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Embedding of some classes of operators
into strongly continuous semigroups
Isabelle Chalendar and Romain Lebreton

Abstract. In this paper, we study the embedding problem of an operator into a strongly continous
semigroup. We obtain characterizations for some classes of operators, namely composition operators
and analytic Toeplitz operators on the Hardy space H2 . In particular, we focus on the isometric ones
using the necessary and sufficient condition observed by T. Eisner.

1 Introduction

If T is a bounded linear operator on a Banach space E, then T is said to be embeddable
into a strongly continuous semigroup if there exists (Tt)t≥0 a family of bounded linear
operators on E, which is a strongly continous semigroup such that T = T1.

This notion has been studied by T. Eisner, especially in the monograph [10], and
it turned out to be a very interesting and challenging problem. There is no known
necessary and sufficient condition for any operator T on a Banach space, but T. Eisner
showed that if T is embeddable, then dim(ker(T)) and codim(Im(T)) are either 0 or
∞. This condition shows us that the forward shift operator S on H2 and all its powers
are not embeddable into a strongly continous semigroup on H2.

One of the first easy examples is the embedding of the Volterra operator V ∶
f ∈ Lp([0, 1]) �→ V f (x) = ∫

x
0 f (s) ds into the Riemann–Liouville semigroup on

Lp([0, 1]), for 1 ≤ p < ∞ [1, 2].
However, there exist some necessary and sufficient conditions for special classes of

operators, and we highlight here the following result on isometric operators obtained
by Eisner [9] and [10, Theorem V.1.19].

Theorem 1.1 Let V ∶ H → H be an isometry on a Hilbert space H. Then V is embed-
dable into a C0-semigroup on H if and only if V is unitary or codim(V H) = ∞.

This theorem is very useful in the case of composition operators or analytic Toeplitz
operators, where it is easy to characterize the isometric ones. The main goal of this
paper is then to describe the embedding of such isometric operators and to make the
associated semigroup explicit.

The paper is organized as follows. In Section 2, we recall some useful properties
on (analytic) semigroup theory of operators and the main tools required on Hardy
spaces. We also give a key lemma on Blaschke products for the main result on
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2 I. Chalendar and R. Lebreton

composition operators. Section 3 is concerned with the embedding of isometric
composition operators and also the embedding of analytic Toeplitz operators. Finally,
in Section 4, we show that the embedding of an isometry into a semigroup of
contractions (Tt)t≥0 implies that each Tt is isometric. Moreover, the embedding of
an isometry into a semigroup (Tt)t≥0 (not necessarily contractive) implies that, for
each t > 0, Tt is never compact.

2 Background and preliminaries

2.1 Strongly continuous semigroups of operators

Let E be a Banach space and (Tt)t≥0 ⊂ L(E), the space of all linear and bounded
operators on E endowed with its usual norm. We say that (Tt)t≥0 is a strongly
continuous semigroup or just a C0-semigroup if

T0 = Id , Tt+s = Tt ○ Ts , t, s > 0,

and for all x ∈ E,

t ∈ R+ �→ Tt x is continuous i.e. ∥Tt x − x∥ E �→
t→0+

0.

See, for example, [11] for an introduction to semigroup theory of operators.
We recall here that an operator T ∈ L(E) is embeddable into a C0-semigroup on E

if there exists (Tt)t≥0 a C0-semigroup on E such that T = T1. In this case, we write

T ↪ (Tt)t≥0 .

2.2 Analytic semiflows on D

Let D = {z ∈ C ∶ ∣z∣ < 1} be the open unit disc of the complex plane C and (φt)t≥0 be a
family of analytic self-maps ofD. We say that (φt)t≥0 is a semiflow of analytic self-maps
of D if

φ0 = Id , φt+s = φt ○ φs , t, s ≥ 0,

and for all z ∈ D,

t ∈ R+ �→ φt(z) is continuous.

Note that the pointwise continuity assumption is equivalent to the uniform continuity
on all compact subsets of D via Montel’s theorem.

It is a well known fact that when (φt)t≥0 is a semiflow of analytic self-maps of D,
each function φt is one-to-one. See [6] for a proof using Cauchy–Lipschitz’s theory or
[7] for an alternative elementary proof. We recommend [6] for a very complete state
of the art of analytic semiflow theory.

In the same way, we say that φ ∈ Hol(D) is embeddable into a semiflow of analytic
self-maps of D if there exists (φt)t≥0 a semiflow of analytic self-maps of D such that
φ = φ1. In this case, we write

φ ↪ (φt)t≥0 .
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Embedding of some classes of operators 3

As an example, let φ be an elliptic automorphism of D, i.e., φ is an holomorphic and
bijective function on D with a fixed point α ∈ D. Equivalently, there exist θ ∈ R and
α ∈ D such that

φ = τα ○ Rθ ○ τα , where Rθ ∶ z �→ e iθ z and τα ∶ z �→ α − z
1 − αz

.(2.1)

Note that τα is an automorphism of D, which coincides with its inverse. Thus, φ is
embeddable into the following semiflow of analytic self-maps of D:

φt = τα ○ Rθ t ○ τα , with Rθ t ∶ z �→ e i tθ z, t ≥ 0.

2.3 Hardy spaces and Blaschke products

Let T = {z ∈ C ∶ ∣z∣ = 1} be the unit circle endowed with the Lebesgue measure m. For
0 < p < ∞, we consider the Hardy space H p = H p(D), which consists of functions f
holomorphic on D satisfying

∥ f ∥ p = sup
0≤r<1

(∫
T

∣ f (rζ)∣p dm(ζ))
1/p
< ∞.

Recall that for p = 2, H2 is a reproducing kernel Hilbert space whose kernel is given by

kλ(z) = 1
1 − λz

, λ, z ∈ D,

meaning that

f (λ) = ⟨ f , kλ⟩2 , f ∈ H2 , λ ∈ D.

Moreover, we have SpanH2(kλ ∶ λ ∈ D) = H2, where SpanH(A) denotes the closure in
H of the subspace consisting of finite linear combinations of elements of A, where A
is a family of vectors in a Hilbert space H. Define by H2

0 the space of functions f ∈ H2

such that f (0) = 0.
We also define H∞ = H∞(D) to be the class of bounded analytic functions on D,

endowed with the sup norm defined by ∥ f ∥∞ = sup
z∈D

∣ f (z)∣.
We also recall that a Blaschke product is a function of the form

B(z) = e i βzk ∏
n≥1

∣αn ∣
αn

αn − z
1 − αnz

, z ∈ D,(2.2)

where β ∈ R, k ∈ N ∪ {0} and (αn)n≥1 is a finite or infinite sequence of D/{0}
satisfying ∑n≥1(1 − ∣αn ∣) < ∞. Then, B is an inner function on D. When (αn)n≥1 is
a finite sequence of D, we say that B is a finite Blaschke product and one can easily
check that such B are continuous on the closed unit disc. We refer the reader to [13]
for more details about finite Blaschke products.

In the sequel, we consider the finite Blaschke product associated with a finite
sequence (αn)1≤n≤N ⊂ D defined by

B(z) =
N
∏
i=1

α i − z
1 − α i z

, z ∈ D.(2.3)
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4 I. Chalendar and R. Lebreton

We know that the equation B(z) = β for β ∈ D has exactly N solutions in D, taking
into account the multiplicity (see [13]). The following lemma is the key to differentiate
them.

Lemma 2.1 Let β ∈ D/B(Zero(B′)). Then the equation B(z) = β has exactly N
distinct solutions in D.

Proof Let β ∈ D. Then B(z) = β is equivalent to a polynomial equation of the form

P(z) − βQ(z) = 0 with P(z) =
N
∏
i=1
(α i − z) and Q(z) =

N
∏
i=1
(1 − α i z).

Since (−1)N (1 − β∏N
i=1 α i) ≠ 0 and since B maps D to D, T to T, and {z ∈ C ∶ ∣z∣ > 1}

to itself, there are N solutions in D. It remains to prove that for suitable β the solutions
are distinct.

Note that

B′(z) = P′(z)Q(z) − P(z)Q′(z)
Q(z)2 ,

and thus

P(z) − βQ(z) = 0 and P′(z) − βQ′(z) = 0 �⇒ B′(z) = 0.

It follows that for β ∈ D/B(Zero(B′)), the equation B(z) = β has exactly N distinct
solutions in D. ∎

We also recall the well known and very useful Frostman’s theorem [12] whose
assertion is the following. Let θ be an arbitrary inner function. Then there exists a set
of measure zero with respect to the area measure (even a set of capacity zero) Ω ⊂ D

such that for every λ ∈ D/Ω, the so-called Frostman’s transform

θλ ∶= τλ ○ θ = λ − θ
1 − λθ

is a Blaschke product with simple zeros. Here recall that τλ is the usual automorphism
of D defined by τλ(z) = λ−z

1−λz
for z ∈ D.

3 Embedding results

3.1 Composition operators on H2

First of all, recall that the main goal of this paper is to describe classes of operators,
which can be embedded into a semigroup of operators. The isometric operators are
of particular interest due to the necessary and sufficient condition in Theorem 1.1
on Hilbert spaces. The choice of composition operators on H2 is relevant since the
isometric ones as well as the ones that are similar to isometries are fully characterized
and, moreover, this class is quite rich. We define the composition operator Cφ with
symbol φ on H2 by

Cφ ∶ f �→ f ○ φ, f ∈ H2 .
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Embedding of some classes of operators 5

This operator is well defined and bounded on H2. See [17] for further information
about those operators on H2.

Moreover, Cφ is an isometry on H2 if and only if φ is inner and φ(0) = 0. In [4],
F. Bayart showed that Cφ is similar to an isometry on H2 if and only if φ is inner, and
there exists α ∈ D such that φ(α) = α. In other words, Cφ is similar to an isometry on
H2 if and only if its symbol φ is an elliptic inner function.

In Arendt et al. [3] showed the following results.
• On the Bergman space A2 (and even on its weighted versions A2

β for β > −1), Cφ
is similar to an isometry if and only if φ is an elliptic automorphism of D. Thus, we
will find a natural embedding according to (2.1) for Cφ , described later by Remark
3.1.

• On the classical Dirichlet space D, Cφ is similar to an isometry if and only if φ is a
univalent full map with a fixed point in D and the counting function nφ associated
to φ is essentially radial (see [3, Section 6]). Note that the existing criteria for the
boundedness of Cφ is not that explicit and so the similarity to an isometry is much
less easy to handle.
From now on, the space on which we study our operators are defined on the Hardy

space H2. Let φ ∶ D→ D be analytic.

Remark 3.1 Observe that if φ ↪ (φt)t≥0 where (φt)t≥0 is a semiflow of analytic self-
maps of D, then Cφ ↪ (Cφ t)t≥0 where (Cφ t)t≥0 is a C0-semigroup on H2.

Conversely if Cφ ↪ (Tt)t≥0 where (Tt)t≥0 is a C0-semigroup of composition
operators on H2, then applying Tt to e1(z) ∶= z and using the fact that the convergence
in H2 implies the pointwise convergence, we get the existence of (φt)t≥0 a semiflow
of analytic self-maps of D such that Tt = Cφ t .

With the reproducing kernel Hilbert space property of H2, we can give the
following first sufficient condition of embedding for isometric composition operators.
This is a key to understand the strategy of the proof of the main result.

Lemma 3.2 Let φ ∶ D→ D be an inner function such that φ(0) = 0. Assume that
there exists a sequence (zk)k≥0 of distinct points in D such that each zk has at least
two preimages by φ. Then Cφ is embeddable into a C0-semigroup on H2.

Proof Since φ is an inner function such that φ(0) = 0, it comes that Cφ is an
isometry on H2. Moreover, by hypothesis, for K ∈ N, there exist (w1 , ..., wK) and
(w′1 , ..., w′K) ∈ DK such that

∀1 ≤ i ≤ K , w i ≠ w′i and φ(w i) = φ(w′i) = z i .

For each 1 ≤ i ≤ K, define the function f i ∈ H2 by f i = kw i − kw′i . Then, for all f ∈ H2

and for every 1 ≤ i ≤ K,

⟨Cφ f , f i⟩2 = ⟨ f ○ φ, kw i ⟩2 − ⟨ f ○ φ, kw′i ⟩2 = f ○ φ(w i) − f ○ φ(w′i) = 0.
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6 I. Chalendar and R. Lebreton

Therefore, we obtain that ( f i)1≤i≤K ⊂ Im(Cφ)⊥. Since ( f i)1≤i≤K is a set of K linearly
independent functions, where K is arbitrary large, we get that

codim(Im(Cφ)) = dim(Im(Cφ)⊥) = ∞.

Finally, we conclude with Theorem 1.1 and then Cφ is embeddable into a C0-
semigroup on H2. ∎

Recall that if φ is an elliptic automorphism, as in Section 2.2, then Cφ is embeddable
into a semigroup of composition operators on H2 (see (2.1) and Remark 3.1). We refer
the reader to [6] for the remaining automorphism cases, for which there exist natural
embeddings thanks to Remark 3.1.

Theorem 3.3 Every composition operator Cφ which is similar to an isometry on
H2 is embeddable into a C0-semigroup (Tt)t≥0 on H2, which is not a semigroup of
composition operators, unless φ is an automorphism.

Proof Let φ ∶ D→ D be an analytic function. Then Cφ is similar to an isometry on
H2 if and only if φ is inner and there exists α ∈ D such that φ(α) = α. The case when
φ is an elliptic automorphism is already done thanks to Remark 3.1. From now on,
assume that φ is a nonautomorphic inner function with a fixed point α ∈ D.

Let us first remark that φ is not injective. Indeed,
• if φ is a Blaschke product as (2.2), then φ is not injective since 0 has at least two

preimages;
• if φ is not a Blaschke product, then according to Frostman’s theorem, the map τa ○

φ = a−φ
1−aφ is a Blaschke product B with simple zeros for almost all a ∈ D. Therefore,

φ = τ−1
a (B) is not injective.

In that case, there is no semiflow of analytic self-maps of D in which φ is embeddable.
Therefore, from Remark 3.1, Cφ is not embeddable into a C0-semigroup of composi-
tion operators on H2. For φ(α) = α, let us consider the application defined as follows

ψ ∶= τα ○ φ ○ τα .

Then ψ is an inner function such that ψ(0) = 0. Thus, Cψ is an isometry of H2 and we
get Cφ = Cτα ○ Cψ ○ Cτα . Since Cτα is an isomorphism of H2, it remains to show that
Cψ is embeddable into a C0-semigroup on H2.
• If ψ is a finite Blaschke product B, the conclusion follows from Lemmas 2.1 and 3.2,

taking (zk)k≥0 in D/B(Zero(B′)).
• If ψ is inner but not a finite Blaschke product, according to Frostman’s theorem, the

map τγ ○ ψ =∶ B is a Blaschke product with simple zeros for almost all γ ∈ D. In that
case, we have

Cψ H2 = { f ○ ψ ∶ f ∈ H2}(3.1)
= {( f ○ τγ) ○ (τγ ○ ψ) ∶ f ∈ H2}
= {g ○ B ∶ g ∈ H2} = CB H2 .
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Embedding of some classes of operators 7

Denote by (wk)k≥1 the sequence of simple zeros of B. Considering the sequence
(kw i − kw j)i , j≥1, i≠ j of linearly independent functions of H2, we deduce from (3.1)
that

codim(Im(Cψ)) = dim(Im(CB)⊥) = ∞.

The embedding of Cψ follows from Theorem 1.1.
Finally, we conclude that Cφ is embeddable into the C0-semigroup (Cτα TtCτα)t≥0 on
H2, where Cψ is embedded into a C0-semigroup denoted by (Tt)t≥0 on H2. ∎

In order to describe the semigroup in which Cφ is embeddable, we need the
following lemma that appears in [15, Lemma 5]. For the sake of completeness, we
include a slightly different proof.

Lemma 3.4 Let ψ be an inner function such that ψ(0) = 0 and such that ψ is not an
automorphism. Then⋂n≥0 Cn

ψ H2
0 = {0} and thus⋂n≥0 Cn

ψ H2 = C1, where 1 stands for
the constant function equal to 1.

Proof Let g ∈ ⋂n≥0 Cn
ψ H2

0 . Then for each n ≥ 1, there exists fn ∈ H2
0 such that g(z) =

fn(ψ[n](z)) for every z ∈ D with ψ[n] = ψ ○ ⋯ ○ ψ (n times). Moreover, ∥g∥ 2 = ∥ fn∥ 2
since Cψ is isometric. Note that if g ≠ 0, then there exists z0 ∈ D, z0 ≠ 0 such that
∣g(z0)∣ > 0. Since fn ∈ H2

0 , fn(0) = 0, there exists gn ∈ H2 such that fn(z) = zgn(z)
for every z ∈ D, with ∥gn∥ 2 = ∥g∥ 2. Finally, we get that

∣ fn(ψ[n](z0))∣ = ∣ψ[n](z0)∣ ∣gn(ψ[n](z0))∣
= ∣ψ[n](z0)∣ ∣⟨gn , kψ[n](z0)⟩2∣

≤ ∣ψ[n](z0)∣ ∥g∥ 2
1√

1 − ∣ψ[n](z0)∣
2

.

Since 0 is the Denjoy–Wolff point of ψ, we get ψ[n](z0) �→n→∞
0. Then ∣ fn(ψ[n](z0))∣

�→
n→∞

0, and we get g(z0) = 0, a contradiction. Consequently, ⋂n≥0 Cn
ψ H2

0 = {0}.
The second assertion of the lemma follows from the fact that if f ∈ ⋂n≥0 Cn

ψ H2

then f − f (0)1 ∈ ⋂n≥0 Cn
ψ H2

0 . Indeed, in that case, for each n ≥ 1, there exists hn ∈ H2

such that f = Cn
ψ hn . Thus, f − f (0)1 = Cn

ψ(hn − f (0)1). Since f (0) = hn(ψ[n](0)) =
hn(0), we have f − f (0)1 = Cn

ψ(hn − hn(0)1) with hn − hn(0)1 ∈ H2
0 . Therefore,

f − f (0)1 ∈ ⋂n≥0 Cn
ψ H2

0 . ∎

Corollary 3.5 Let φ be an inner function with a fixed point α ∈ D and such that φ is
not an automorphism. Then Cφ on H2 is embeddable into the C0-semigroup

(Me i tθ ⊕ Cτα U∗StUCτα)t≥0 ,
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8 I. Chalendar and R. Lebreton

with respect to the decomposition C1⊕H2
0 where U ∶ H2

0 → L2(R+, Im(Cψ)⊥) is uni-
tary, θ ∈ R and (St)t≥0 is the right semigroup on L2(R+ , Im(Cψ)⊥) defined by

(St f )(s) =
⎧⎪⎪⎨⎪⎪⎩

f (s − t) s − t ≥ 0
0 s − t < 0

.

Proof First note that

Cφ = Cτα CψCτα ,(3.2)

where ψ is an inner function such that ψ(0) = 0 and ψ is not an automorphism.
Therefore, Cψ is isometric. Using Wold’s decomposition and Lemma 3.4, we obtain
that H2 = F ⊕⊥ G with F ∶= ⋂n≥0 Cn

ψ H2 = C1 and, by the properties of the orthogonal
direct sum, G ∶= ⊕n≥0 Cn

ψ(H2 ⊖ Cψ H2) = H2
0 . In that case, (Cψ)∣F is unitary on a

vector space of dimension 1. Therefore, (Cψ)∣F = Me iθ for some θ ∈ R. On the other
side, (Cψ)∣G is unitarily equivalent to the right shift S on �2(N, Im(Cψ)⊥). According
to the embedding of S by [10, Proposition V.1.18], we obtain the embedding of Cψ into
the C0-semigroup (Me i tθ ⊕U∗StU)t≥0 where U ∶ H2

0 → L2(R+ , Im(Cψ)⊥) is unitary,
θ ∈ R and (St)t≥0 is the right semigroup on L2(R+, Im(Cψ)⊥). We conclude the proof
using (3.2). ∎

Remark 3.6 Another special case is when the symbol φ is a linear fractional map
of the unit disc. Indeed, we have a complete characterization of the embedding of
φ according to its fixed points by [5, Proposition 3.4]. Then, we have the natural
embedding of Cφ by Remark 3.1. However, there are some examples where the
embedding of Cφ into a C0-semigroup of composition operators on H2 is not possible.
To that aim, it suffices to consider φ the attractive elliptic function on D defined by
φ(z) = z

z−2 . Indeed, φ does not satisfy the following required condition:

∣α − 1
β
∣ l ≤ ∣φ′(α)∣ ∣1 − α

β
∣ ,(3.3)

where α ∈ D is its Denjoy–Wolff point, β ∈ (C ∪ {∞})/D its repulsive fixed point,
and l = l(φ′(α)) the length of the canonical spiral associated with φ′(α) ∈ D/{0}.
Consequently, φ is not embeddable into a semiflow of analytic self-maps of D. We
refer the reader to [6] for more information about Denjoy–Wolff theory.

Let us now introduce weighted composition operators. Let w ∈ H2 and φ ∶ D→ D

be analytic. We define the weighted composition operator Cw ,φ with symbol φ and
weight w by

Cw ,φ ∶ f �→ w( f ○ φ), f ∈ H2 .

Kumar and Partington [14] proved that Cw ,φ is an isometry on H2 if and only if φ is
inner, ∥w∥ 2 = 1 and ⟨w , wφn⟩2 = 0 for every n ≥ 1.

Chalendar and Partington [8] obtained the following result: if φ is inner, then there
exists a weight w ∈ H2 such that Cw ,φ is an isometry on H2.

The combination of these two results gives the following sufficient condition about
the embedding of weighted composition operators. The main interest of this assertion
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Embedding of some classes of operators 9

is that, provided that we make an appropriate choice of the weight, it is not required
that the symbol of the composition operator has a fixed point in D.

Theorem 3.7 Let φ be an inner function. Then there exists a weight w ∈ H2 such that
Cw ,φ is embeddable into a C0-semigroup on H2.

Proof Since φ is inner, there exists a weight w ∈ H2 such that Cw ,φ is an isometry
on H2. Moreover, w satisfied ∥w∥ 2 = 1 and ⟨w , wφn⟩2 = 0 for every n ≥ 1. It remains
to show that codim(Im(Cw ,φ)) = ∞. Note that, for every λ ∈ D and f ∈ H2, we have

⟨Cw ,φ f , kλ⟩2 = w(λ)Cφ f (λ) = w(λ)( f ○ φ(λ)).

Then, we deduce that ⟨Cw ,φ f , kλ⟩2 = 0 if and only if w(λ) = 0 or f ○ φ(λ) = 0.
Take w = Bm where B is an infinite Blaschke product associated with a sequence
(λn)n≥1 ⊂ D satisfying ∑n≥1(1 − ∣λn ∣) < ∞ and where m ∈ H2 satisfies ∥m∥ 2 = 1 and
⟨m, mφn⟩2 = 0 for every n ≥ 1. Notice that since B is inner, we get ∥w∥ 2 = 1 and
⟨w , wφn⟩2 = 0 for every n ≥ 1. Thus, Cw ,φ is an isometry on H2 such that

⟨Cw ,φ f , kλ⟩2 = B(λ)m(λ)Cφ f (λ) = 0, λ ∈ {λn ∶ n ≥ 1} ⊂ D.

In other words, we deduce that SpanH2(kλ ∶ λ ∈ Zero(B)) ⊂ Im(Cw ,φ)⊥ and

codim(Im(Cw ,φ)) = dim(Im(Cw ,φ)⊥) = ∞.

Finally, for such a w ∈ H2, Cw ,φ is embeddable into a C0-semigroup on H2 by
Theorem 1.1. ∎

Remark 3.8 The form of the C0-semigroup in which Cw ,φ is embeddable is less
explicit than the one given in Corollary 3.5. Indeed, for φ an inner function and w ∈
H2 the weight such that Cw ,φ is an isometry on H2, by the Wold’s decomposition,
H2 = F ⊕⊥ G where (Cw ,φ)∣F is unitary and (Cw ,φ)∣G is unitarily equivalent to the
right shift on �2(N, Im(Cw ,φ)⊥). Then, by [10, Theorem V.1.14], Cw ,φ is embeddable
into the C0-semigroup

(Z∗ (e t log(m))Z ⊕U∗StU)t≥0 ,

where μ is a Borel measure, m ∈ L∞(σ((Cw ,φ)∣F), μ) is measurable and

Z ∶ F → L2(σ((Cw ,φ)∣F), μ), U ∶ G → L2(R+, Im(Cw ,φ)⊥),

are unitary operators.

3.2 Analytic Toeplitz operators on H2

Let φ ∈ L∞(T). We define the Toeplitz operator Tφ with symbol φ by

Tφ ∶ f �→ P+(φ f ), f ∈ H2 ,

where P+ denotes here the Riesz projection, i.e., the orthogonal projection of L2(T)
onto H2. It is a bounded operator on H2 whose norm is equal to ∥φ∥∞. See [12, Section
4] for the main properties about Toeplitz operators with symbols in L∞(T). From now
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on, assume that φ ∈ H∞ and note that Tφ is then the multiplication operator by φ. We
have ker(Tφ) = {0} and ker(T∗φ ) =Kθ , thus

codim(Im(Tφ)) = dim(ker(T∗φ )) = dim(Kθ),

where Kθ ∶= (θH2)⊥ is the model space associated with θ the inner part of φ. We refer
the reader to [12] for a very nice introduction to model space theory. We also recall
that Tφ is an isometry on H2 if and only if φ is inner.

Theorem 3.9 Let φ be a non constant inner function. Then Tφ is embeddable into
a C0-semigroup on H2 if and only if φ is not a finite Blaschke product. Moreover, the
operators of the semigroup are analytic Toeplitz operators if and only if φ does not have
any zero in D.

Proof Let φ be a non constant inner function. Then Tφ is an isometry on H2. By
Theorem 1.1, Tφ is embeddable if and only if codim(Im(Tφ)) = dim(Kφ) = ∞. We
deduce then easily that Tφ is embeddable into a C0-semigroup on H2 if and only if φ
is not a finite Blaschke product (see [12, Proposition 5.5.19]). Denote by (Rt)t≥0 this
semigroup. Let us recall that the commutant {S}′ of S on H2 is given by

{S}′ = {Tψ ∶ ψ ∈ H∞} .

In that case, (Rt)t≥0 is a semigroup of analytic Toeplitz operators if and only there
exists C ∈ Hol(D) satisfying sup{Re(C(z)) ∶ z ∈ D} < ∞ and such that Rt = Te tC for
every t ≥ 0 [16]. In particular, we get R1 = Tφ = TeC and φ = eC , which does not vanish
on D. Reciprocally, if φ does not vanish on D, then φ is an inner singular function of
the form

φ(z) = exp{−∫
T

ζ + z
ζ − z

dμ(ζ)} , z ∈ D,

for μ a finite positive measure of Borel on T such that μ is singular with respect to the
Lebesgue measure m. It is easy to see, by considering, for every t ≥ 0, the bounded
analytic functions

φt(z) = exp{−t∫
T

ζ + z
ζ − z

dμ(ζ)} , z ∈ D,

that Tφ is embeddable into the C0-semigroup (Mφ t = Tφ t)t≥0 of analytic Toeplitz
operators on H2. ∎

The case of the isometric Toeplitz operators is now complete. The aim of the rest
of this section is to investigate other analytic Toeplitz operators.

Lemma 3.10 Let φ be an outer function. Then Tφ is embeddable into a C0-semigroup
of analytic Toeplitz operators on H2.

Proof It is an immediate consequence of the canonical representation of an outer
function. ∎

https://doi.org/10.4153/S0008439524000560 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439524000560


Embedding of some classes of operators 11

Proposition 3.11 Let φ = (BSμ)φe ∈ H∞ where B is a Blaschke product, Sμ is an inner
singular function and φe is an outer function. Assume that φ is not an outer nor an inner
function. Then the following assertions hold:
(i) if B ≡ 1, Tφ is embeddable into a C0-semigroup of analytic Toeplitz operators on

H2.
(ii) if Sμ ≡ 1 and if B is a non constant finite Blaschke product, Tφ is not embeddable

into a C0-semigroup on H2.

Proof We have:
(i) If B ≡ 1, then φ = Sμ φe which does not vanish on D. Let us remark that Tφ =

TSμ φe = MSμ Mφe . Each term is embeddable into a C0-semigroup on H2 which
commutes, then Tφ is embeddable into the product of these two semigroups.

(ii) If Sμ ≡ 1 and B is a non constant finite Blaschke product, then we get

codim(Im(Tφ)) = dim(KB) ∉ {0,∞}.

We conclude with [10, Theorem V.1.7]. ∎

Let us remark that according to Proposition 3.11, the remaining open question is
the following.

Question 3.12 Do we have the embedding of Tφ when φ = Bϕ, with B a non constant
Blaschke product and ϕ a nonvanishing analytic function on D?

For that purpose, let us just note that on one side TB is embeddable if and only if B
is an infinite Blaschke product by Theorem 3.9. On the other side, Tϕ is embeddable
from Proposition 3.11(i). The following examples show the difficulty and the interest
of this open question.
• Let B1 be a finite Blaschke product and B2 be an infinite Blaschke product. Then

TB1 B2 is embeddable by Theorem 3.9, whereas TB1 is not embeddable.
• Let B be an infinite Blaschke product and Sμ be a singular inner function. Then TB

and TSμ are embeddable into a C0-semigroup denoted, respectively, by (At)t≥0 and
(Bt)t≥0 by Theorem 3.9. Moreover, TBSμ is also embeddable into a C0-semigroup,
which is not the product of (At)t≥0 and (Bt)t≥0, even though TB and TSμ commute.
We end this section with a result on the embedding of Toeplitz operators whose

symbol are polynomials.

Corollary 3.13 Let n ≥ 1 and P ∈ Pn , where Pn is the space of polynomials of degree
at most n. Then TP is embeddable into a C0-semigroup on H2 if and only if P does not
have any zero in D.

Proof Let n ≥ 1 and P ∈ Pn of the form

P(z) = a
n
∏
k=1
(z − αk)

m
∏
j=1
(z − β j),
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where a ∈ C/{0}, ∣αk ∣ < 1 for every 1 ≤ k ≤ n and ∣β j ∣ ≥ 1 for every 1 ≤ j ≤ m. It
follows that P(z) = B(z)F(z) where B is the finite Blaschke product associated with
the sequence (αk)1≤k≤n , and F is the outer function defined by F(z) = a∏n

k=1(1 −
αk z)∏m

j=1(z − β j). Then:
• if P does not have any zero in D, i.e., αk ∉ D for every 1 ≤ k ≤ n, then B ≡ 1 and

P is outer. Therefore, TP is embeddable into a C0-semigroup on H2 according to
Lemma 3.10.

• if P has at least one zero in D, then B /≡ 1. By Proposition 3.11 (ii), TP is not
embeddable into a C0-semigroup on H2. ∎

4 Isometric operators and properties of semigroups

In this last section, we state two quite obvious results concerning the properties of
the semigroup in terms of isometry or compactness where the operator embedded is
isometric.

Proposition 4.1 Let V ∈ L(H) be isometric. If V is embeddable into a C0-semigroup
of contractions (Vt)t≥0 on H, then Vt is isometric for every t ≥ 0.

Proof Let us remark that since V is an isometry, V n = Vn is also an isometry for
every n ∈ N. Assume that there exists t0 > 0 such that Vt0 is not isometric. In that case,
since Vt0 is a contraction, there exists x0 ∈ H, ∥x0∥ = 1 such that ∥Vt0 x0∥ < 1. But, for
every N > t0, we have on one hand

∥VN−t0 Vt0 x0∥ = ∥VN x0∥ = 1,

and on the other hand

∥VN−t0 Vt0 x0∥ ≤ ∥Vt0 x0∥ < 1.

We obtain a contradiction, and so Vt is isometric for every t > 0. ∎

Proposition 4.2 Let V ∈ L(H) be isometric. If V is embeddable into a C0-semigroup
(Vt)t≥0 on H, then Vt is not compact for every t ≥ 0.

Proof Assume that there exists t0 > 0 such that Vt0 is compact. Since K(H) is a
bilateral ideal, it comes that Vt is compact for every t ≥ t0 from the algebraic property
of the semigroup. It comes also that, for every orthonormal sequence (en)n≥0 of H,
∥Vt en∥ �→n→∞

0 for every t ≥ t0. But, since V is isometric, VN = V N is also isometric for
every N ∈ N, and we get

∥VN en∥ = ∥en∥ = 1.

For N ≥ t0, we obtain a contradiction and so Vt is not compact for every t > 0. ∎
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