the impact region
(dash-dot curves). We observe for all Ra that the values of Fdiff (x0) at the plate and in
its vicinity in the ejection region are smaller than those in the shear region, which in turn,
are a bit smaller than those in the impact region. This is because of a larger temperature
gradient in the impact region due to impinging cold (hot) plumes at the bottom (top) plate.
As the BL width is inversely proportional to the vertical temperature gradient (or the
diffusive flux) at the plate, this implies that the local BL thickness in the ejection region
is larger than the thicknesses in the shear and impact regions, which is consistent with the
BL structure from figure 9.

Furthermore, we observe that Fdiff (x0) in the vicinity of the plate is generally increasing
in the ejection region, but decreasing in the shear and impact regions, with increasing Ra.
This means that with increasing Ra, the BL width in the ejection region decreases faster,
whereas the BL widths in the other two regions decrease slower, compared to the mean BL
thickness, which agrees with the observations of figure 10. Therefore, for moderately large
Rayleigh numbers in our low-Pr flow, the difference between the diffusive contributions
from various regions is decreasing, or, in other words, the variation of the diffusive
heat flux over the plate becomes weaker with increasing Ra. The reason for this weaker
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variation is the increasing strength of LSC with increasing Ra in our flow (Lui & Xia
1998), as we have observed that the (1,1)-mode representing the LSC structure becomes
stronger as Ra increases (see figure 4e). A stronger LSC causes the cold (hot) plumes
impinging on the bottom (top) plate in the impact region to move a larger distance along
the plate before their heat is lost due to thermal diffusion. This causes an increasingly
uniform temperature gradient along the plate with increasing Ra. If the observed trend in
our flow continues to hold for larger Ra, the local heat flux in the ejection region might take
over those in the other two regions for large enough Ra. This picture would be consistent
with the findings of Zhu et al. (2018) in 2-D RBC for Pr = 1, Ra > 1011, that the local
heat flux at the plate is larger in the ejection region. Figure 11 additionally shows that the
variation of Fdiff (x0) for z ≥ 0.4δ〈T〉 becomes nearly independent of Ra in the shear and
impact regions, whereas Fdiff (x0) generally decreases with increasing Ra in the ejection
region. This, in turn, suggests that away from the plate but within the BL region, the
turbulent fraction of the heat flux in the ejection region increases with increasing Ra.
Combining the above scenarios, our results suggest that in the whole BL the local heat
flux in the ejection region becomes stronger with increasing Ra in our low-Pr convection.

Thus, the difference between the local thicknesses in the ejection region and the other
two regions decreases with increasing Ra, and, if the present trends hold also for the
larger Rayleigh numbers, the local thicknesses for sufficiently large Ra might become
independent of the horizontal position. We can estimate this asymptotic Ra by finding the
intersection point of the blue line with either the red or the green line in figure 10. We find
that these lines will intersect at Ra∗ ≈ 8 × 1012, and therefore, the thermal BL structure in
our low-Pr convection might become uniform for Ra ≥ Ra∗. If we take the error bars into
account, Ra∗ may vary between 5 × 109 and 2 × 1019, and thus the predicted range of Ra∗

is very wide. Note that the estimated Ra∗ is very large and would probably correspond to
the ultimate regime of convection for this Prandtl number (Scheel & Schumacher 2017).
Scheel & Schumacher (2017) used various methods to predict the onset of the ultimate
regime in a cylindrical cell of aspect ratio one and found interestingly that the onset for
Pr = 0.021 may occur between Ra = 5 × 109 and Ra = 1018. Lui & Xia (1998) and Wang
& Xia (2003) studied the thermal BL structure in water for high Rayleigh numbers and
also observed that in the direction of LSC the variation of the local BL thickness with the
horizontal position becomes weaker with increasing Ra.

In the next section, we discuss the scaling of the mean BL thickness at the plates.

4.2. Mean boundary layer thickness
In RBC, the horizontally-averaged temperature varies primarily in the thin thermal
BLs and remains almost constant in the bulk region. We compute the horizontally-
and temporally-averaged temperature 〈T〉x,t for all Ra and plot them in figure 12(a),
which shows that the mean temperature in the bulk is indeed approximately a constant.
Figure 12(a) shows the profiles averaged over the bottom and top halves of the domain,
as they are symmetric about the midplane (z = 0.5H) due to the Oberbeck–Boussinesq
convection in the present case. We observe that the profiles approach the bulk temperature
increasingly faster as Ra increases, thus indicating that the diffusive region, where the
vertical temperature gradient is significant, shrinks with increasing Ra.

We compute the mean thermal BL width δ〈T〉 from 〈T〉x,t using the slope method,
and we plot the average thickness of the top and bottom BLs as a function of Ra
in figure 12(b), which shows that the average thickness decreases with increasing Ra
as δ〈T〉/H = (2.8 ± 0.1)Ra−0.26 ± 0.004. As previously mentioned, the mean thermal BL
thickness is related to Nu by δ〈T〉/H = 0.5/Nu. This is because the diffusive contribution to
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FIGURE 12. (a) Horizontally- and temporally-averaged temperature profiles for all the Rayleigh
numbers exhibit that the bulk fluid is mixed well and Tbulk ≈ ΔT/2 = 0.5. (b) Mean thickness
of the top and bottom thermal BLs decreases as Ra−0.26. We show the thickness δ〈T〉 computed
from the time-averaged profiles as well as the time-averaged thickness 〈δT(t)〉 computed from the
instantaneous profiles, with the error bars in 〈δT(t)〉 indicating the standard deviation of δT(t).
Mean thermal BL thicknesses computed from the relation δ〈T〉 = 0.5H/Nu are also indicated as
blue triangles. Dashed vertical lines in (a) indicate δ〈T〉 for all Ra with the corresponding colours.

the total heat transport decreases with increasing Nu, and thus, the region where diffusive
processes are dominant shrinks as Nu increases. Therefore, we also show the BL thickness
computed as 0.5/Nu in figure 12(b), and observe excellent agreement with the thickness
computed using the slope method. We also compute the thermal BL widths δT(t) from the
instantaneous horizontally-averaged temperature profiles and average them to obtain the
mean width 〈δT(t)〉, which is also plotted in figure 12(b). We observe that 〈δT(t)〉 is slightly
larger than δ〈T〉 for all Ra, but its variation with Ra is nearly the same. The best fit yields
〈δT(t)〉/H = (2.9 ± 0.1)Ra−0.25 ± 0.01, which agrees very well with δ〈T〉 as computed from
the time-averaged profiles.

The BLs in our low-Pr RBC are not completely laminar and exhibit fluctuations for all
the Rayleigh numbers. Therefore, we compute the rms temperature fluctuations from the
mean temperature profile 〈T〉x,t as

σT(z) =
√

〈(T − 〈T〉x,t)2〉x,t (4.2)

and plot σT(z) averaged over the top and bottom halves of the domain in figure 13(a).
We observe that the rms fluctuations increase with increasing distance from the plate
and attain their maximum value near the edge of the thermal BL (Deardorff & Willis
1967; Wang & Xia 2003; Zhou & Xia 2013). This is due to the generation and perpetual
emission of thermal plumes inside the thermal BL. Note that the thickness of the plumes is
similar to the thickness of the thermal BL, and their temperature is higher than that of the
ambient fluid within the bottom thermal BL (Zhou et al. 2007; Shishkina & Wagner 2008).
Therefore, the decrease of the horizontally-averaged temperature with increasing distance
from the bottom plate is primarily due to the decreasing temperature of the ambient fluid,
as the plumes almost entirely retain their heat or temperature within the BL region. Thus,
the disparity between the temperatures of the ambient fluid and the plumes increases with
increasing distance from the bottom plate, which causes the increase of σT(z) within
the thermal BL. A similar difference between the temperatures of the cold plumes and
the ambient fluid in the top thermal BL causes the increase of σT(z) near the top plate.
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FIGURE 13. (a) Vertical profiles of the rms temperature fluctuations averaged over the top and
bottom halves of the domain for all Ra attain their maximum value near the edge of the thermal
BL and then decay monotonically in the bulk region towards the centre. Dashed vertical lines
with the corresponding colours indicate the mean BL thicknesses δ〈T〉. (b) Profiles normalized
with their maximum value as a function of the normalized vertical distance collapse reasonably
well within the thermal BL region.
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FIGURE 14. (a) Thermal BL thickness extracted from the temperature variance profiles scales
with Ra similarly to the scaling of δ〈T〉(Ra), which is indicated by a black dashed line. (b) The
maximum amplitude of the rms temperature fluctuations for Ra ≥ 106 decreases very weakly
with increasing Ra.

After attaining the maximum, the rms fluctuations decline monotonically as the central
region of the flow is approached. This is because the plumes are not able to retain their
temperature due to increased turbulent mixing outside the BL region.

Therefore, it is clear from figure 13(a) that the position of the maximum of σT also yields
a measure of the BL thickness (Wang & Xia 2003; Zhou & Xia 2013). We observe that both
δσ (the position corresponding to the maximum of σT) and the maximum amplitude of the
fluctuations decrease with increasing Ra. We therefore show the normalized temperature
variance profiles σT/(σT)max as a function of the normalized distance z/δσ in figure 13(b),
and find that the normalized profiles collapse reasonably well within the BL region, i.e.
up to z ≈ δσ (Zhou & Xia 2013). However, the profiles do not seem to collapse outside
the BL region. This indicates that δσ is indeed a characteristic length scale within the
thermal BL region. We plot δσ as a function of Ra in figure 14(a) and observe that δσ
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FIGURE 15. BL profiles of the horizontally- and temporally-averaged temperature Θ deviate
from the PBP profile (black dashed curve in both the panels) for all the Rayleigh numbers.
However, all the profiles agree well with those computed from (5.6) (orange dashed curves) with
the coefficients provided in table 2.

Run Ra a b c aS

1 5 × 105 0.92 3.77 9.47 0.94
2 106 1.32 2.75 2.64 1.58
3 107 1.47 3.06 2.41 2.16
4 108 1.42 3.29 2.86 2.43
5 109 1.79 3.85 2.22 3.07

TABLE 2. The coefficients a, b, c are obtained by fitting the horizontally- and
temporally-averaged profiles with (5.6). These coefficients are used to compute the profiles
exhibited as orange dashed curves in figure 15. The coefficient aS is obtained by fitting
|κturb/κ| = a3

Sξ
3 in the region ξ = 0 to 0.05; it differs from the coefficient a.

decreases according to a power law, except for the data point at Ra = 5 × 105, which does
not seem to follow the scaling very well. Weaker temperature fluctuations due to smaller
Ra might be the reason for this discrepancy. The best fit for Ra ≥ 106 yields δσ /H =
(2.3 ± 0.1)Ra−0.25 ± 0.005, which is close to the scaling of δ〈T〉 (shown as a black dashed
line in figure 14a). The maximum amplitude of the temperature fluctuations is plotted as
a function of Ra in figure 14(b), which again shows that the data point at the lowest Ra
does not follow the trend for higher Ra. The best fit for Ra ≥ 106 yields (σT)max/ΔT =
(0.19 ± 0.003)Ra−0.02 ± 0.002. Thus, (σT)max/ΔT decreases very weakly with increasing Ra
in our 2-D RBC.

Note that (σT)max indicates the disparity between the temperatures of the ambient fluid
and the plumes at the edge of the thermal BL. It is observed in RBC that the approach of
the horizontally- and temporally-averaged profile towards the bulk temperature becomes
slower with increasing Ra (see figure 15 for the mean thermal BL profiles in our flow)
(Scheel & Schumacher 2016; Shishkina et al. 2017). Therefore, with increasing Ra, the
temperature of the ambient fluid at the edge of the thermal BL becomes slightly closer
to the temperature at the plate, which means that the contrast between the temperatures
of the plumes and the ambient fluid at the BL height decreases, as the temperature of
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the plumes remains nearly the same within the BL. This decreasing disparity at the edge
of the BL with increasing Ra yields a decreasing (σT)max in figure 14(b). Moreover, we
find that (σT)max/ΔT ≈ 0.14 for Ra = 107 in our 2-D RBC, which is larger than the value
(σT)max/ΔT ≈ 0.11 observed by Scheel & Schumacher (2016) for Pr = 0.021, Ra = 107

in a cylindrical cell of aspect ratio one. This difference can be explained by the observation
of van der Poel et al. (2013), who noted that the thermal BL profile in 2-D RBC is closer
to the PBP profile than that in 3-D RBC for similar parameters. We also observe this
when we compare the mean thermal BL profile for Ra = 107 in our flow (see figure 15)
with the corresponding profile in figure 8 of Scheel & Schumacher (2016). Thus, the
aforementioned temperature disparity at the edge of the thermal BL is smaller in 3-D
RBC, which results in a smaller (σT)max in 3-D than in 2-D RBC. A weakly decreasing
(σT)max in our 2-D RBC indicates that the aforementioned temperature disparity at the
thermal BL height decreases slowly, or, in other words, the deviation of mean thermal BL
profile from the PBP profile increases slowly in 2-D RBC with increasing Ra.

5. Thermal boundary layer profiles

We compare the temperature profiles in the BL region with the PBP profile, which is
obtained by solving the following equations (Shishkina et al. 2010; Scheel et al. 2012):

d3Ψ

dξ 3
+ 1

2
Ψ

d2Ψ

dξ 2
= 0, (5.1)

d2Θ

dξ 2
+ 1

2
PrΨ

dΘ

dξ
= 0, (5.2)

with the boundary conditions

Ψ (0) = 0,
dΨ

dξ
(0) = 0,

dΨ

dξ
(∞) = 1, (5.3a–c)

Θ(0) = 0, Θ(∞) = 1. (5.4a,b)

Here, Ψ is the stream function, whose derivative yields the horizontal velocity (i.e. ux =
dΨ/dξ ), and Θ is the normalized temperature, defined as

Θ = Tbot − T
Tbot − T∞

, (5.5)

where Tbot = 1 is the temperature at the bottom plate and T∞ is the temperature in the
bulk region. The similarity variable ξ is defined as z/l, with l being the characteristic
length scale of the thermal BL, which is δ〈T〉 in the present case. We solve (5.1) and (5.2)
together with the prescribed boundary conditions (5.3a–c) and (5.4a,b) using the shooting
method to obtain Θ and Ψ as a function of ξ .

We compare the temperature profiles measured at various horizontal positions at
the plate with the PBP profile. However, we first compare the horizontally- and
temporally-averaged profiles, as they have been observed to show stronger deviations from
the PBP profile (Shishkina & Thess 2009).

5.1. Mean boundary layer profiles
To compare our temperature profiles with the PBP profile, we transform T(z) near the
bottom plate to obtain Θ by using T∞ = Tbulk = 0.5 in (5.5). We similarly transform T(z)
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near the top plate as Θ = (T − Ttop)/(T∞ − Ttop), where Ttop = 0 is the temperature at
the top plate. We compare the horizontally- and temporally-averaged profiles 〈T〉x,t near
the plate by plotting Θ obtained by using T = 〈T〉x,t in (5.5) and in the aforementioned
relation for Θ near the top plate as a function of ξ = z/δ〈T〉 in figure 15. We further average
over the top and bottom halves of the domain due to the top-bottom symmetry of our
flow. We observe that the profiles for all the Rayleigh numbers deviate from the PBP
profile, and the deviation increases with increasing Ra. Moreover, the approach to the
bulk temperature becomes slower as Ra increases. The reason for the deviation is that the
RBC flow in a bounded domain does not satisfy the criteria for the PBP profile due to
the presence of other effects, such as the emission of thermal plumes, buoyancy, pressure
gradient, turbulent fluctuations, sidewalls, etc. Therefore, modified BL profiles in RBC
have been suggested by incorporating these additional effects in the laminar BL equations
(Shi et al. 2012; Shishkina et al. 2015; Ovsyannikov et al. 2016; Shishkina et al. 2017;
Ching et al. 2019). Shishkina et al. (2017) and Ching et al. (2019) recently proposed a
model of the horizontally- and temporally-averaged temperature profiles in the BL region
by incorporating the effects of turbulent fluctuations in the laminar BL equations. They
proposed that the temperature profile could be fitted with an equation of the form

Θ(ξ) = 1
b

∫ bξ

0

[
1 + 3a3

b3
(η − arctan (η))

]−c

dη, (5.6)

where the coefficients a, b, c can be obtained by fitting the temperature profile with this
equation. The equation (5.6) was obtained by considering the variation of the turbulent
diffusivity κturb near the plate. Shishkina et al. (2015) observed that |κturb/κ| can be
approximated as a3

Sξ
3 in the vicinity of the bottom plate, and as ξ in the logarithmic region

far away from the plate.
Using our DNS data, we compute the turbulent diffusivity, defined as

κturb(x) = − 〈u′
zT

′〉t

∂〈T〉t/∂z
, (5.7)

where u′
z and T ′ are the fluctuations in the vertical velocity and the temperature,

respectively, from the time-averaged fields, and are defined as follows:

uz(x, t) = 〈uz〉t(x) + u′
z(x, t), (5.8)

T(x, t) = 〈T〉t(x) + T ′(x, t). (5.9)

We plot the horizontally-averaged |κturb/κ| normalized by ξ 3 in figure 16(a) and observe
that κturb indeed scales as ξ 3 near the plate for all the Rayleigh numbers. However, the ξ 3

scaling is satisfied only up to ξ ≈ 0.05, beyond which the scaling exponent decreases for
all Ra. We obtain aS for all the Rayleigh numbers by fitting |κturb/κ| = a3

Sξ
3 up to ξ = 0.05

(Shishkina et al. 2015). Figure 16(a) also shows that the prefactor aS, which is a measure of
the strength of turbulent fluctuations, increases with increasing Ra. We fit the temperature
profiles shown in figure 15 with (5.6) and obtain the coefficients a, b, c. We then compute
the theoretical profiles using (5.6) with the obtained coefficients a, b, c, and display them
in figure 15. The figure shows that the temperature profiles obtained from our 2-D DNS
can be described well by (5.6) with the proper choice of the coefficients a, b, c, which are
summarized in table 2.
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FIGURE 16. (a) Vertical profiles of the horizontally-averaged turbulent diffusivity |κturb/κ| vary
as ξ3 in the vicinity of the bottom plate for all Ra, which is consistent with observations in
3-D RBC for different Prandtl numbers (Shishkina et al. 2015; Wang et al. 2018). (b) Variation
of |κturb|/|κ + κturb|, signifying the fraction of heat transport due to turbulent fluctuations,
indicates that the turbulent heat flux becomes increasingly important within the BL region with
increasing Ra.

5.2. Local boundary layer profiles
We now compare the local BL profiles in the ejection, impact and shear regions with
the PBP profile. To do this, we compute the time-averaged profiles 〈T(x0)〉t at x0 =
L/4, L/2, 3L/4 and transform them using (5.5) to get the normalized temperature profile
Θ(ξ). In figure 17, we plot the scaled temperature Θs = Θ(ξ)/Θ(ξ = 3) as a function
of ξ = z/δ〈T〉(x0); i.e. ξ is defined using the local BL thickness. We use this additional
normalization because Θ does not saturate to unity in many of our profiles, and therefore,
it may be normalized with a value of Θ in the region far from the BL, such as with
Θ(ξ = 3) (Zhou et al. 2011; Stevens et al. 2012).

Figure 17 shows that the scaled BL profiles Θs(ξ) agree with the PBP profile only in
a region very close to the bottom plate, i.e. up to ξ ≈ 1/2. For Ra = 106 (figure 17a),
the profiles in the impact and ejection regions deviate from the PBP profile for ξ � 0.5.
However, Θs(ξ) in the shear region agrees with the PBP profile relatively well over the
entire range of ξ . Moreover, Θs(ξ) in the ejection region for Ra = 106 exhibits overshoot,
which is due to the growth of the corner roll in the impact region on the same plate.
The overshoot in a profile indicates that the local temperature gradient is larger than
that of the PBP profile. To investigate the reason for this overshoot, we look at the
instantaneous normalized profiles in the ejection region and find that not all the profiles
exhibit overshoot. We observe that just before the occurrence of the overshoot the size of
the corner roll in the impact region, i.e. near the opposite sidewall, grows. As a result,
the impinging plumes are diverted towards the ejection region. This causes an increase
of the local temperature gradient in the ejection region, which is reflected as overshoot
in the corresponding instantaneous temperature profile. As the flow evolution is nearly
periodic for Ra = 106 (see figure 5b and supplementary movies), the aforementioned
growth of the corner vortices occurs regularly, and thus, the overshoot is also present in the
time-averaged profile. We do not observe the overshoot in the profiles for Ra ≥ 107, as the
corner flow structures become weaker for Ra > 106 in our low-Pr RBC. For Ra ≥ 107, we
find that Θs(ξ) deviates from the PBP profile in all three regions. Additionally, the values
of Θs(ξ) in the shear and impact regions agree well with each other for the almost entire
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FIGURE 17. BL profiles of the scaled temperature Θs = Θ(ξ)/Θ(ξ = 3) in the ejection, shear
and impact regions for (a) Ra = 106, (b) Ra = 107, (c) Ra = 108 and (d) Ra = 109. Deviation
from the PBP profile (indicated as a black dashed curve in each panel) can be observed in nearly
all the profiles. The deviation δS of the shape factor of each profile from that of the PBP profile
is also indicated with the corresponding colour.

range of ξ for Ra ≥ 107, which is consistent with the observation from figure 7. We find
that the profiles measured in the ejection region deviate most from the PBP profile.

The quality of agreement of the BL profiles with the PBP profile can be quantified by
computing the shape factor of the profiles (Schlichting & Gersten 2004), which is defined
as

S = δd/δm, (5.10)

where δd and δm are respectively the displacement and the momentum thicknesses of the
profiles, and are computed as

δd =
∫ ∞

0

(
1 − Θ(ξ)

[Θ(ξ)]max

)
dξ, (5.11)

δm =
∫ ∞

0

(
1 − Θ(ξ)

[Θ(ξ)]max

)(
Θ(ξ)

[Θ(ξ)]max

)
dξ. (5.12)

The shape factor of the PBP profile depends on the Prandtl number, and for Pr = 0.021 the
shape factor is SPBP = 2.47. Note that the shape factor of a profile indicates its tendency
to quickly approach its asymptotic value; the larger the shape factor the faster the profile
approaches its asymptotic value, and vice versa (Zhou et al. 2010; Scheel et al. 2012).
We compute the shape factors of the profiles shown in figure 17 and indicate the deviation
δS = S − SPBP from the shape factor of the PBP profile with the corresponding colours in
the same figure. Note however that, to compute δd and δm of the profiles, we perform
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integration only up to ξ = 3. We observe that δS is negative for most of the profiles
in figure 17, except for Θs(ξ) in the ejection region for Ra = 106, which exhibits the
overshoot. We can see from figure 17 that the values of δS for the profiles in the shear
and impact regions do not differ much for Ra ≥ 107, thus quantitatively indicating their
similarity.

Zhou & Xia (2010) observed that the BL profiles of the horizontal velocity in a high-Pr
RBC (water) agree better with the Prandtl–Blasius velocity profile if they are measured
in a time-dependent frame of reference relative to the instantaneous BL width and then
averaged in time. This dynamic rescaling was also applied to the thermal BL profiles for
moderate and high Prandtl numbers, and it was observed that the agreement of the rescaled
profiles with the PBP profile becomes better (Zhou et al. 2010, 2011; Scheel et al. 2012;
Shi et al. 2012; Stevens et al. 2012). Zhou et al. (2011) studied the structure of the BLs
in a 2-D square box for Pr = 4.4 and Ra = 108 and found that the dynamically rescaled
thermal BL profiles at nearly all the horizontal locations agree better with the PBP profile
than do the corresponding unscaled profiles. Here, we want to test whether this rescaling
works for thermal BL profiles in a low-Pr convection.

We thus construct a dynamically varying frame of reference as

ξ ∗(t) = z/δT(x0, t), (5.13)

and average the temperature profiles in this varying frame of reference as

Θ∗(ξ ∗) = 〈Θ(t, z | z = ξ ∗(t)δT(x0, t)〉t. (5.14)

This enables us to average the temperature field at the same relative distances compared to
the instantaneous BL thicknesses, which fluctuate strongly in our low-Pr convection. We
again compute the scaled profiles, defined as Θ∗

s (ξ ∗) = Θ∗(ξ ∗)/Θ∗(ξ ∗ = 3), and exhibit
them in figure 18, which reveals that the dynamically rescaled profiles in the shear and
impact regions agree very well with the PBP profile for all the Rayleigh numbers. The
profiles in the ejection region, however, deviate even after the dynamic rescaling is applied,
except for Ra = 107, where the agreement is rather good.

We again compute the deviation δS∗ = S∗ − SPBP for the rescaled profiles and indicate
them in figure 18. We find for all the profiles that |δS∗| < |δS|, thus indicating that
the agreement with the PBP profile becomes better if the profiles are measured
in the dynamically rescaled frame (Zhou & Xia 2010). Furthermore, |δS∗| for the profiles
in the ejection region increases with increasing Ra, which indicates that the deviations in
the thermal BL profiles in this region become stronger as Ra increases. Like the values of
δS, the values of δS∗ for the profiles in the shear and impact regions are very similar (and
closer to zero) for all the Rayleigh numbers.

5.3. Turbulent or not?
We have observed in figure 7 that the profiles in the ejection region approach the bulk
temperature slowly compared to those in the shear and impact regions. On the one hand,
the rescaled profiles in the shear and impact regions are very similar to the PBP profile,
which indicates that the fraction of the BL corresponding to these regions is laminar
in the scalingwise sense. On the other hand, the profiles in the ejection region deviate
conspicuously from the PBP profile, which implies that the local thermal BL properties
in the ejection region differ from those of a laminar BL. Note that the shape factor of
a turbulent BL profile is 1.28, which is smaller than SPBP for Pr = 0.021. Thus, the
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FIGURE 18. Dynamically rescaled thermal BL profiles for (a) Ra = 106, (b) Ra = 107, (c) Ra =
108 and (d) Ra = 109. The rescaled profiles in the shear and impact regions agree well with the
PBP profile (black dashed curve), whereas those in the ejection regions deviate from it. The
deviation of the shape factor δS∗ for each profile is indicated with the corresponding colour.

increasing negative deviation in the shape factors of our profiles in the ejection region,
which does not vanish even after the application of the dynamic rescaling, indicates that
the ejection region becomes increasingly turbulent with increasing Ra. As the turbulent
BL profiles exhibit a logarithmic scaling (Ahlers, Bodenschatz & He 2014; van der Poel
et al. 2015; Schumacher et al. 2016; Zhu et al. 2018), we plot the local profiles near
the bottom plate on a semilogarithmic scale to explore the logarithmic behaviour of our
profiles. Time-averaged profiles in the ejection region, i.e. at x0 = L/4, are exhibited
in figure 19(a), where we observe in the profile for Ra = 109 that there exists a region
between z ≈ 0.01 and z ≈ 0.07 which can be fitted as 〈T(x0, z)〉t = A log(z) + B. The best
fit yields A = −0.30 ± 0.001 and B = 0.23 ± 0.001; the resulting best fit curve is shown
as an orange dashed curve in figure 19(a). Figure 19(b) shows the profiles in the impact
region, i.e. at x0 = 3L/4. We do not show the profiles in the shear region as they are very
similar to the profiles in the impact region (see figure 7).

Figure 19 reveals that the other profiles do not exhibit a discernible logarithmic region
as the profile in the ejection region for Ra = 109 does. The logarithmic behaviour of
the profiles can be detected more clearly by looking at a diagnostic function D(z) =
dT/d log z, which should exhibit a plateau in the region where the temperature profile
exhibits a logarithmic scaling (Shishkina & Thess 2009; Wagner et al. 2012; Zhou &
Xia 2013; van der Poel et al. 2015). The insets of figure 19 show the diagnostic function
D(x0, z) = d〈T(x0)〉t/d log z for the corresponding profiles, where we can see that no clear
plateau can be observed in D(x0, z), except for Ra = 109 in the ejection region, where a
plateau region exists for δ〈T〉 � z � 3δ〈T〉. This range roughly corresponds to the observed
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FIGURE 19. Time-averaged temperature profiles in (a) the ejection region at x0 = L/4 and (b)
the impact region at x0 = 3L/4 on a semilogarithmic scale. The profile for Ra = 109 in (a)
exhibits a discernible logarithmic region, and the resulting best fit curve is indicated as an orange
dashed curve. Insets show the diagnostic function for the corresponding profiles as a function of
the normalized vertical distance from the plate. A plateau region in D(x0, z) in (a) for Ra = 109

can be observed for δ〈T〉 � z � 3δ〈T〉.

logarithmic range in the corresponding profile. We observe that D(x0, z) in figure 19(a) in
the region δ〈T〉 � z � 3δ〈T〉 is not a constant but fluctuates weakly around a mean value,
which is due to a limited statistics available for this simulation. A longer simulation, and
thus, a longer averaging would reduce the observed fluctuations in the plateau region.

Our observation that the temperature profile for Ra = 109 in the ejection region shows
a discernible logarithmic range is similar to the observations of van der Poel et al. (2015),
who observed logarithmic temperature profiles in the ejection region in 2-D RBC for
Pr = 1, Ra = 5 × 1010. However, the slope |A| of our profile is much larger than the slope
of the logarithmic temperature profile in the bulk region observed by Ahlers et al. (2014)
and van der Poel et al. (2015). Moreover, the logarithmic region observed here overlaps
with the buffer layer and differs from the logarithmic temperature profile in the bulk of the
domain (Ahlers et al. 2014; van der Poel et al. 2015).

Turbulent fluctuations in the BL region become stronger with increasing Ra, and fully
turbulent BLs would prevail for sufficiently strong thermal forcing (Grossmann & Lohse
2000; Scheel & Schumacher 2017). However, for moderately strong thermal forcing the
BLs are transitional: a fraction of them is turbulent, and the turbulent fraction grows
continuously with increasing Ra (Scheel & Schumacher 2016; Schumacher et al. 2016).
The strength of turbulent fluctuations within the BL region can be investigated by looking
at the turbulent fraction of the total heat flux, which we compute as follows (Wagner et al.
2012):

Fturb(x) = 〈u′
zT

′〉t(x)

−κ
∂〈T〉t

∂z
(x) + 〈u′

zT ′〉t(x)

= κturb(x)

κ + κturb(x)
. (5.15)

We plot the horizontally-averaged turbulent fraction Fturb(z) = |κturb(z)|/|κ + κturb(z)| for
all the Rayleigh numbers in figure 16(b), which reveals that Fturb(0) = 0, as the heat
flux is purely diffusive at the horizontal plates. As one moves from the plate towards
the bulk region, turbulent fluctuations start to contribute to the total heat transport, and
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FIGURE 20. Time-averaged temperature profiles in the inner wall units measured in (a) the
ejection region at x0 = L/4 and (b) the impact region at x0 = 3L/4. As in figure 19(a), the
profile for Ra = 109 in panel (a) exhibits a logarithmic scaling for 85 ≤ z+ ≤ 580 with a slope
αf ≈ 0.96, which is less than that of a fully turbulent BL (shown as a black dashed line in both
the panels). This indicates that the BLs in our low-Pr convection flow are not yet fully turbulent.

their contribution increases with increasing distance from the plate. Moreover, at the same
relative distance from the plate, Fturb(z) increases with increasing Ra. We observe that near
z ≈ δ〈T〉 more than 50 % of heat is transported due to turbulent fluctuations for Ra ≥ 106.
Thus, the turbulent fluctuations are not negligible in the BL region in our low-Pr RBC.

Finally, we compare the local temperature profiles in our low-Pr RBC with the fully
turbulent thermal BL profile, which exhibits a logarithmic region in the overlap layer
(Yaglom 1979). To do this, we plot the profiles in inner wall units (Schumacher et al.
2016; Scheel & Schumacher 2017) by computing the local dimensionless friction velocity
and friction temperature as

uτ (x0) =
(

Pr
Ra

)1/4
〈[(

∂ux

∂z

)2
∣∣∣∣∣

x0,z=0

]1/4〉
t

, (5.16)

Tτ (x0) =
〈

1

uτ (x0, t)
√

RaPr

∂T
∂z

∣∣∣∣
x0,z=0

〉
t

, (5.17)

where the derivatives at x0 in the above equations are averaged in the region x0 − 0.02L ≤
x ≤ x0 + 0.02L, with x0 = L/4, L/2, 3L/4. The resulting local viscous length scale of the
BL is given by

zτ (x0) =
√

Pr
Ra

1
uτ (x0)

. (5.18)

To compare our profiles in the inner wall units, we define a temperature θ as

θ(z) = (Tbot − T(z))/ΔT (5.19)

and plot the rescaled temperature 〈θ+(x0, z)〉t = 〈θ(x0, z)〉t/Tτ (x0) as a function of z+ =
z/zτ (x0) in figure 20. The rescaled profiles in the ejection region are exhibited in
figure 20(a), where we observe that the profiles become more log-like with increasing
Ra, and for Ra = 109, 〈θ+(x0, z)〉t exhibits a discernible logarithmic scaling in some range
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of z+. Following Yaglom (1979) and Kader (1981), the logarithmic temperature profile in
the fully turbulent BL should scale as

〈θ+(z)〉 = α ln z+ + β(Pr), (5.20)

with α = 2.12 and

β(Pr) = (3.8Pr1/3 − 1)2 − 1 + 2.12 ln Pr. (5.21)

We fit the profile for Ra = 109 in the ejection region with (5.20) for z+ in the range 85–580,
which corresponds to the fitting range shown in figure 19(a). The best fit yields a slope
αf = 0.96 ± 0.001, which is less than α = 2.12 for the fully turbulent thermal BL. As
is evident from figure 20, the other profiles do not exhibit a clear logarithmic region;
therefore we do not fit them with (5.20). Thus, our results indicate that the BLs in our 2-D
RBC for Pr = 0.021 are transitional and the highest Ra achieved in this work is still not
enough to yield a fully turbulent thermal BL.

6. Conclusions

In this paper, we explored the structure of the thermal BL in low-Pr RBC in a 2-D
square box by performing DNS for Pr = 0.021 and Rayleigh numbers up to 109, which
has never been achieved before. Interestingly, we found that the Nusselt numbers in our
simulations agree reasonably well with those obtained by Scheel & Schumacher (2017) for
Pr = 0.021 in a cylindrical cell. This similarity in Nu implies that the scaling of the local
thermal BL thickness observed in our 2-D RBC, as well as its horizontal structure, might
also be similar in 3-D convection for low Prandtl numbers. The LSC yields three distinct
flow regions at the horizontal plates, and we found that the properties of the thermal BL
are different in these regions. The temperature profiles measured in the plume-ejection
region approach the bulk temperature slowly compared to the profiles in the shear and
impact regions. We observed that the thermal BL profiles in all regions deviate from
the PBP profile, and the strongest deviations are found in the ejection region. This is
because the turbulent fluctuations are stronger in the ejection region, and therefore, the
local BL properties in this region deviate the most from the properties of a laminar BL.
The dynamically rescaled profiles (Zhou & Xia 2010) in the shear and impact regions
agree well with the PBP profile for all the Rayleigh numbers, suggesting that these regions
in the BL are laminar in the scalingwise sense. The rescaled profiles in the ejection region,
however, exhibit persistent deviations (Shi et al. 2012) for all the Rayleigh numbers in our
study. By comparing our profiles with the turbulent BL profile, we concluded that the
thermal BLs in our low-Pr convection are transitional and become increasingly turbulent
with increasing Ra (Schumacher et al. 2016).

The horizontal structure of the thermal BL in low-Pr convection has not previously been
investigated, and therefore, to do this, we computed the time-averaged local BL thicknesses
δ〈T〉(x) at the top and bottom plates. Our findings revealed that the δ〈T〉(x) are larger in the
ejection region and decrease as the impact region is approached. Thus, the local thermal
BL thickness in our 2-D RBC grows in the downstream direction. However, δ〈T〉(x) in our
flow grows neither as

√
x as in a laminar BL nor as x as in a turbulent BL (Schlichting

& Gersten 2004). We moreover found that δ〈T〉(x) at every horizontal location decreases
as Ra−β(x), with the exponent β(x) depending on the position at the plates. We found that
the local exponents β(x) in the ejection region are larger than those in the impact and
shear regions. As δ〈T〉(x) is inversely proportional to the diffusive heat flux at the plate, we
found that the local diffusive heat flux at the plate is smaller in the ejection region than in
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the shear and impact regions. Moreover, the diffusive flux at the plate generally increases
in the ejection region but decreases in the other two regions with increasing Ra, which
implies that the local BL thicknesses scale differently with Ra compared to the scaling
of mean BL thickness. A position-dependent exponent β(x) implies that the horizontal
variation of the BL thickness becomes weaker with increasing Ra, which is due to the
growing strength of LSC with increasing Ra in our flow. We estimated that δ〈T〉(x) might
be the same throughout the plate for Ra ≥ 8 × 1012 in our low-Pr convection, provided
that the observed scalings of the local BL thicknesses hold also for the larger Ra.

Our observation of the position-dependent properties of the temperature field near the
isothermal plates in low-Pr convection is consistent with a similar picture found in high-
and moderate-Pr convection (van der Poel et al. 2015; Zhu et al. 2018; He & Xia 2019).
However, as the temporal evolution of the thermal BL is correlated with that of the viscous
BL (Zhou et al. 2010; Shi et al. 2012), for improved understanding it is crucial to study
the properties of viscous BLs in our low-Pr RBC. This is currently underway and will be
reported elsewhere.
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