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Abstract

H. H. Chan, K. S. Chua and P. Solé [‘Quadratic iterations to 7 associated to elliptic functions to the
cubic and septic base’, Trans. Amer. Math. Soc. 355(4) (2002), 1505-1520] found that, for each positive
integer d, there are theta series Ay, By and C,; of weight one that satisfy the Pythagoras-like relationship
A2 = B% + C3. In this article, we show that there are two collections of theta series Apq, Byq and Cp g of
weight one that satisfy A} , = B} , + C}, ,, where b and d are certain integers.
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1. Introduction

One of the most famous identities of Jacobi states that

( i qm2+n2)2 _ ( i (_1)m+nqm2+n2 )2 + ( i q(m+1/2)2+(n+1/2)2)2' (1.1)
m,n=—co m,n=—co m,n=—o0
One can view (1.1) as a solution to
A’ =B+ (7, (1.2)

where A, B and C are theta series of weight one. This identity is instrumental in the
parametrisation of Gauss’ arithmetic—geometric mean by modular forms [2, 8].

In [5], Chan et al., motivated by the study of codes and lattices, found that, for any
positive integer d,

( i q2(m2+mn+dn2))2 — ( i (_1)m+nqm2+mn+dn2)2

m,n=—0o m,n=—o00

+( Z qZ((m+1/2)2+(m+1/2)n+dn2))

m,n=—00

2

(1.3)
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Identity (1.3) provides an infinite number of solutions in theta functions of weight one
to (1.2). For more information on this generalised Jacobi identity, see [6, 7].

Recently, while studying theta series associated with binary quadratic forms of
discriminant —15, we discovered the identity

( N q2m2+mn+2n2)2 — ( i (_1)m+anmz-+-mn+2n2 )2

m,n=—oo m,n=—co

+ (2 i P! 22+ (m+1 /2)n+2n2))2. (1.4)
m,n=—0o
We establish the following analogue of (1.3) for which (1.4) is a special case.
THEOREM 1.1. Let d be any positive integer and let 1 < b < d — 1. Then
N dm?+bmn+dn® : N m+n  dm*+bmn+dn® .
(25 amomar ] = 3 cprrgirime)

+ (2 i o /2)2+b(m+1/2)n+dn2))2' (15)

m,n=—00

When d =2 and b = 1, we recover (1.4) from (1.5). The proof of (1.5) is given in
Section 2.

Our discovery of (1.5) provides a motivation for deriving the following two-variable
version of (1.3): that is,

0o

2 R 2
Z q2(bm2+bmn+dn2)) — ( Z (_l)m+nqu2+bmn+dn2)

m,n=—00 m,n=—o0

+( Z qz(b(m+1/2)2+b(m+1/2)n+dn2))

m,n=—00

2

(1.6)

Observe that, when b = 1, (1.6) implies (1.3). We give a proof of (1.6) in Section 3.

2. Proof of (1.5)

The Jacobi one-variable theta functions are defined by

gy = ) g7,

J=—0

93(q) = i g

Jj=—
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[3] An analogue of an identity of Jacobi 3

and
- .2
9aq) = Y (~1Vq.
Jj=—o
We first express the theta functions in (1.5) in terms of ¥;(¢),j = 2, 3, 4.

LEMMA 2.1. For|q| < 1,

ﬂh,d — Z qdm2+bmll+dn2 — 03 (q2d+b)19'3 (q2d—b) + ﬁz(q2d+b)192(612d_b), (21)

Bb,d — Z (_ 1)m+nqdm2+bmn+dn2 — 193 (q2d+b),l93 (q2d—b) _ ﬁZ(q2d+b)ﬂ2(q2d_b) (22)
and

Cb,d =2 Z qZ(d(nH—1/2)2+b(m+1/2)n+dn2) — 192(6]d+b/2)192(qd_b/2)- (23)

m,n=—o0

PROOF. We observe that

dm? + bmn + dn® :(m n)( d b/Z)(m)‘

b2 d|\n
Next, since
d b2\ (1 1\(d+b/2 0 1 1
b/2 d) \1 -1 0 d-b/2J\1 -1)°
we find that
2d +b 2d—-b
dm?* + bmn + dn* = T+(m +n)’ + (m — n)>.
Therefore,

Z qdm2+bmn+dn2 _ Z q(2d+b)(m+n)2/4+(2d—b)(m—n)2/4

m,n=—00 mn=—co

00

_ Z q(2d+b)(m+n)2/4+(2d—b)(m—n)2/4 + Z q(2d+b)(m+n)2/4+(2d—b)(m—n)2/4

m,n=—o0 m,n=—o0
m+n even m+n odd

= 9@ ) + (PN,

which completes the proof of (2.1). The proof of (2.2) is similar to the proof of (2.1).
To prove (2.3), we need the identity

3 (tyrge < o, 4

m=—0o
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Identity (2.4) is true because

m m 2 S S— 2 2
Z (-1 q( +1/2)* _ Z(_l) q( 1/2)* _ Z(_l)mq(m/z)'
§=—00

m=—oo [=—00

From (2.4), we deduce that, for any integer ¢,

Z (_l)mq<m+f+1/2)2 -0 (2.5)

m=—oo
A consequence of (2.5) is that

(] (e8]

Z q(2n+£’+l/2)2 — Z q(2n+l+f+1/2)2. (2.6)

n=—o0o n=—0o0o

We are now ready to prove (2.3). Write

Cpa =2 Z q(2d+b)(m+l [24n)% [2+Q2d-b)(m+1/2-n)?/2
m,n=—00

Let Kk = m — n. Then

Cb,d -9 Z q(zd—b)(k+1/2)2/2 Z q(2d+b)(2n+k+l/2)2/2
k=—o00 n=-00
2d—-b)(k+1/2)%/2 2d+b)(s+1/2)2/2 2d-b)/2 2d+b)/2
=Zq( )(k+1/2)*/ Zq(‘*')(“"/)/:ﬂz(q( 129, (g24+0)/2),
k=—00 §=—00

which is (2.3). The last equality follows by writing

2 Z q(2d+b)(2n+k+1/2)2/2 _ Z q(2d+b)(2n+k+1/2)2/2 + Z q(2d+b)(2n+k+1+1/2)2/2
n=—oo n=-—oo n=—oo
_ Z q(2d+b)(s+l/2)2/2’
§=—00
where we have used (2.6) in the first equality. ]

Using (2.1) and (2.2), we deduce that
ﬂz,d - Bivd - 402(q2d+b)192(q2d_b)193(q2d+b)193(q2d_b),

Next, it is known from Jacobi’s triple product identity that

92(g) = 2¢" [ [(1 = g1 + ¢¥)?
j=1

and

)

93(g) = | |1 =g+ 7).

J=1
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Therefore,
202(¢7)93(q") = 93(q). 2.7)
Replacing ¢* by ¢ and using (2.3), we deduce that
‘ﬂlzy,d - Bi,d = Ci,d

and the proof of (1.5) is complete.

It is possible to derive (2.7) without using Jacobi’s triple product identity. For more
details, see [4, page 58].

Whend =1and b = 0, (1.5) becomes

( i qmz+n2)2=( i (_1)m+nqm2+n2)2+(2 i q2((m+l/2)2+n2))

m,n=—o0 m,n=—o0 m,n=—o0

2
s

which reduces to

93(q) = 93(q) + 495(¢H)95(¢>). (2.8)
By (2.7), we arrive at (1.1). Next, (2.8) can then be written as
93(q) + 95(q) = #3(q) — 95(q) + 895(g)I5(qD). (2.9)

Identity (2.9) appeared in [1, page 140] and the functions

@) +93(q), 9 - 94(q) = 9i(q) and 2049 (q)

play important roles in Ramanujan’s theory of elliptic functions to the quartic base
(see [3, Theorem 2.6(b)] and [1, (1.10) and (1.11)]).

3. Proof of (1.6)

The proof of (1.6) is similar to the proof of (1.3). First, we need a lemma.

LEMMA 3.1. Let O < b < 4d. Then

> 2 2 _ —
Ab,d — Z q2(bm +bmn+dn®) — 193(q2b)193(q2(4d b)) + ﬁZ(q2b)192(q2(4d b))’ (31)
m,p=—0co
N —n_bm?+bmn+dn? -
Bua= ), (=1)""g" " = 94(q")04(q" ) (3.2)
m,n=—0o0
and
Ch,d — Z qZ(b(m+1/2)2+b(m+1/2)n+dn2) — ﬁz(q2b)03(q2(4d—b)) + ﬁS(qu)ﬁZ(q2(4d_b))-
m,p=—co

(3.3)
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PROOF. The proof of (3.1) follows by writing A 4 as

(o]
Apg = Z qu(m+n/2)2+n2(4d—b)/2.

m,n=—co

Splitting the sum into two sums with one summing over even integers n = 2¢ and the
other summing over odd integers n = 2¢ + 1, we find that

[ 00

2 2 2 2
Apg = Z gm0 +2024db) Z GRomH 127 42(0+1/2)(4db)
m,{=—co m,{=—co0
= 93(¢”")93(g" ") + 92(¢*)02(7 ),
and this completes the proof of (3.1). Next, write By, 4 as

Byy = Z (=1)m" qb(m+n/2)2+n2(4d—b)/4.

m,n=—00

Splitting the sum into two sums with one summing over even integers n = 2¢ and the
other summing over odd integers n = 2£ + 1 and using (2.5), we find that

By = Z (-1)" q2b(m+€)2+2€2(4d—b) + Z q2b(m+f+1/2)2+2(€+1/2)2(4d—b)

m,f=—co m,f=—co
—b)? £ _b(m+0)?
_ Z (_l)é’q(4d b) Z (_1)m+ g (m+£)
m,f=—co m=—co

= D4(¢""")0a(q"),
and (3.2) follows. Finally, to prove (3.3), write

o0
Cb,d — Z q2h(m+l/2+n/2)2+2n2(4d—h)/4'
m,n=—00

Splitting the sum into two sums with one summing over even integers n = 2¢ and the
other summing over odd integers n = 2£ + 1, we deduce that

00

- 2b(m+E+1/2)*+2(20)2 (4d—b) /4 2b(m+E+1)24+2(20+1)2(4d-b) /4
Ch’d_m,;mq (m+C+1 /2742207 )/+m’;wq (m+C+17+20+ 12 (4d=b)
= 02(q™")93(q* ") + 3(q*)92(g* ),
and the proof of (3.3) is complete. |
To complete the proof of (1.6), we note that
Apa = Cpa = B3 = (g NB3(G* ") = 2™ "))
and

Apa + Cpa = 03(g%) + (@ NW3(g* ) + 92> ).
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But it is immediate that
93(q") — 92(g") = Du(q)
and
93(4") + 92(q") = 93(9).
Therefore,
®3(g") — D2(g")B3(g") + 92(q") = Dalq)P3(q) = 93(q),
where the last equality follows from [2, page 34]. Therefore,
Apy = Cp g = (93(8™) = D2 D3(¢* ) = 92(¢% 7))
X @3(q™) + 92N W3(¢* ") + 928> )
= 93(¢")93(¢* ™) = B},

and the proof of (1.6) is complete.

4. Concluding remarks

We have found infinitely many solutions to X? + Y2 = Z2, where X,Y and Z are
theta series of weight one. The Borweins’ identity states that

i 3 i 3
m*+mn+n® ) _ m—n m?>+mn+n®
(5 ey <5 oy
m,p=—co m,n=—co

3
s

+( Z q(m+1/3)2+(m+1/3)(n+1/3)+(n+1/3)2) @.1)

m,n=—o0

where w = ¢?/3. This is the only example of a solution to X> + Y3 = Z* with X, ¥ and
Z being theta series of weight one. Are there infinitely many solutions to X> + Y3 = Z3,
where X, Y and Z are theta series of weight one, apart from (4.1)? This appears to be
an interesting question.
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