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Abstract. In this paper, the general theory developed by Vladimirov and Moffatt
[J. Fluid Mech. 283, 125–139 (1995)] and Vladimirov et al. [J. Fluid Mech. 329, 187–
205 (1996); J. Plasma Phys. 57, 89–120 (1997)] is extended to nonlinear (Lyapunov)
stability for axisymmetric (invariant under rotations around fixed axis) solutions
of the ideal incompressible magnetohydrodynamic flows for a situation of arbitrary
flow and a poloidal field. The appropriate norm is the sum of magnetic and kinetic
energies and the mean square vector potential of the magnetic field.

1. Introduction
In this paper we extend the approach initiated in Vladimirov and Moffatt (1995,
Part I) and Vladimirov et al. (1996, Part II) and then continued in Vladimirov et
al. (1997, Part III). In Part I, new variational principles for incompressible mag-
netohydrodynamic (MHD) flows were established and a frozen-in field (generalized
vorticity) was constructed. The existence of this frozen-in field has consequences for
the construction of Casimirs, the integral invariants that play an essential role in
the derivation of sufficient conditions for stability (or stability criteria) for steady
solutions {U,H} of the governing equations. In Part II, stability criteria for two-
dimensional flows were established. In Part III, a helpful analogy between axisym-
metric MHD flows and flows of a stratified fluid in the Boussinesq approximation
was demonstrated. They used Arnold’s (1965a, b) theory to obtain linear and non-
linear stability criteria. Arnold’s approach to problems of stability is summarized
by Saffman (1990, Sec. 14.2). Similar variational principles have been developed
for the treatment of the stability of magnetostatic equilibria of perfectly conduct-
ing fluids (Bernstein et al. 1958). These variational principles were applied to the
stability of force-free magnetic fields by Voslamber and Callebaut (1962). Earlier
theories (Frieman & Rotenberg 1960; Moffatt 1989; Friedlander and Vishik 1990)
have considered virtual displacements under which the magnetic field is frozen, but
have not addressed the problem of identifying the second frozen field that (together
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with the magnetic field) determines the structure and evolution of perturbations
from a given steady state. Vladimirov et al. (1997) considered first ‘isomagnetic’
perturbations under which the magnetic field is a ‘frozen field’, and they obtained
sufficient conditions for nonlinear stability of axisymmetric ideal incompressible
MHD flows. They then obtained sufficient conditions for nonlinear stability to ar-
bitrary axisymmetric perturbations (that are not ‘isomagnetic’) for a particular
class of steady MHD flows, namely for the purely poloidal field and flow (where
toroidal components of both the velocity and the magnetic field are absent).

In this paper, we consider a more general situation, namely arbitrary flow and a
poloidal field (all the components of the velocity field are non-zero, while the toroidal
component of the magnetic field is absent) and we establish nonlinear stability
criteria for this class of MHD flows. The difficulty here centers on the problem
of appropriate continuation of functions describing the steady state beyond their
initial range of the definition. This difficulty is addressed in detail and successfully
overcome. The paper is organized as follows.

In this section, the governing equations of ideal incompressible MHD flows are
introduced. In Sec. 2, we consider nonlinear stability of the steady state, i.e. Lya-
punov stability with respect to a norm based on the total energy and the mean
square vector potential of the perturbed magnetic field. We establish nonlinear sta-
bility criterion for arbitrary axisymmetric perturbations for arbitrary flow and a
poloidal field. In Sec. 3, we establish further nonlinear stability criteria for arbi-
trary flow and poloidal field. For the axisymmetric situation, the components of
the fields {U,H} are functions of r and z (in cylindrical polar coordinates (r, φ, z)).
This case is of a particular importance in the context of plasma confinement devices
(e.g. tokamak and reversed-field pinch). Section 4 concludes with a summary.

We conclude this introduction with a statement of the governing equations. Con-
sider an incompressible, homogenous, inviscid and perfectly conducting fluid con-
tained in a domain Ω with fixed boundary ∂Ω. Let u(x, t) be the velocity field, h(x, t)
the magnetic field (in Alfvén velocity units), p(x, t) the pressure field (divided by
density) and j(x, t) = ∇ ∧ h the current density in the fluid. Then the governing
equations are

Du ≡
(
∂

∂t
+ u ·∇

)
u = −∇p + j ∧ h, (1.1)

Lh ≡ ∂h
∂t
−∇ ∧ (u ∧ h) = 0, (1.2)

∇ · u =∇ · h = 0. (1.3)

The operator L is a form of Lie derivative, and the equation Lh = 0 means that
the h-field is frozen in the fluid, the flux of h through any closed material circuit
being conserved. We suppose that the boundary ∂Ω is perfectly conducting, and
the magnetic field h does not penetrate through Ω. The boundary conditions are
then

n · u = 0, n · h = 0 on ∂Ω, (1.4)

where n is the outward unit normal to ∂Ω.
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2. General perturbations and stability criterion for arbitrary flow and a
poloidal field
Suppose that u and h are invariant under rotations around a fixed axis. It is natural
to use cylindrical polar coordinates (r, φ, z), z being a coordinate along the axis
symmetry. Let Ω denote the meridional section of this domain, with boundary ∂Ω
on which n = (n1, 0, n2) is the normal. For simplicity, we suppose that Ω is simply
connected.

We now decompose u and h into poloidal and toroidal parts:

h(r, z, t) = b + rρ2eφ, b =
1
r

∂ρ

∂r
ez − 1

r

∂ρ

∂z
er, (2.1a)

u(r, z, t) = v +
ρ1

r
eφ, v =

1
r

∂ψ

∂r
ez − 1

r

∂ψ

∂z
er, (2.1b)

where ψ(r, z, t) is the stream function of the (r, z) components of u, ρ(r, z, t) is the
magnetic flux function of the (r, z) components of h, ρ1(r, z; t) is the toroidal com-
ponent of u multiplied by r, and ρ2(r, z; t) is the toroidal component of h divided
by r.

Consider now steady-state solutions of (1.1)–(1.3) in the form

v = V(r, z) =
1
r

∂Ψ
∂r

ez − 1
r

∂Ψ
∂z

er, ρ1 = R1(r, z), p = P (r, z), (2.2a)

b = B(r, z) =
1
r

∂A

∂r
ez − 1

r

∂A

∂z
ez − 1

r

∂A

∂z
er, ρ2 = R2(r, z), ρ = A(r, z), (2.2b)

Capital letters will be used throughout for properties of the steady state whose
stability is to be investigated.

An analogy between axisymmetric MHD flows and flows of a stratified fluid in
the Boussinesq approximation was noted by Vladimirov et al. (1997). They proved
that

V = Ψ′(A)B, Ψ′(A) ≡ dΨ
dA

, (2.3)

Ψ′(A)R2 − R1

r2 = G1(A), Ψ′(A)R1 − r2R2 = G2(A), (2.4)

and the generalized Grad–Shafranoy equation

Ψ′(A)Q− J −G′1(A)R1 −G′2(A)R2 + Ψ′′(A)R1R2 = G(A), (2.5)

where G1(A), G2(A) and G(A) are some functions, and

Q ≡ −
[

1
r

∂

∂r

(
1
r

∂Ψ
∂r

)
+

1
r2

∂2Ψ
∂z2

]
, J ≡ −

[
1
r

∂

∂r

(
1
r

∂A

∂r

)
+

1
r2

∂2A

∂z2

]
. (2.6)

Consider the steady state (2.2) when all components of the velocity are non-zero
while the toroidal component of the magnetic field is identically zero:

V = Ψ′(A)B, ρ1 = R1(r, z), ρ2 = R2(r, z) = 0, ρ = A(r, z). (2.7)

The functions G1(A), G2(A) and G(A) (given by (2.4) and (2.5)) are

G1(A) = −R1

r2 , G2(A) = Ψ′(A)R1,

G(A) = Ψ′(A)Q− J −G′1(A)R1

 . (2.8)
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Now consider finite-amplitude perturbations of the steady solution (2.7), given by

ψ(r, z, t) = Ψ(r, z) + ψ̃(r, z, t), v(r, z, t) = V(r, z) + ṽ(r, z, t),

ρ(r, z, t) = A(r, z) + ρ̃(r, z, t), b(r, z, t) = B(r, z, t) + b̃(r, z, t),

}
(r, z) ∈ Ω,

(2.9)

with

ṽ · n = 0, ρ̃ = 0 on ∂Ω. (2.10)

Let

A− ≡ min
Ω

A(r, z), A+ ≡ max
Ω

A(r, z),

and let Λ be the closed interval [A−, A+]. Let us now introduce the notation

ν = (ν1, ν2, ν3, ν4, ν5, ν6, ν7) ≡
(

1
r

∂ψ̃

∂r
,

1
r

∂ψ̃

∂z
,

1
r

∂ρ̃

∂r
,

1
r

∂ρ̃

∂z
, ρ̃,

ρ̃1

r
, rρ̃2

)
. (2.11)

To measure the deviation of the perturbed solution (2.9) from the unperturbed one,
we shall exploit the norm (or, more accurately, the seminorm) given by

‖ν‖2 ≡
∫

Ω
νiνi dτ =

∫
Ω

[
1
r2 (∇ψ̃)2 +

1
r2 (∇ρ̃)2 + ρ̃2 +

1
r2 ρ̃

2
1 + r2ρ̃2

2

]
dτ. (2.12)

We adopt the standard Lyapunov definition of stability: the steady state (2.2) is
stable if for any ε > 0 there exists δ > 0 such that ‖ν(0)‖ < δ ⇒ ‖ν(t)‖ < ε. For the
subsequent analysis, it is convenient to define the following functions: for (r, z) ∈ Ω
and a ∈ Λ

σ(a) ≡ Ψ′(a), σ′(a) ≡ Ψ′′(a), σ′′(a) ≡ Ψ′′′(a), (2.13a)

α(r, z; a) ≡ −Q(r, z)σ′(a) +G′(a) +R1(r, z)G′′1 (a), (2.13b)

β(a) ≡ G′1(a), (2.13c)

γ(r, z; a) ≡ −R1(r, z)σ′(a) +G′2(a), (2.13d)

µ1(ξ, σ) ≡ 1− ξ
(1− ξ)2 − σ2 , µ2(ξ, σ) ≡ σ

(1− ξ)2 − σ2 , (2.13e)

with G1(A), G2(A) and G(A) given by (2.8). It is useful to introduce the notation,
related to these functions,

α−(r, z) ≡ min
a∈Λ
{α(r, z; a)}, α+(r, z) ≡ max

a∈Λ
{α(r, z; a)},

β0 ≡ max
a∈Λ

|β(a)|, γ0(r, z) ≡ max
a∈Λ
|γ(r, z; a)|,

 (r, z) ∈ Ω,

(2.14a)

σ0 ≡ max
a∈Λ
|Ψ′(a)|, σ′0 ≡ max

a∈Λ
|Ψ′′(a)|. (2.14b)

Vladimirov et al. (1997) considered first a particular class of finite-amplitude per-
turbations (‘isomagnetic’ perturbations) with general initial data for the stream
function ψ̃(r, z; 0) and with initial data for the flux function such that

A− 6 ρ(r, z; 0) = A(r, z) + ρ̃(r, z; 0) 6 A+, (2.15)

and they obtained a criterion for nonlinear stability (see Vladimirov et al. (1997),
p. 104). Then they obtained sufficient conditions for nonlinear stability with respect
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to arbitrary initial perturbations (without restriction (2.15) on the initial data) for
the purely poloidal field and flow (R1 = R2 = 0; see Vladimirov et al. 1997, p. 109).
In our case here, the toroidal component of the velocity field is non-zero (R1� 0).

Let α−0 and α+
0 be the minimum and maximum values of the function α(r, z; a)

and let γ̄0 be the maximum value of the function |γ(r, z; a)| for all (r, z) ∈ Ω and
a ∈ Λ, i.e.

α−0 ≡ min
(r,z)∈Ω,a∈Λ

α(r, z; a) = min
(r,z)∈Ω

α−(r, z),

α+
0 ≡ max

(r,z)∈Ω,a∈Λ
α(r, z; a) = max

(r,z)∈Ω
α+(r, z),

 (2.16a)

γ̄0 ≡ max
(r,z)∈Ω,a∈Λ

|γ(r, z; a)|. (2.16b)

We obtain the following nonlinear stability criterion.

Criterion 2.1. Suppose that:

(i) the function Ψ(A) defined by (2.7) is a twice continuously differentiable function
for all A ∈ Λ;

(ii) the functions G(A) and G2(A) (defined by (2.8)) are continuously differentiable,
whileG1(A) (defined by (2.8)) is twice continuously differentiable for all A ∈ Λ;

(iii) there exist constants ε− and ε+ such that for a ∈ Λ and (r, z) ∈ Ω,

0 < ε− < 1, ε+ > 2− ε−, |Ψ′(a)| < 1− ε−, (2.17a)

α−0 > ε− + µ1(ε−, σ0)
(
σ′20 |B|2 + r2β2

0 +
γ̄2

0

r2

)
+ 2µ2(ε−, σ0)γ̄0β0, (2.17b)

α+
0 < ε+ + µ1(ε+, σ0)

(
σ′20 |B|2 + r2β2

0 +
γ̄2

0

r2

)
− 2µ2(ε+, σ0)γ̄0β0; (2.17c)

(iv) either

max
a∈Λ
|Ψ′(a)| = |Ψ′(a∗)|, A− < a∗ < A+, (2.18a)

or

max
a∈Λ
|Ψ′(a)| = |Ψ′(a∗)|, Ψ′′(a∗) = 0, a∗ = A− or a∗ = A+;

(2.18b)

(v) either

max
a∈Λ
|G′1(a)| = |G′(b∗)|, A− < b∗ < A+, (2.19a)

or

max
a∈Λ
|G′1(a)| = |G′1(b∗)|, G′′1 (b∗) = 0, b∗ = A− or b∗ = A+. (2.19b)

Then the steady state (2.7) is nonlinearly stable to arbitrary finite-amplitude
perturbations. Moreover, the following a priori estimate holds:

ε−‖ν(t)‖ 6 ε+‖ν(0)‖. (2.20)

Proof. In the case of ‘isomagnetic’ perturbations, Vladimirov et al. (1997,
pp. 107, 108) proved that the steady state (2.7) is nonlinearly stable to pertur-
bations with initial data satisfying (2.15) and the a priori estimate (2.20) holds true
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if the following conditions are satisfied:

ε− < 1, σ2 < (1− ε−)2, (2.21a)

α > ε− + µ1(ε−, σ)
(
σ′2|B|2 + r2β2 +

γ2

r2

)
+ 2µ2(ε−, σ)βγ, (2.21b)

ε+ > 1, σ2 > (1− ε+)2, (2.22a)

α < ε+ + µ1(ε+, σ)
(
σ′2|B|2 + r2β2 +

γ2

r2

)
+ 2µ2(ε+, σ)βγ, (2.22b)

for all (r, z) ∈ Ω and a0, a1, a2, a3, a4 ∈ Λ, where the functions σ(A), σ′(A), α(r, z; a),
β(r, z; a) and γ(r, z; a) appearing in the inequalities (2.21) and (2.22) are taken at
a = a0, a = a1, a = a2, a = a3 and a = a4 respectively, with

a0 = A + ρ̃, ai = A + θiρ̃, 0 < θi < 1 (i = 1, 2, 3, 4). (2.23)

They used Arnold’s (1965a) technique and the conserved functional R = E +π +
ΠM + ΠC + Γ (a functional similar to R was used by Almaguer et al. (1988) to
obtain sufficient conditions for linear stability of compressible MHD flows), where

E =
1
2

∫
Ω

{
1
r2 [(∇ψ)2 + (∇ρ)2 + ρ2

1] + r2ρ2
2

}
dτ (2.24)

is the conserved energy of the system,

ΠC =
∫

Ω
N1(ρ)(v · b + ρ1ρ2) dτ (2.25)

is the conserved ‘generalized’ cross-helicity,

Γ =
∫

Ω
L(ρ)ρ1 dτ, (2.26)

is the conserved ‘generalized’ angular momentum,

ΠM =
∫

Ω
S(ρ)ρ2 dτ, (2.27)

is the conserved ‘generalized’ magnetic helicity and the functional

π =
∫

Ω
N2(ρ) dτ. (2.28)

The functions N1(ρ), N2(ρ), L(ρ) and S(ρ) are arbitrary. Vladimirov et al. (1997)
chose these functions such that

N1(A) = −Ψ′(A), N ′2(A) = G(A), L(A) = G1(A), S(A) = G2(A). (2.29)

Therefore, Criterion 2.1 is proved by showing that the conditions (2.21) and (2.22)
hold provided that the conditions (2.17)–(2.19) are satisfied. Then we consider ar-
bitrary perturbations for which the quantities a0, a1, a2, a3 and a4 defined by (3.23)
may be outside Λ. The inequalities (2.21) and (2.22) must therefore be satisfied for
all real a0, a1, a2, a3 and a4.

For the steady state (2.7), the functions σ, α, β and γ in (2.21) and (2.22) are now
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defined by

σ(a) = −N1(a), α(r, z; a) = Q(r, z)N ′1(a) +N ′′2 (a) +R1(r, z)L′′(a),
β(a) = L′(a), γ(r, z; a) = R1(r, z)N ′1(a) + S′(a).

}
(2.30)

Thus, according to (2.29), for all a ∈ Λ, the new definitions coincide with the
old ones (2.13a–d). Initially, N1(a), N2(a), L(a) and S(a) were arbitrary, and then
were defined only for a ∈ Λ by (2.29). Hence N1(a), N2(a), L(a) and S(a) are still
arbitrary for a /∈ Λ. We can therefore extend the definitions of N1(a), N2(a), L(a)
and S(a) to all real a in any way we need, and then extend the definition of
σ(a), α(r, z; a), β(r, z; a) and γ(a) by using (2.30).

We shall extend (continue) N1(a), N2(a), L(a) and S(a) to all a /∈ Λ in such a way
that, first, N1(a) and S(a) remain continuously differentiable and N2(a) and L(a)
twice continuously differentiable, and, secondly, the inequalities

α−0 6 α(r, z; a) 6 α+
0 , (2.31a)

|σ(a)| = |N1(a)| 6 σ0, (2.31b)

|σ′(a)| = |N ′1(a)| 6 σ′0, (2.31c)

|β(a)| = |L′(a)| 6 β0, (2.31d)

|γ(r, z; a)| 6 γ̄0 (2.31e)

remain valid for all a /∈ Λ. If such a continuation is possible then Criterion 2.1 will
be proved as follows.

We shall prove that (2.21) and (2.22) are satisfied under the conditions (2.17)–
(2.19). First we take ε− and ε+ such that

0 < ε− < 1− σ0, 2− ε− < ε+ <∞; (2.32)

then the inequalities (2.21a) and (2.22a) are satisfied. Secondly, according to the
definitions (2.13e) and (2.14) and the inequalities (2.31), we have

µ1(ε−, σ)
(
σ′2|B|2 + r2β2 +

γ2

r2

)
6 µ1(ε−, σ0)

(
σ′20 |B|2 + r2β2

0 +
γ̄2

0

r2

)
,

µ2(ε−, σ)βγ 6 µ2(ε−, σ0)β0γ̄0,

 (2.33a)

µ1(ε+, σ)
(
σ′2|B|2 + r2β2 +

γ2

r2

)
> µ1(ε+, σ0)

(
σ′20 |B|2 + r2β2

0 +
γ̄2

0

r2

)
,

µ2(ε+, σ)βγ > −µ2(ε+, σ0)β0γ̄0.

 (2.33b)

Thirdly, we suppose that there exist ε− and ε+ satisfying (2.32) such that

ε− + µ1(ε−, σ0)
(
σ′20 |B|2 + r2β2

0 +
γ̄2

0

r2

)
+ 2µ2(ε−, σ0)β0γ̄0 < α−0 , (2.34a)

ε+ + µ1(ε+, σ0)
(
σ′20 |B|2 + r2β2

0 +
γ̄2

0

r2

)
− 2µ2(ε+, σ0)β0γ̄0 > α+

0 . (2.34b)

If (2.34a,b) are satisfied then, in view of the inequalities (2.33a,b), the conditions
(2.21b) and (2.22b) are satisfied too. Hence we have shown that the conditions
(2.32) and (2.34) are in fact sufficient for all six inequalities (2.21) and (2.22) to be
satisfied.
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Finally, comparing (2.32) and (2.34) with (2.17), we see that they coincide. Cri-
terion 2.1 is thus established.

Extension of the definitions of the functions N1(a), N2(a), L(a) and S(a)

It will be sufficient to construct explicitly continuation of N1(a), N2(a), L(a) and
S(a) to all a > A+. Continuation to a < A− can be achieved in a similar way (see
Appendices A and B). For the function N1(a), suppose that (2.18a) is true; then
three different situations are possible for N ′1(A+):

(i) N ′1(A+) > 0;

(ii) N ′1(A+) < 0;

(iii) N ′1(A+) = 0.

(i) If N ′1(A+) > 0 then we define N1(a) for a > A+ such that

N1(a) = N1(A+) +N ′1(A+)
z

1 + ψ1z
, (2.35a)

where

z ≡ a−A+, ψ1 ≡ N ′1(A+)
σ0 −N1(A+)

. (2.35b)

We note from (2.18a) that ψ1 > 0. From (2.35a,b), we have

N1(a) = N1(A+) +
N ′1(A+)
ψ1

ψ1z

1 + ψ1z
< σ0, a > A+. (2.36a)

Also,

N1(a) = N1(A+) +N ′1(A+)
z

1 + ψ1z
> N1(A+) > −σ0, a > A+. (2.36b)

From (2.36a,b), we obtain

|N1(a)| < σ0, a > A+. (2.37)

Hence the inequality (2.31b) is satisfied. Note that, with the definition (2.35), the
function N1(a) is continuously differentiable for all a > A+.

N ′1(a) = N ′1(A+)
1

(1 + ψ1z)2 6 N
′
1(A+), a > A+, (2.38a)

|N ′1(a)| = N ′1(a) 6 N ′1(A+) 6 σ′0, a > A+. (2.38b)

Hence (2.31c) is also satisfied.
(ii) If N ′1(A+) < 0 then we define N1(a) for a > A+ such that

N1(a) = N1(A+) +N ′1(A+)
z

1 + ψ2z
, (2.39a)

where

z ≡ a−A+, ψ2 ≡ − N ′1(A+)
σ0 +N1(A+)

. (2.39b)

It is easy to verify that with this choice, N1(a) is continuously differentiable for all
a > A+, and satisfies (2.31b,c):

N ′1(a) = N ′1(A+)
1

(1 + ψ2)2 > N
′
1(A+), a > A+. (2.40)
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(iii) If N ′1(A+) = 0 then we define N1(a) for a > A+ such that N1(a) = N1(A+), so
that (2.31b,c) are satisfied. Suppose now that (2.18b) is true; then, as in case (ii), we
take N1(a) = N1(A+), and the inequalities (2.31b,c) are satisfied. If neither (2.18a)
nor (2.18b) is satisfied then the function |Ψ′(a)| attains its maximum value at one
of the endpoints of Λ, and at that point Ψ′′(a)� 0, i.e.

max
a∈Λ
|Ψ′(a)| = |Ψ′(a∗)|, Ψ′′(a∗)� 0, a∗ = A− or a∗ = A+.

In this case, it is impossible to make a sufficiently smooth continuation of N1(a)
for all real a such that the inequality (2.31b) holds true.

Now we shall extend the definition of the function L(a). Suppose that (2.19a) is
true; then three different situations are possible for L′′(A+):

(i) L′′(A+) > 0;

(ii) L′′(A+) < 0;

(iii) L′′(A+) = 0.

(i) If L′′(A+) > 0 then we define L(a) for a > A+ such that

L′(a) = L′(A+) + L′′(A+)
z

1 + ψ3z
, (2.41a)

where

z ≡ a−A+, ψ3 ≡ L′′(A+)
β0 − L′(A+)

. (2.41b)

Note from (2.19a) that ψ3 > 0.
It is easy to see that, with this definition, L(a) is twice continuously differentiable

for all a > A+ and satisfies (2.31d):

L′′(a) = L′′(A+)
1

(1 + ψ3z)2 6 L
′′(A+), a > A+. (2.42)

(ii) If L′′(A+) < 0 then we define L(a) for a > A+ such that

L′(a) = L′(A+) + L′′(A+)
z

1 + ψ4z
, (2.43a)

where

z ≡ a−A+, ψ4 ≡ − L′′(A+)
β0 + L′(A+)

. (2.43b)

Note from (2.19a) that ψ4 > 0. It is easy to verify that, with this definition, L(a)
is twice continuously differentiable for all a > A+ and satisfies (2.31d):

L′′(a) = L′′(A+)
1

(1 + ψ4z)2 > L
′′(A+), a > A+. (2.44)

(iii) If L′′(A+) = 0 then we define L(a) for a > A+ such that L′(a) = L′(A+), so
that (2.31d) is satisfied. Suppose now that (2.19b) is true; then, as in case (ii), we
take L′(a) = L′(A+), and the inequality (2.31d) is satisfied. If neither (2.19a) nor
(2.19b) is satisfied then the function |L′(a)| attains its maximum value at one of
the endpoints of Λ, and at that point L′′(a)� 0, i.e.

max
a∈Λ

|L′(a)| = |L′(a∗)|, L′′(a∗)� 0, a∗ = A− or a∗ = A+.

In this case, it is impossible to make a sufficiently smooth continuation of L′(a) for
all real a such that the inequality (2.31d) holds true.
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Now we choose the functions S(a) and N2(a) for a > A+ in such a way that
(2.31a) and (2.31e) are satisfied. Before doing this, let us introduce the functions
γ̂−(a), γ̂+(a), α̂−(a) and α̂+(a) such that

γ̂−(a) ≡ min
(r,z)∈Ω

γ(r, z; a), (2.45a)

γ̂+(a) ≡ max
(r,z)∈Ω

γ(r, z; a), (2.45b)

α̂−(a) ≡ min
(r,z)∈Ω

α(r, z; a), (2.45c)

α̂+(a) ≡ max
(r,z)∈Ω

α(r, z; a), (2.45d)

where γ(r, z; a) and α(r, z; a) are defined by (2.30). It follows from these definitions
that

γ̂−(a) = S′(a) +


N ′1(a) min

Ω
R1(r, z) if N ′1(a) > 0,

0 if N ′1(a) = 0,
N ′1(a) max

Ω
R1(r, z) if N ′1(a) < 0,

(2.46a)

γ̂+(a) = S′(a) +


N ′1(a) max

Ω
R1(r, z) if N ′1(a) > 0,

0 if N ′1(a) = 0,
N ′1(a) min

Ω
R1(r, z) if N ′1(a) < 0,

(2.46b)

α̂−(a) = N ′′2 (a)

+



N ′1(a) min
Ω
Q(r, z) + L′′(a) min

Ω
R1(r, z) if N ′1(a) > 0, L′′(a) > 0,

N ′1(a) min
Ω
Q(r, z) + L′′(a) max

Ω
R1(r, z) if N ′1(a) > 0, L′′(a) < 0,

N ′1(a) min
Ω
Q(r, z) if N ′1(a) > 0, L′′(a) = 0,

N ′1(a) max
Ω

Q(r, z) + L′′(a) min
Ω
R1(r, z) if N ′1(a) < 0, L′′(a) > 0,

N ′1(a) max
Ω

Q(r, z) + L′′(a) max
Ω

R1(r, z) if N ′1(a) < 0, L′′(a) < 0,

N ′1(a) max
Ω

Q(r, z) if N ′1(a) < 0, L′′(a) = 0,

L′′(a) min
Ω
R1(r, z) if N ′1(a) = 0, L′′(a) > 0,

L′′(a) max
Ω

R1(r, z) if N ′1(a) = 0, L′′(a) < 0,

0 if N ′1(a) = 0, L′′(a) = 0,
(2.47a)

α̂+(a) = N ′′2 (a)

+



N ′1(a) max
Ω

Q(r, z) + L′′(a) max
Ω

R1(r, z) if N ′1(a) > 0, L′′(a) > 0,

N ′1(a) max
Ω

Q(r, z) + L′′(a) min
Ω
R1(r, z) if N ′1(a) > 0, L′′(a) < 0,

N ′1(a) max
Ω

Q(r, z) if N ′1(a) > 0, L′′(a) = 0,

N ′1(a) min
Ω
Q(r, z) + L′′(a) max

Ω
R1(r, z) if N ′1(a) < 0, L′′(a) > 0,

N ′1(a) min
Ω
Q(r, z) + L′′(a) min

Ω
R1(r, z) if N ′1(a) < 0, L′′(a) < 0,

N ′1(a) min
Ω
Q(r, z) if N ′1(a) < 0, L′′(a) = 0,

L′′(a) max
Ω

R1(r, z) if N ′1(a) = 0, L′′(a) > 0,

L′′(a) min
Ω
R1(r, z) if N ′1(a) = 0, L′′(a) < 0,

0 if N ′1(a) = 0 L′′(a) = 0.

(2.47b)
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1. If N ′1(A+) > 0 and L′′(A+) > 0 then

α̂−(a) = N ′′2 (a) +N ′1(a) min
Ω

Q(r, z) + L′′(a) min
Ω

R1(r, z), (2.48a)

α̂+(a) = N ′′2 (a) +N ′1(a) max
Ω

Q(r, z) + L′′(a) max
Ω

R1(r, z), (2.48b)

γ̂−(a) = S′(a) +N ′1(a) min
Ω

R1(r, z), (2.48c)

γ̂+(a) = S′(a) +N ′1(a) max
Ω

R1(r, z). (2.48d)

Now for all a > A+, we take N2(a) such that

N ′′2 (a) = α̂−(A+)−N ′1(a) min
Ω

Q(r, z)− L′′(a) min
Ω
R1(r, z), (2.49)

whereN1(a) and L(a) are given by (2.35a) and (2.41a) respectively. With this choice,
N2(a) is twice continuously differentiable for all a > A+, and, from (2.48a),

α̂−(a) = α̂−(A+) > α−0 , a > A+. (2.50)

Also, from (2.48b), we obtain

α̂+(a) = α̂−(A+) +N ′1(a)
[
max

Ω
Q(r, z)−min

Ω
Q(r, z)

]
+L′′(a)

[
max

Ω
R1(r, z)−min

Ω
R1(r, z)

]
, (2.51)

α̂+(A+) = α̂−(A+) +N ′1(A+)
[
max

Ω
Q(r, z)−min

Ω
Q(r, z)

]
+S′′(A+)

[
max

Ω
R2(r, z)−min

Ω
R2(r, z)

]
. (2.52)

Eliminating α̂−(A+) from (2.51) and (2.52), we find

α̂+(a) = α̂+(A+) + [N ′1(a)−N ′1(A+)]
[
max

Ω
Q(r, z)−min

Ω
Q(r, z)

]
+[L′′(a)− L′′(A+)]

[
max

Ω
R1(r, z)−min

Ω
R1(r, z)

]
. (2.53)

From (2.38a) and (2.42), we obtain

α̂+(a) 6 α̂+(A+) 6 α+
0 , a > A+. (2.54)

From (2.50) and (2.54), we obtain

α−0 6 α̂−(a) 6 α(r, z; a) 6 α̂+(a) 6 α+
0 , a > A+, (2.55)

and then (2.31a) is satisfied. What remains now to extend (continue) the function
S(a) to all a > A+. We define S(a) for a > A+ such that

S′(a) = γ̂−(A+)−N ′1(a) min
Ω
R1(r, z), (2.56)

where N1(a) is given by (2.35a). With this choice, S(a) is continuously differentiable
for all a > A+, and, from (2.48c),

γ̂−(a) = γ̂−(A+) > −γ̄0, a > A+. (2.57)
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Also, from (2.48d), we obtain

γ̂+(a) = γ̂−(A+) +N ′1(a)
[
max

Ω
R1(r, z)−min

Ω
R1(r, z)

]
, (2.58)

γ̂+(A+) = γ̂−(A+) +N ′1(A+)
[
max

Ω
R1(r, z)−min

Ω
R1(r, z)

]
. (2.59)

Eliminating γ̂−(A+) from (2.58) and (2.59), we get

γ̂+(a) = γ̂+(A+) + [N ′1(a)−N ′1(A+)]
[
max

Ω
R1(r, z)−min

Ω
R1(r, z)

]
. (2.60)

From (2.38a) and (2.60), we obtain

γ̂+(a) 6 γ̂+(A+) 6 γ̄0, a > A+. (2.61)

From (2.57) and (2.61), we have

− γ̄0 6 γ̂−(a) 6 γ(r, z; a) 6 γ̂+(a) 6 γ̄0, a > A+. (2.62)

and then the inequality (2.31e) is satisfied. So our continuation satisfies all of the
conditions (2.31).

2. If N ′1(A+) > 0 and S′′(A+) < 0 then

α̂−(a) = N ′′2 (a) +N ′1(a) min
Ω
Q(r, z) + L′′(a) max

Ω
R1(r, z), (2.63a)

α̂+(a) = N ′′2 (a) +N ′1(a) max
Ω

Q(r, z) + L′′(a) min
Ω
R1(r, z). (2.63b)

We choose the function N2(a) for a > A+ such that

N ′′2 (a) = α̂−(A+)−N ′1(a) min
Ω

Q(r, z)− L′′(a) max
Ω

R1(r, z), (2.64)

whereN1(a) and L(a) are given by (2.35a) and (2.43a) respectively. It may be shown
that N2(a) defined by (2.64) is twice continuously differentiable for all a > A+ and
that (2.31a) is satisfied.

3. If N ′1(A+) > 0 and L′′(A+) = 0 then

α̂−(a) = N ′′2 (a) +N ′1(a) min
Ω

Q(r, z), (2.65a)

α̂+(a) = N ′′2 (a) +N ′1(a) max
Ω

Q(r, z). (2.65b)

We choose the function N2(a) for a > A+ such that

N ′′2 (a) = α̂−(A+)−N ′1(a) min
Ω

Q(r, z), (2.66)

where N1(a) is given by (2.35a).

In cases 2 and 3, the functions γ̂−(a) and γ̂+(a) are given by (2.48c) and (2.48d)
respectively, and hence the function S(a) is defined by (2.56), so (2.31e) is satisfied.

4. If N ′1(A+) < 0 and L′′(A+) > 0 then

α̂−(a) = N ′′2 (a) +N ′1(a) max
Ω

Q(r, z) + L′′(a) min
Ω

R1(r, z), (2.67a)

α̂+(a) = N ′′2 (a) +N ′1(a) min
Ω

Q(r, z) + L′′(a) max
Ω

R1(r, z), (2.67b)
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γ̂−(a) = L′(a) +N ′1(a) max
Ω

R1(r, z), (2.67c)

γ̂+(a) = L′(a) +N ′1(a) min
Ω

R1(r, z). (2.67d)

We choose the function N2(a) for a > A+ such that

N ′′2 (a) = α̂−(A+)−N ′1(a) max
Ω

Q(r, z)− L′′(a) min
Ω

R1(r, z), (2.68)

where N1(a) and L(a) are given by (2.39a) and (2.41a) respectively. In this case, we
choose the function S(a) for a > A+ such that

S′(a) = γ̂−(A+)−N ′1(a) max
Ω

R1(r, z), (2.69)

where N1(a) is given by (2.39a). It may be shown that S(a) defined by (2.69) is
continuously differentiable for all a > A+, and (2.31e) is satisfied.

5. If N ′1(A+) < 0 and L′′(A+) < 0 then

α̂−(a) = N ′′2 (a) +N ′1(a) max
Ω

Q(r, z) + L′′(a) max
Ω

R1(r, z), (2.70a)

α̂+(a) = N ′′2 (a) +N ′1(a) min
Ω

Q(r, z) + L′′(a) min
Ω

R1(r, z). (2.70b)

We choose the function N2(a) for a > A+ such that

N ′′2 (a) = α̂−(A+)−N ′1(a) max
Ω

Q(r, z)− L′′(a) max
Ω

R1(r, z), (2.71)

where N1(a) and L(a) are given by (2.39a) and (2.43a) respectively.

6. If N ′1(A+) < 0 and L′′(A+) = 0 then

α̂−(a) = N ′′2 (a) +N ′1(a) max
Ω

Q(r, z), (2.72a)

α̂+(a) = N ′′2 (a) +N ′1(a) min
Ω

Q(r, z). (2.72b)

We choose the function N2(a) for a > A+ such that

N ′′2 (a) = α̂−(A+)−N ′1(a) max
Ω

Q(r, z), (2.73)

where N1(a) is given by (2.39a).

In cases 5 and 6, the functions γ̂−(a) and γ̂+(a) are given by (2.67c) and (2.67d)
respectively, and hence the function S(a) is defined by (2.69), so that (2.31e) is
satisfied.

7. If N ′1(A+) = 0 and L′′(A+) > 0 then

α̂−(a) = N ′′2 (a) + L′′(a) min
Ω

R1(r, z), (2.74a)

α̂+(a) = N ′′2 (a) + L′′(a) max
Ω

Q(r, z), (2.74b)

γ̂−(a) = γ̂+(a) = S′(a). (2.74c)

We choose the function N2(a) for a > A+ such that

N ′′2 (a) = α̂−(A+)− L′′(a) min
Ω

R1(r, z), (2.75)

where L(a) is given by (2.41a). We choose the function S(a) for a > A+ such that

S′(a) = S′(A+). (2.76)
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8. If N ′1(A+) = 0 and L′′(A+) < 0 then

α̂−(a) = N ′′2 (a) + L′′(a) max
Ω

R1(r, z), (2.77a)

α̂+(a) = N ′′2 (a) + L′′(a) min
Ω

Q(r, z). (2.77b)

We choose the function N2(a) for a > A+ such that

N ′′2 (a) = α̂−(A+)− L′′(a) max
Ω

R1(r, z), (2.78)

where L(a) is given by (2.43a).

9. If N ′1(A+) = 0 and L′′(A+) = 0 then

α̂−(a) = α̂+(a) = N ′′2 (a). (2.79)

We choose the function N2(a) for a > A+ such that

N ′′2 (a) = N ′′2 (A+). (2.80)

In cases 8 and 9, the functions γ̂−(a) and γ̂+(a) are given by (2.74c), and hence
the function S(a) is defined by (2.76).

Thus we have shown that a smooth continuation of the functions N1(a), N2(a),
L(a) and S(a) to all real a is possible such that the conditions (2.31) remain satisfied.

Let us now discuss the existence of constants ε− and ε+ satisfying the conditions
(2.17) of Criterion 2.1. It is convenient to rewrite the inequalities (2.17b,c) in the
form

α−0 > f1(ε−), α+
0 < f2(ε+), (2.81)

where

fi(ε) ≡ ε +
1− ε

(1− ε)2 − σ2
0

(
σ′20 |B|2 + r2β2

0 +
γ̄2

0

r2

)
+ (−1)i−1 2σ0γ̄0β0

(1− ε)2 − σ2
0
, (2.82)

i = 1, 2.
It follows from (2.17a) that

0 < ε− < 1− σ0, ε+ > 1 + σ0. (2.83)

We note that the function f1(ε) is an increasing function for all 0 < ε < 1−σ0, and
the function f2(ε) is an increasing function for all ε > 1 + σ0.

The condition (2.81a) is satisfied for any ε < ε−0 , and (2.81b) is valid for ε > ε+
0 ,

where ε−0 and ε+
0 are points on the two regions I and II of Fig. 1 corresponding to

f1(ε−0 ) = α− and f2(ε+
0 ) = α+ respectively. Figure 1 also shows that a constant ε−

satisfying the conditions (2.17) does exist, provided that

α−0 > f1(0) =
1

1− σ2
0

(
α′20 |B|2(r, z) + r2β2

0 +
γ̄2

0

r2 + 2α0γ̄0β0

)
, (2.84)

for all (r, z) ∈ Ω, while a constant ε+ always exists for any given ε− and α+. We can
now formulate the following corollary.

Corollary 2.1. The steady state (2.7) is nonlinearly stable to arbitrary axisymmetric
perturbations provided that:
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α+

α–

f1(0)

f1 f2

I II

0 ε–
0 1–σ0 1+σ0 ε+

0 ε

Figure 1. The functions f1(ε) and f2(ε) defined by (2.82).

(i)

|V |2(r, z) < |B|2(r, z) <
1
σ′20

[
(1− σ2

0)α−0 − 2σ0γ0β0 − r2β2
0 −

γ̄2
0

r2

]
(2.85)

for all (r, z) ∈ Ω;

(ii) the conditions (2.18) and (2.19) are satisfied.

3. Nonlinear stability criteria
In Sec. 2, we obtained nonlinear stability criterion for arbitrary axisymmetric per-
turbations for arbitrary flow and poloidal field. In this section, we shall obtain
another criteria for the same problem.

Consider the steady state (2.7); we shall obtain the following nonlinear stability
criterion.

Criterion 3.1. Suppose that:

(i) the same conditions as in Criterion 2.1 hold concerning the smoothness of the
functions Ψ(A), G1(A), G2(A) and G(A);

(ii) there exist constants ε−, ε+ and ε∗ such that, for a ∈ Λ and (r, z) ∈ Ω,

ε∗ > 0, 0 < ε− < 1, ε+ > 2− ε−, |Ψ′(a)| < 1− ε−, (3.1a)

α−0 > ε− + µ1(ε−, σ0)
[
α′20 |B|2 + r2β2

0(1 + ε∗)2 +
γ̄2

0

r2

]
+ 2µ2(ε−, σ0)γ̄0β0(1 + ε∗),

(3.1b)

α+
0 < ε+ + µ1(ε+, σ0)

[
α′20 |B|2 + r2β2

0(1 + ε∗)2 +
γ̄2

0

r2

]
− 2µ2(ε+, σ0)γ̄0β0(1 + ε∗);

(3.1c)
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(iii) either

max
a∈Λ

|Ψ′(a)| = |Ψ′(a∗)|, A− < a∗ < A+, (3.2a)

or

max
a∈Λ
|Ψ′(a)| = |Ψ′(a∗)|, Ψ′′(a∗) = 0, a∗ = A− or a∗ = A+. (3.2b)

Then the a priori estimate (2.20) holds, and the steady state (2.7) is nonlinearly stable
to arbitrary finite-amplitude perturbations.

Proof. As with Criterion 2.1, to prove this proposition, it is sufficient to show that
the inequalities (2.21) and (2.22) are satisfied for all real a0, a1, a2, a3 and a4. We
shall extend (continue) the functions N1(a), N2(a), L(a) and S(a) to all a 6∈ Λ in
such a way that, first, these functions remain smooth enough and, secondly, the
inequalities

α−0 6 α(r, z; a) 6 α+
0 , (3.3a)

|σ(a)| = |N1(a) 6 σ0, (3.3b)

|σ′(a)| = |N ′1(a)| 6 σ′0, (3.3c)

|β(a)| = |L′(a)| < β0(1 + ε∗), (3.3d)

|γ(r, z; a)| 6 γ̄0, (3.3e)

remain valid for all a 6∈ Λ. If such a continuation is possible then the proof of
Criterion 3.1 reduces effectively to the proof of Criterion 2.1.

Extension of the definitions of N1(a), N2(a), L(a) and S(a)

It will be sufficient to construct explicitly a continuation of N1(a), N2(a), L(a) and
S(a) to all a > A+. Continuation to all a < A− can be achieved in a similar way
(see Appendix C).

The extension of the definition of N1(a) and the proof of (3.3b,c) are as in Cri-
terion 2.1 (see (2.35)–(2.40) and Appendix A).

Now we extended the definition of the function L(a). Three different situations
are possible:

(i) L′′(A+) > 0;

(ii) L′′(A+) < 0;

(iii) L′′(A+) = 0.

(i) If L′′(A+) > 0 then we define L(a) for a > A+ such that

L′(a) = L′(A+) + L′′(A+)
z

1 + λ1z
, (3.4a)

where

z ≡ a−A+, λ1 ≡ L′′(A+)
β0(1 + ε∗)− L′(A+)

> 0. (3.4b)

It is easy to see that, with this definition, L(a) is twice continuously differentiable
for all a > A+ and satisfies (3.3d):

L′′(a) = L′′(A+)
1

(1 + λ1z)2 6 L
′′(A+), a > A+. (3.5)
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(ii) If L′′(A+) < 0 then we define L(a) for a > A+ such that

L′(a) = L′(A+) + L′′(A+)
z

1 + λ2z
, (3.6a)

where

z ≡ a−A+, λ2 ≡ − L′′(A+)
β0(1 + ε∗) + L′(A+)

> 0. (3.6b)

Also it is easy to verify that, with this choice, L(a) is twice continuously differen-
tiable for all a > A+ and satisfies (3.3d):

L′′(a) = L′′(A+)
1

(1 + λ2z)2 > L
′′(A+), a > A+. (3.7)

(iii) If L′′(A+) = 0 then we take L(a) for a > A+ such that L′(a) = L′(A+), so that
(3.3d) is satisfied.

The extension of the definition ofN2(a) and S(a), and the proof of the inequalities
(3.3a,e), are as in Criterion 2.1, with the new form of L(a) (see (2.45)–(2.80)).

Similarly to Criterion 2.1, the analysis of existence of positive constants ε−, ε+

and ε∗ satisfying the conditions (3.1) shows that ε− and ε+ always exist for a given
ε∗ provided that

α−0 >
1

1− α2
0

[
σ′20 |B|2(r, z) + r2β2

0(1 + ε∗)2 +
γ̄2

0

r2 + 2σ0γ̄0β0(1 + ε∗)
]
, (3.8)

for all (r, z) ∈ Ω.
We can now formulate the following corollary.

Corollary 3.1. The steady state (2.7) is nonlinearly stable to arbitrary axisymmetric
perturbations, provided that:

(i) there exists a constant ε∗ > 0 such that

|v|2(r, z) < |B|2(r, z) <
1
σ′20

[
(1− α2

0)α−0 2α0γ0β0(1 + ε∗)− r2β2
0(1 + ε∗)2 − γ̄2

0

r2

]
(3.9)

for all (r, z) ∈ Ω;

(ii) either (3.2a) or (3.2b) is satisfied.

Criterion 3.2. Suppose that:

(i) the same conditions as in Criterion 2.1 hold concerning the smoothness of func-
tions Ψ(A), G1(A), G2(A) and G(A);

(ii) there exist constants ε−, ε+ and ε∗ such that, for a ∈ Λ and (r, z) ∈ Ω,

0 < ε− < ε∗ < 1, ε+ > 2− ε−, |Ψ′(a)| < 1− ε∗, (3.10a)

α−0 > ε−+µ1(ε−, 1−ε∗)
(
α′20 |B|2 + r2β2

0 +
γ̄2

0

r2

)
+2µ2(ε−, 1−ε∗)β0γ̄0, (3.10b)

α+
0 < ε+ +µ1(ε+, 1− ε∗)

(
α′20 |B|2 + r2β2

0 +
γ̄2

0

r2

)
− 2µ2(ε+, 1− ε∗)β0γ̄0; (3.10c)
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(iii) either

max
a∈Λ
|L′(a)| = |L′(a∗)|, A− < a∗ < A+, (3.11a)

or

max
a∈Λ
|L′(a)| = |L′(a∗)|, L′′(a∗) = 0, a∗ = A− or a∗ = A+. (3.11b)

Then the a priori estimate (2.20) holds, and the steady state (2.7) is nonlinearly stable
to arbitrary finite-amplitude perturbations.

Proof. As with Criterion 2.1, to prove this proposition, it is sufficient to show that
the inequalities (2.21) and (2.22) are satisfied for all real a0, a1, a2, a3 and a4. We
therefore need to extend (continue) the functions N1(a), N2(a), L(a) and S(a) to all
real a in such a way that these functions remain smooth enough and the inequalities

α−0 6 α(r, z; a) 6 α+
0 , (3.12a)

|σ(a)| = |N1(a)| < 1− ε∗, (3.12b)

|σ′(a)| = N ′1(a)| 6 α′0, (3.12c)

|β(a)| = |L′(a)| 6 β0, (3.12d)

|γ(r, z; a)| 6 γ̄0 (3.12e)

remain valid for all a 6∈ Λ. If such a continuation is possible then the proof of
Criterion 3.2 reduces effectively to the proof of Criterion 2.1.

Extension of the definition of N1(a), N2(a), L(a) and S(a)

It will be sufficient to construct explicitly a continuation of N1(a), N2(a), L(a) and
S(a) to all a > A+. Continuation to a < A− can be achieved in a similar way (see
Appendix D).

Three different situations are possible for N ′1(A+):

(i) N ′1(A+) > 0;

(ii) N ′1(A+) < 0;

(iii) N ′1(A+) = 0.

(i) If N ′1(A+) > 0 then we define N1(a) for a > A+ such that

N1(a) = N1(A+) +N ′1(A+)
z

1 + ξ1z
, (3.13a)

where

z ≡ a−A+, ξ ≡ N ′1(A+)
1− ε∗ −N1(A+)

. (3.13b)

Note from (3.10a) that ξ1 > 0. It is easy to see that, with this definition, N1(a) is
continuously differentiable for all a > A+ and satisfies (3.12b,c):

N ′1(a) = N ′1(A+)
1

(1 + ξ1z)2 6 N
′
1(A+), a > A+. (3.14)

(ii) If N ′1(A+) < 0 then we define N1(a) for a > A+ such that

N1(a) = N1(A+) +N ′1(A+)
z

1 + ξ2z
, (3.15a)
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where
z ≡ a−A+, ξ2 ≡ − N ′1(A+)

1− ε∗ +N1(A+)
. (3.15b)

It is easy to verify that, with this choice, N1(a) is continuously differentiable for
all a > A+ and satisfies (3.12b,c):

N ′1(a) = N ′1(A+)
1

(1 + ξ2)2 > N
′
1(A+), a > A+. (3.16)

(iii) If N ′1(A+) = 0 then we take N1(a) for a > A+ such that N1(a) = N1(A+), so
that (3.12b,c) are satisfied.

The extension of the definition of L(a) and the proof of (3.12d) are as in Cri-
terion 2.1 (see (2.41)–(2.44) and Appendix B). The extension of the definition of
N2(a) and S(a) and the proof of the inequalities (2.3a,e) are as in Criterion 2.1 (see
(2.45)–(2.80)). Thus we have shown that a smooth continuation of the functions
N1(a), N2(a), L(a) and S(a) to all real a is possible such that the conditions (3.12)
remain satisfied.

Let us now discuss the existence of constants ε−, ε+ and ε∗ satisfying the condi-
tions (3.10) of Criterion 3.2. It is convenient to rewrite the inequalities (3.10b,c) in
the form

α−0 > g1(ε−), α+
0 < g2(ε+), (3.17)

where

gi(ε) ≡ ε +
1− ε

(1− ε)2 − (1− ε∗)2

(
σ′20 |B|2 + r2β2

0 +
γ̄2

0

r2

)
+(−1)i−1 2(1− ε∗)γ̄0β0

(1− ε)2 − (1− ε∗)2 , i = 1, 2. (3.18)

It follows from (3.10a) that

0 < ε− < ε∗, ε+ > 2− ε∗. (3.19)

The condition (3.17a) is satisfied for any ε < ε−c , and (3.17b) is valid for ε > ε+
c ,

where ε−c and ε+
c are points on the two regions I and II of Fig. 2 corresponding to

g1(ε−c ) = α− and g2(ε+
c ) = α+ respectively. Figure 2 also shows that a constant ε−

satisfying the conditions (3.10) does exist, provided that

α−0 > g1(0) =
1

1− (1− ε∗)2

[
σ′20 |B|2(r, z) + r2β2

0 +
γ̄2

0

r2 + 2(1− ε∗)γ̄0β0

]
, (3.20)

for all (r, z) ∈ Ω, while a constant ε+ always exists for any given ε− and α+.
Let δ ≡ 1− ε∗; then we can formulate the following corollary.

Corollary 3.2. The steady state (2.7) is nonlinearly stable to arbitrary axisymmetric
perturbations, provided that:

(i) there exists a constant δ such that

0 < δ < 1,
1
δ2 |V |2(r, z) < |B|2(r, z) <

1
σ′20

[
(1− δ2)α−0 −

(
r2β2

0 +
γ̄2

0

r2 + 2δγ̄0β0

)]
(3.21)

for all (r, z) ∈ Ω,

(ii) either (3.11a) or (3.11b) is satisfied.
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α+

α–

g1(0)

g1 g2

I II

0 ε–
c 2–ε*ε* ε+

c ε

Figure 2. The functions g1(ε) and g2(ε) defined by (3.18).

Criterion 3.3. Suppose that:

(i) the same conditions as in Criterion 2.1 hold concerning the smoothness of func-
tions Ψ(A), G1(A), G2(A) and G(A);

(ii) there exist constants ε−, ε+ and ε∗ such that, for a ∈ Λ and (r, z) ∈ Ω,

0 < ε− < ε∗ < 1, ε+ > 2− ε−, |Ψ′(a)| < 1− ε∗, (3.22a)

α−0 > ε− + µ1(ε−, 1− ε∗)
[
σ′20 |B|2 + r2β2

0(1 + ε∗)2 +
γ̄2

0

r2

]
+2µ2(ε−, 1− ε∗)γ̄0β0(1 + ε∗), (3.22b)

α+
0 < ε+ + µ1(ε+, 1− ε∗)

[
σ′20 |B|2 + r2β2

0(1 + ε∗)2 +
γ̄2

0

r2

]
−2µ2(ε+, 1− ε∗)γ̄0β0(1 + ε∗), (3.22c)

Then the a priori estimate (2.20) holds, and the steady state (2.7) is nonlinearly
stable to arbitrary finite-amplitude perturbations.

Proof. As with Criteria 2.1, 3.1 and 3.2, it is sufficient to show that the inequalities
(2.21) and (2.22) are satisfied for all real a0, a1, a2, a3 and a4. We therefore need to
extend (continue) the functions N1(a), N2(a), L(a) and S(a) to all a 6∈ Λ in such a
way that these functions remain smooth enough and the inequalities

α−0 6 α(r, z; a) 6 α+
0 , (3.23a)

|σ(a)| = |N1(a)| < 1− ε∗, (3.23b)

|σ′(a)| = |N ′1(a)| 6 σ′0, (3.23c)

|β(a)| = |L′(a)| < β0(1 + ε∗), (3.23d)

|γ(r, z; a)| 6 γ̄0, (3.23e)

remain valid for all a 6∈ Λ.
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The extension of the definition of N1(a) and the proof of the inequalities (3.23b,c)
are as in Criterion 3.2 (see (3.13)–(3.16) and Appendix D). The extension of the
definition of L(a) and the proof of (3.23d) are as in Criterion 3.1 (see (3.4)–(3.7) and
Appendix C). The extension of the definitions of N2(a) and L(a) and the proof of
(3.23a,e) are as in Criterion 2.1 (see (2.45)–(2.80)).

Similarly to Criterion 3.2, the analysis of the existence of positive constants ε−,
ε+ and ε∗ satisfying the conditions (3.22) shows that ε− and ε+ always exists for a
given ε∗, provided that

α−0 > f1(0) =
1

1− (1− ε∗)2

[
σ′20 |B|2(r, z) + r2β2

0(1 + ε∗)2 +
γ̄2

0

r2 + 2(1− ε∗2
)β0γ̄0

]
(3.24)

for all (r, z) ∈ Ω.
Let δ ≡ 1− ε∗; then we can formulate the following corollary.

Corollary 3.3. The steady state (2.7) is nonlinearly stable to arbitrary axisymmetric
perturbations provided that there exists a constant 0 < δ < 1 such that

1
δ2 |V |2(r, z) < |B|2(r, z) <

1
σ′20

[
(1− δ2)α−0 − 2δ(2− δ)γ̄0β0 − r2β2

0(2− δ)2 − γ̄2
0

r2

]
,

(3.25)

for all (r, z) ∈ Ω.

3.1. Purely poloidal field and flow

Consider the steady state (2.7) when the toroidal component of the velocity field is
absent (R1 = 0). In this case,

V = Ψ′(a)B, R1 = R2 = 0. (3.26)

The functions G1(A), G2(A) and G(A) (given by (2.8)) reduce to

G1(A) = G2(A) = 0, G(A) = Ψ′(A)Q− J. (3.27)

The functions α, β and γ (given by (2.13b–d) reduce to

α(r, z; a) = −Q(r, z)σ′(a) +G′(a),

β = γ = 0.

}
(3.28)

In this case, Criterion 3.3 simplifies to the following.

Criterion 3.4. Suppose that:

(i) the function Ψ(A) defined by (3.26) is a twice continuously differentiable function
for all a ∈ Λ;

(ii) the function G(A) defined by (3.27) is continuously differentiable for all a ∈ Λ;

(iii) there exist constants ε−, ε+ and ε∗ such that, for a ∈ Λ and (r, z) ∈ Ω,

0 < ε− < ε∗ < 1, ε+ > 2− ε−, |Ψ′(a)| < 1− ε∗, (3.29a)

α−0 > ε− +
1− ε−

(1− ε−)2 − (1− ε∗)2σ
′2
0 |B2|(r, z), (3.29b)
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α+
0 < ε+ +

1− ε+

(1− ε+)2 − (1− ε∗)2σ
′2
0 |B2|(r, z), (3.29c)

Then the a priori estimate (2.20) holds, and the steady state (3.26) is nonlinearly
stable to arbitrary finite-amplitude perturbations.

Criterion 3.4 coincides with Criterion 5.1 that was obtained by Valdimirov et al.
(1997, p. 109). Note that the latter is a special case of Criterion 3.3.

4. Conclusions
In this paper we have used the general theory developed by Vladimirov and Moffatt
(1995) to obtain nonlinear stability criteria for steady axisymmetric MHD flows
of an ideal incompressible fluid (with respect to axisymmetric perturbations). In
the unperturbed state, both velocity and magnetic field are non-zero and have in
general both poloidal and toroidal components. Stability properties of such a steady
state is of particular importance in the context of plasma confinement devices (e.g.
tokamak or reversed-field pinch).

In Secs 2 and 3 we have used Arnold’s (1965a,b) theory to obtain nonlinear
stability criteria. Vladimirov et al. (1997) considered ‘isomagnetic’ perturbations,
i.e. perturbations from the steady state under which the magnetic field is frozen
and the vector potential of a material fluid particles is therefore conserved. They
obtained sufficient conditions for nonlinear stability with respect to arbitrary initial
perturbations (unconstrained by an isomagnetic condition) in a situation, when in
the steady state only the poloidal parts of both velocity and magnetic field are
non-zero.

In this paper, we have considered a situation when, in the steady state, all com-
ponents of the velocity field are non-zero, while only the toroidal component of the
magnetic field is absent. For this situation, we have succeeded in obtaining sufficient
conditions for nonlinear stability. A criterion obtained by Vladimirov et al. (1997)
can be deduced again as a special case of our Criterion 3.4. Our nonlinear stability
Criteria 2.1 and 3.1–3.3 evidently cover a wider class of steady MHD states than
that obtained by Vladimirov et al. (1997).

Appendix A. Extension of the definition of the function N1(a)
to all a < A−

Suppose that (2.18a) is true; then three different situations are possible for N ′1(A−):

(i) N ′1(A−) > 0;

(ii) N ′1(A−) < 0;

(iii) N ′1(A−) = 0.

(i) If N ′1(A−) > 0 then we define N1(a) for a < A− such that

N1(a) = N1(A−)−N ′1(A−)
z

1 + χ1z
, (A 1)

where

z ≡ A− − a, χ1 ≡ N ′1(A−)
σ0 +N1(A−)

. (A 2)
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Note from (2.18a) that χ1 > 0. It is easy to see that, with this definition, N1(a) is
continuously differentiable for all a 6 A− and satisfies (2.31b,c):

N ′1(a) = N ′1(A−)
1

(1 + χ1z)2 6 N
′
1(A−), a 6 A−. (A 3)

(ii) If N ′1(A−) < 0 then we define N1(a) for a < A− such that

N1(a) = N1(A−)−N ′1(A−)
z

1 + χ2z
, (A 4)

where

z ≡ A− − a, χ2 ≡ − N ′1(A−)
σ0 −N1(A−)

> 0. (A 5)

it is also easy to verify that, with this choice, N1(a) is continuously differentiable
for all a 6 A−, and satisfies (2.31b,c):

N ′1(a) = N ′1(A−)
1

(1 + χ2)2 > N
′
1(A−), a 6 A−. (A 6)

(iii) If N ′1(A−) = 0 then we take N1(a) for a < A− such that N1(a) = N1(A+), so
that (2.31b,c) are satisfied.

Suppose now that (2.18b) is true; then, as in case (iii), we take N1(a) = N1(A−),
so that (2.31b,c) are satisfied.

Appendix B. Extension of the definition of the function L(a)
to all a < A−

Suppose that (2.19a) is true; then three different situations are possible for L′′(A−):

(i) L′′(A−) > 0;

(ii) L′′(A−) < 0;

(iii) L′′(A−) = 0.

(i) If L′′(A−) > 0 then we define L(a) for a < A− such that

L′(a) = L′(A−)− L′′(A−)
z

1 + χ3z
, (B 1)

where

z ≡ A− − a, χ3 ≡ L′′(A−)
β0 + L′(A−)

. (B 2)

Note from (2.19a) that χ3 > 0.
(ii) If L′′(A−) < 0 then we define L(a) for a < A− such that

L′(a) = L′(A−)− L′′(A−)
z

1 + χ4z
, (B 3)

where

z ≡ A− − a, χ4 ≡ − L′′(A−)
β0 − L′(A−)

> 0. (B 4)

(iii) If L′′(A+) = 0 then we take L(a) for a < A− such that L′(a) = L′(A−).
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In the three cases (i)–(iii), it is easy to verify that L(a) is twice continuously
differentiable for all a 6 A− and satisfies (2.31d). Suppose now that (2.19b) is true;
then, as in case (ii), we take L′(a) = L′(A+), and the inequality (2.31d) is satisfied.

Appendix C. Extension of the definition of the function L(a)
to all a < A−

Three different situations are possible for L′′(A−):

(i) L′′(A−) > 0;

(ii) L′′(A−) < 0;

(iii) L′′(A−) = 0.

(i) If L′′(A−) > 0 then we define L(a) for a < A− such that

L′(a) = L′(A−)− L′′(A−)
z

1 + η1z
, (C 1)

where

z ≡ A− − a, η1 ≡ L′′(A−)
β0(1 + ε∗) + L′(A−)

> 0. (C 2)

(ii) If L′′(A−) < 0 then we define L(a) for a < A− such that

L′(a) = L′(A−)− L′′(A−)
z

1 + η2z
, (C 3)

where

z ≡ A− − a, η2 ≡ − L′′(A−)
β0(1 + ε∗)− L′(A−)

> 0. (C 4)

(iii) If L′′(A−) = 0 then we take L(a) for a < A− such that L′(a) = L′(A−),

In the three cases (i)–(iii), it is easy to verify that L(a) is twice continuously
differentiable for all a 6 A− and satisfies (3.3d).

Appendix D. Extension of the definition of the function N1(a)
to all a < A−

Three different situations are possible for N ′1(A−):

(i) N ′1(A−) > 0;

(ii) N ′1(A−) < 0;

(iii) N ′1(A−) = 0.

(i) If N ′1(A−) > 0 then we define N1(a) for a < A− such that

N1(a) = N1(A−)−N ′1(A−)
z

1 + ζ1z
, (D 1)

where

z ≡ A− − a, ζ1 ≡ N ′1(A−)
1− ε∗ +N1(A−)

> 0. (D 2)
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(ii) If N ′1(A−) < 0 then we define N1(a) for a < A− such that

N1(a) = N1(A−)−N ′1(A−)
z

1 + ζ2z
, (D 3)

where

z ≡ A− − a, ζ2 ≡ − N ′1(A−)
1− ε∗ −N1(A−)

> 0. (D 4)

(iii) If N ′1(A−) = 0 then we take N1(a) for a < A− such that N1(a) = N1(A−),
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