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SUMMARY
In this paper, a force control algorithm for robot manip-
ulators is introduced, where the dynamics of non-rigid
environment interacting with the robot is assumed
unknown. The controller design is based on the combination
of sliding mode control techniques and the adaptive
estimation theory, so the introduced controller compensates
the structured or unstructured uncertainty of the environ-
ment. The main source of feedback information is received
from a wrist force sensor. The designed controller includes
additional absorption terms in order to minimise end-point
velocity error and to suppress the impact effects at the
beginning of the force application.

KEYWORDS: Sliding mode; Robot control; Unknown environ-
ment; Adaptive estimation force.

1. INTRODUCTION
In assembly or grinding tasks, the robot applies a set of
desired forces to the environment therefore a force con-
troller is required to regulate the applied forces.

A challenging task of the robotics research community is
to enhance the manufacturing flexibility of the robots. In the
case of tasks requiring contact with the environment, the
force controller has to deal with a great variety of contact
situations. Therefore, the controller has to encounter passive
mechanisms or environments with unknown dynamic char-
acteristics.

A great deal of work1–4 has been devoted in the
quantitative investigation of the robot-environment dynam-
ics, since the understanding of the dynamic behaviour is
crucial for the design of force controllers. It has been
noticed that when the environment is stiff then the force
feedback branch presents high gains. Additionally, the
system is marginally stable due to the low damping of the
stiff environments. On the other hand, force applied to soft
environments or mechanisms may cause oscillatory
response. Finally, it has been concluded that the nonlinear
dynamics and kinematics of the robot affect the stability of
the system.

Eppinger and Seering1 noticed two basic factors that
influence the dynamics of the system robot-environment:
the high eigenvalues of the environment and the compliance
of the robot arm. The authors proved that a controller
designed under the assumption that the environment

dynamics is negligible could lead to an unstable system.
Otherwise, the system is marginally stable with light
damping.

In a second paper, Eppinger and Seering2 investigated the
structure of a force controller and its performance with
respect to the dynamics of the environment and the actuator.
They concluded that low pass filtering and PI controlling
add destabilising poles, while a PD control and a lead
compensation adds zeros, which provide considerably high
phase lead at low frequencies and the system nonlinearities
influence the performance of the controller.

An and Hollerbach3 studied the effects of the robot
kinematics on the stability of the controller. They proved
that a kinematics coordinate transformation in the feedback
affects the dynamics of the closed loop system and may
cause instabilities. The Hybrid Position/Force control exhib-
its such kinematically induced instabilities in the case of
revolute robots, while the stiffness force control and the
resolved acceleration methods, do not.

In a second paper, An and Hollerbach4 investigated the
stability conditions of force controllers. They concluded that
three factors affect the stability of the system: the first factor
is that force feedback signal is essentially a high-gain
position feedback. The second factor is the unmodeled high
frequency dynamics due to robot structural system. Finally,
the third factor is the high stiffness of the environment-
mechanism.

The impedance control method5,6 is investigated to solve
the problem of force control. The main idea of impedance
control is to assign a prescribed dynamic behaviour for
robot manipulator while its end effector is interacting with
the environment. The desired performance is specified by a
complete set of linear or nonlinear second order differential
equations representing a mass-spring-damper system. Gen-
erally the impedance control is suitable for those tasks
where contact forces must be kept small.7

Hogan5 presented an impedance controller with force
feedback for the regulation of the force applied by the end
point of the robot. The calculation of the inverse kinematics
of the manipulator is not used, in order to reduce the
computational cost in the implemented controller. Hogan
studied the cases where the free motion of the robot is
followed by a constrained motion. In these cases, problems
arise due to the difference between the compliance of the
environment and the total compliance of the manipulator.
For stiff environments the total compliance of the manip-
ulator should be quite high, then the force sensors have to be
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chosen softer than the environment. The proposed imped-
ance algorithm eliminates this problem and there is no need
for limitations on the force sensor stiffness. The results from
two experiments are presented in the paper. In the first
experiment the controller includes force feedback, while in
the second experiment the force feedback is eliminated. In
both cases the controller is stable but the existence of the
force feedback improves the performance of the system.

Anderson and Spong6 introduced the Hybrid Impedance
Controller (HIC) where the main characteristics of the
hybrid force/position and impedance control algorithm are
combined. The general scheme of this controller follows the
hybrid force/position8 architecture where the force and
position tasks are split and defined in the operational space.
At the end effector of the robot a force sensor is mounted.
The controller has an inner loop where the inverse dynamics
algorithm is implemented. Impedance terms are introduced
for each degree of freedom in the operational space. The
outer loop of the control system includes the compensator,
which monitors the impedance of the system. In order to
validate the performance of the proposed controller a peg-
in-hole assembly task was simulated. The presented results
show that the task is accomplished quite fast without any
undesirable effect.

In the previous approaches,5,6 the environment is assumed
rigid, and only the force sensor is assumed that represents
the external stiffness. The designed controllers regulate the
contact forces via a pre-defined second order dynamics
based on the impedance control structure.

In the following group of papers9–14 the hybrid force/
position control scheme including adaptive algorithms is
used to guide the robots fine motion in contact with the
environment. The adaptive algorithms either tune the gains
of the control law or determine the actual values of the
dynamic environment characteristics.

Koivo9 introduced an autoregressive model with external
excitation for the design of a discrete self-tuning adaptive
force controller. This controller minimises the error of the
velocity and of the applied force under the constraint of the
ARX model. The controller operates in the joint space with
a hybrid force/position architecture and time varying gains.
An additional adaptive algorithm is used for the estimation
of the environment characteristics in the Cartesian coor-
dinate system.

Fukuda et al,10 introduced a force control method for
manipulators by considering the grasped object dynamics
based on the adaptive control concept. The MRAC algo-
rithm tunes the control system gains in order to minimise
the error between the response of the manipulator and the
response of a pre-defined dynamic system, which is exerted
by the same input signal. The proposed controller goes
further from the classical MRAC approach, it estimates also
the unknown parameters of the environment. In order to
validate the performance of the proposed controller the
authors presented two simulations with hard and soft
environment respectively. In both cases the desired force
was obtained. However, in the case of the hard environment
the response was quite oscillatory.

Kalaycioglu and Brown11 implemented the hybrid posi-
tion/force controller with an adaptive algorithm for the

identification of the unknown environment parameters. The
used estimation algorithm is based on the least squares with
exponential forgetting. The integral form of the adaptation
law suppresses the oscillations of the response. In addition,
an internal algorithm that calculates the position for the
compliant motion prevents the overshooting caused by the
impact between the end-point of the robot and the
environment. From the described experimental setup is
observed that the force feedback-sampling rate is out of the
bandwidth of the position controller. This proves that the
force control introduces high frequency components in the
system. The results obtained by the simulation and the
experiments show fast response and very good accuracy.
The estimation of the unknown parameters is fast and quite
accurate.

Zhen and Goldenberg12 presented a new control method
for constraint motion of robot manipulators based on a
hybrid force/position concept including an adaptive estima-
tor. The adaptive estimator is used in order to avoid the force
feedback signal derivative and the joint acceleration meas-
urements. Except the forces normal to the constraint surface
the contact friction forces were included in the formulation
of the model. The simulation results show that the algorithm
is robust with a quite good performance. However all the
holonomic constraints can not be described by smooth
functions and the simulation results are for a Cartesian
manipulator where the dynamics of the robot is uncoupled.
The controller performance for a revolute manipulator,
where the robot dynamics is coupled, is under question.

Almerico et al13 used the sliding mode techniques to build
a hybrid force/position controller. In this paper major effort
has been put in the application of the well-known control
methods to real world industrial applications. Joint level
dynamic decoupling is performed by a hardware controller
using feedforward plus sliding mode terms. Linear state-
feedback loops act in the task space. The sliding surface
consists only by the velocities of the joints. The force
controller is based on a modified impedance scheme. The
authors show that the low resolution of the force sensor does
not affect significantly the performance of the proposed
controller. In addition, the chattering effect due to the
sliding mode terms is out of the bandwidth of the actuators.
The authors claim the chattering effect is filtered by the
compliance of the robot joints and links.

Slotine and Li14 presented an integrated solution for the
constraint motion control of a robot manipulator based on
the pattern of the hybrid force/position control architecture.
For the force part a common force controller based on the
feedback of the force and velocity error was used, while for
the motion part a sliding mode controller was developed. In
designing the controller, it was assumed that uncertainty
exist in the structure of both the manipulator and the
environment. For this reason, an adaptive algorithm is used
for the estimation of the robot and environment parameters.
Except the discussion about the control design, Slotine and
Li analysed some significant issues on the relation between
the joint and Cartesian dynamics of robots which are used in
the present paper for the design of the force control
algorithm.

In the present paper a sliding force controller is
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developed. The environment is supposed to be an unknown
passive mechanism with damping and stiffness properties
while the robot dynamics is assumed known. The controller
uses only the bounds of the environment dynamic character-
istics. As it will be shown in the simulation results the
proposed controller can compensate structured or unstruc-
tured uncertainty. The robot controller can accommodate
contact forces with either linear or non-linear environments
presenting coupled or uncoupled dynamics. The feedback
branch is designed in order to reduce the chattering.

The stability of the system is proved via Lyapunov theory.
In the case where the environment does not present damping
terms and its stiffness matrix is constant, an additional
adaptive estimation algorithm is implemented to reduce the
uncertainty. The adaptive system estimates the unknown
environment parameters and in the same time changes their
bounds in order to maintain the stability of the sliding mode
controller. The narrower uncertainty bounds results to the
reduction of chattering effect.

The force error is formed using the signal of a high
stiffness force sensor mounted on the wrist. The presented
controller eliminates the need of soft force sensors because
damping terms for the absorption of force oscillations are
included in the control law. The main contribution of the
proposed sliding force controller is that the robot can
accommodate contact forces produced by linear or non-
linear, coupled or uncoupled passive mechanisms.

In Section 3, the equations of robot dynamics in the
Cartesian Space are formulated. In Section 4.1, the
equations for the sliding controller are designed and the
stability of the controller is studied. The adaptive estimation
algorithm is described in Section 4.2. In Section 5, the
results of the simulated system using the introduced sliding
controller are presented, while in Section 6 the results using
a combination of the sliding controller with an adaptive
estimator are presented. Finally, in Section 7 the innovative
issues of the presented method are discussed.

2. DEFINITION OF THE PROBLEM AND ROBOT
DYNAMICS
In Figure 1, a simple sketch shows the basic geometry of a
rigid robot interacting with a passive mechanism. The
dynamic behaviour of this system in the Cartesian space is
described by the following set of equations:14

Hr(xr)ẍr +Cr(xr, ẋr)ẋr +gr(xr)=u2F s

He ẍ e +Ce(ẋ e)ẋ e +K e(x e)x e =F s

F s =Ks(xr 2x e) (1)

Ks =RT KSOR

where, xr PRn represents the robot end-point displacement
around the equilibrium point, xe PRn represents the environ-
ment deformation around the equilibrium point,
Hr(xr)PRn

3 Rn is the inertia matrix of the robot expressed in
the Cartesian space, Cr(xr, ẋr)PRn

3 Rn is the matrix of
coriollis forces of the robot expressed in the Cartesian
space, gr(xr)PRn is the Gravitational forces vector,
He PRn

3 Rn is the inertia matrix of the environment and the
masses that are mounted on the robot after the force sensor
(tools etc), Ce(ẋe)PRn

3 Rn is the damping matrix of the
environment, Ke(xe)PRn

3 Rn is the stiffness matrix of the
environment, Fs PRn is the force vector measured by the
force sensor, Kso PRn

3 Rn is the stiffness matrix of the force
sensor expressed in its coordinate system, RPR3

3 R3 is the
rotation matrix that relates the co-ordinate system of the
sensor with the co-ordinate system that is parallel to the
global co-ordinate system, Ks PRn

3 Rn is the stiffness
matrix of the force sensor on the global co-ordinate system,
u is the control vector for the robot referred to the Cartesian
space, nPN is the number of degrees of freedom of the
manipulator end point.

For the description of the uncertainty of the stiffness and
the damping of the environment the following formula is
used:

B =(I+D)B̂ and udij u ≤ dij, i=1 . . n, j=1 . . n (2)

where BPRn
3 Rn is the stiffness matrix Ke(xe) or the

damping matrix Ce(ẋe), DPRn
3 Rn is the parametric uncer-

tainty matrix, DPRn
3 Rn is the matrix that bounds the

parametric uncertainty of the stiffness matrix K̂e(xe) or the
damping Ĉe(ẋe). The entries for matrices D and D are dij and
dij respectively. In the following analysis the symbol ∧ is
used for the estimated value of a quantity.

The matrices Ke(xe) and Ce(ẋe) might be full and
nonlinear, so environments with complete coupled dynamic
systems are described. This approach is close to applica-
tions where the robot drives a passive mechanism. Although
the nonlinearity of the matrices Ke(xe) and Ce(ẋe) their
estimations K̂e(xe) and Ĉe(ẋe) can be nonlinear or constants.

The matrices Hr(xr), Cr(xr, ẋr), and vector gr(xr) are given
by the following relations [14]:

Hr =J2TH*(q)J21

Cr =J2TC*(q, q̇)J21 2J2TH*(q)J21J̇J21

(3)

gr =
U
xr

u =J2Tt

where, H*(q)PRm
3 Rm is the inertia matrix of the robot in

joint space, C*(q, q̇)PRm
3 Rm is the coriollis matrix of the

robot in the joint space, JPRn
3 Rm is the Jacobian matrix of

the robot, U is the potential of the gravitation field, tPRm isFig. 1. Robot End-Effector with 2D environment.
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the torque vector in the joint space, q is the vector of the
joint coordinates and m is the number of degrees of freedom
of the robot manipulator.

From the above equations, it is clear that the dynamics of
the robot expressed in the Cartesian space is strictly related
to the joint displacements and velocities.

3. DESIGN OF THE FORCE CONTROLLER
In the present study two controllers are proposed based on
the sliding control method. The first controller can be used
in the case where the environment has linear or non-linear
damping and stiffness terms, which can be bounded. The
second controller can be used when the damping effect of
the environment is small or zero and the stiffness matrix is
constant. In this case, an adaptive algorithm is combined
with the sliding controller. The adaptive law is used to
reduce the uncertainty bounds that are selected for the
sliding controller. The reduction of the uncertainty bounds
decreases considerably the chattering in the response, due to
the action of the non-linear part of the controller. The
adaptive estimator is based on the gradient method.14

The design of the force controller is based on the
following assumptions:

• The environment is a passive mechanism described by its
stiffness, damping and inertia characteristics.

• The inertia of the devices -gripper or tool- mounted after
the force sensor, are included at the inertia of the
environment, and all of them are considered known.

• The stiffness and the damping parameters of the environ-
ment are not known, however their bounds are known.

• The dynamic characteristics of the robot are known.

The most common force applications include environ-
ments where stiffness characteristics are dominant.
However, some force applications are more complicated and
the environment is characterised by damping and inertia
terms.

The second assumption is related to the structure of the
environment. The inertia of the environment or the passive
mechanism can be determined because in most of the cases
the inertia of the environment is actually the inertia of the
gripper and of the grasped objects, and it is quite smaller
than the inertia of the robot manipulator. In most of the
cases, the stiffness and the damping of the environment are
not known or are poorly known. The controller designed
under this assumption increases the production flexibility of
the robot, because it can manipulate a variety of environ-
ment/mechanisms where the knowledge of their stiffness or
damping characteristics is quite poor.

It is assumed that the robot dynamics is known since the
robot dynamics could be determined once or could be
provided by the robot manufacturer. In cases of force
application, the variation of the positions of the robot joints
around the equilibrium point is relatively small, therefore
the robot end-point velocities and the relevant coriollis
forces are quite low.

3.1 Sliding mode force controller
The sliding surface based on the force error is given by the
following formula:

s =(Ḟs 2 Ḟd)+L(Fs 2Fd) (4)

Where Fd: is the desired force.
L: is a positive definite diagonal matrix

According to Filippov’s construction,15 the condition ṡ =0
results to the convergence of the sliding error lim

t→∞
is i2 =0.

Using the condition ṡ=0 the optimum control law û for each
time step is obtained. The sliding error includes a differ-
ential component of the force error and not an integral one.
The integration of the force error reduces the effect of the
noise in the force signal. However, the differential compo-
nent makes the system to respond faster. In addition, the
noise in the force signal corresponds to tiny position error
due to the high stiffness of the force sensor. Almerico et al13

showed that the low resolution on the force signal and the
existed noise do not affect so much to performance of their
controller. Finally, the system has enough time to process
the measured force signal in order to reject noise and to
produce a smooth force derivative due to the difference
between the force feedback sampling rate and the actuation
bandwidth.13

Applying the Fillipov’s construction to achieve ṡ =0, the
best approximation law of a continuous control law is
obtained:

û=Fs +Crẋr +gr +HrK
21
s [F̈d 2L(Ḟs 2 Ḟd)]

+HrH
21
e (Fs 2 Ĉe(ẋe)ẋe 2 K̂e(xe)xe) (5)

where, the environment deformation xe and its derivatives
can be estimated by:

xe =xr 2K21
s Fs

(6)
ẋe = ẋr 2K21

s Ḟs

The equivalent control law given by equation (5) is the
continuous part of the control law that would maintain ṡ=0,
if the dynamics were exactly known. In order to obtain the
stability of the system despite the environment uncertainty
an additional discontinuous term across the surface s=0 is
added to û:14

u= û2Q
s

isi2 +d
(7)

where Q is a positive definite matrix, and d is a very small
positive number.

The condition lim
t→∞

s=0 minimises the force error and its

derivative, because the sliding surface can be interpreted as
a set of first order linear filter in series for the state space
errors where the matrix L provides the gains for these
filters. However, the condition lim

t→∞
s=0, leads to invariant

sets for the state space of the robot manipulator in the case
of constant desired forces. For these invariant sets, the
velocity of the robot end point is equal to the velocity of the
environment but not zero. The condition lim

t→∞
s=0 leads to

the following equations:

Fd =Fs

Ḟs =0J⇒ẋr = ẋe (8)
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This means that for a constant desired force the control
law completes the task but maybe the end point of the robot
still moves with a velocity equal to the velocity of the
environment. This leads to a non-desirable oscillatory
response of the system.

In addition, the proposed control law cannot absorb
sufficiently the robot end-point oscillations. In order to
suppress the undesirable invariant sets, oscillations or
impacts an absorption term is added to the control law:

u = û 2Q
s

is i2 +d
2Kdẋr (9)

The matrix Kd is determined using Lyapunov stability
theory. The following Lyapunov function candidate is
formulated:

V(t)=
1
2

sTK 21
s s+

1
2

ẋT
r Hrẋr (10)

K 21
s : is a positive definite matrix as it is

proved in Appendix I.

The selected Lyapunov function candidate represents the
strain energy of the error that is stored in the sensor and the
kinetic energy of the robot end-point expressed in the
Cartesian space. The strain and the kinetic energy are
positive by definition.

Differentiation of equation (10) with respect to time
yields:

V̇ (t)=sTK 21
s ṡ+ ẋT

r Hr ẍr +
1
2

ẋT
r Ḣr ẋr ≤0 (11)

Since the matrix (Ḣr 22Cr) is skew-symmetric,9 the
following relation is true:

1
2

ẋT
r (Ḣr 22Cr)ẋr =0 (12)

Substituting equation (12) in the equation (11) gives:

V̇(t)=sTK 21
5 ṡ+ ẋ T

r Hr ẍr + ẋ T
r Cr ẋr (13)

Lets assume that the non-linear term of the proposed
control law is given by the following equation:

Q
s

isi2 +d
= HrSN

s
isi2 +d

+m D (14)

where NPRm
3 Rm is a positive definite diagonal matrix and

the entries mi of the vector m are given by the following
equation:

mi = pi·sign(si), i=1, . . ,3 (15)

pi = ua1i
u + ua2i

u (16)

where

a1 =H 21
e DcĈe(ẋe)ẋe and a2 =H 21

e Dk K̂e(xe)xe (17)

The matrices Dc and Dk are the bounds of the correspond-
ing uncertainty matrices Dc and Dk. From the above
formulas, it is obvious that vector m depends on the
bounded dynamics of the environment and compensates the
uncertainty.

It is assumed that the damping term in the control law is
given by:

Kd ẋr =
H 21

r s+ ẋr

iH 21
r s+ ẋri2

2

ẋT
rFSû2Q

s
isi2 +d

2F s D+Gẋr G (18)

where GPRn
3 Rn a positive definite matrix.

Using the equations (13) to (18) the following inequality
for the time derivative of the Lyapunov function candidate is
obtained:

V̇(t)≤2sTN
sT

isi2 +d
2 ẋ T

r Gẋr (19)

From the above analysis, it is concluded that:

V(t) is a positive definite function,

V̇(t) is a negative definite function, and

V(t)→∞ as isi2→∞ and ixri2→∞

Therefore, the equilibrium point isi2 =0 and ixri2 =0 is
globally asymptotic stable. Moreover if the matrices N and
G are selected to be equal to a·K 21

s and a·Hr respectively
with a≥0, then the equilibrium point is exponentially
stable.

From the above analysis it is concluded that the presented
control algorithm has some differences from the classical
approach given by Asada and Slotine.15 The first is that

matrix N is multiplied with vector 
s

isi2 +d
. In the classical

approach matrix N is multiplied with vector sign(s). The

use16 of 
s

isi2 +d
vector in the feedback of the presented

sliding controller reduces the chattering due to the following
inequality:

si

isi2 +d
≤1, ; si PR (20)

where si is the i-th element of vector s
According to this result higher convergence rates of the

Lyapunov function can be achieved for the same amplitude
of the chattering effect.

The second difference lies upon the selection of the
elements of the feedback matrix Q. Slotine and Asada15 are
using the Frobenius-Perron theorem in order to determine
the elements of the matrix Q, which is a difficult task. In the
proposed method the feedback vector is calculating quite
easily through the equation (14).

Finally in the control law a damping term for the end
point of the robot is included. As it is shown in equation (18)
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this term takes into consideration both the sliding error and
the robot end point velocity. Therefore, the desired force is
applied without any undesirable overshooting in the
response of the robot end point.

3.2 Adaptive estimation of the unknown dynamics of the
environment-mechanism
The sliding mode control law causes considerable chattering
in cases where a wide range of uncertainty is considered. An
adaptive estimation algorithm is introduced to estimate
some dynamic properties of the environment in order to
reduce the bounds of the uncertainty, while the stability and
the basic structure of the control system is not affected. The
proposed algorithm is valid when the damping of the
environment is zero or very small and the stiffness matrix is
constant. These assumptions are very close to most force
control cases.

The following error function is defined by:

e =(K̂e 2Ke)xe (21)

A matrix Y(xe) can be determined by Ke·xe =Y(xe)·p ,
where vector p is the vector of the constant parameters of
the matrix Ke. In the same way, it is true that K̂e·xe =Y(xe)·p̂.
Using these relations, the estimation error e can be written
in the following form:

e =Y(xe)·p̃ (22)

where

p̃ = p̂ 2p (23)

The equation (21) is equivalent to the following equa-
tion:

e =F̂ s 2Fs (24)

where

F̂s =H eẍ2 +K̂e xe (25)

The error e is calculated using equation (24), because the
vector F̂ s is determined from equation (25) and the F s vector
is measured by the force sensor.

Applying the gradient adaptation law15 to the error e , the
following update equation for the K̂ e is obtained:

˙̂p =2g·YT(x e)·e (26)

where g is a positive constant.
The stability of the adaptation algorithm is investigated

using the following Lyapunov function candidate:

V(t)=
1
2

p̃T· p̃ (27)

This Lyapunov function candidate expresses the magni-
tude of the error of the estimated variables. Since V(t)
expresses a magnitude-distance in a metric space- it is

positive. Convergence of Lyapunov function to zero leads to
the reduction of the estimated variable’s error. The time
derivative of this Lyapunov function is the following:

V̇(t)=22·g·eT·e≤0 (28)

According to the above inequality the adaptive algorithm
is stable. Although the stability is achieved the convergence
of the estimated parameter error p̃ to 0 is not always
guaranteed. A brief study of the conditions that should be
satisfied in order to achieve the convergence is presented in
Appendix II.

The estimated stiffness matrix by the update law is used
for the reduction of the uncertainty. In the case of unknown
environment stiffness and zero damping the only assump-
tion that is needed it hat stiffness matrix of the environment
have to be constant. Using equation (2) for constant Ke the
following relation is obtained:

Ke =(I +Dk)K̂e (29)

The time derivative of the stiffness uncertainty matrix is
obtained by differentiating equation (29).

Ḋk =2 (I +Dk) ˆ̇KeK̂
21
e (30)

By applying equation (2) for D=Dk , can be assumed that
a positive constant qij exists satisfying the following
equation:

udk ij u + qij =dk ij , i=1, . . . , 3 and j=1, . . . , 3 (31)

After the differentiation of equation (31) the following
equation is obtained:

ḋ k ij =sign(dk ij)ḋk ij (32)

The combination of equation (30) and equation (32),
relates the estimated matrix K̂e with the matrix of the
bounds Dk. In order to estimate the matrix Dk, from equation
(2) and equation (20) the following is obtained.

e=2Dk · K̂e · xe (33)

The system in equation (33) is indeterminate but one
solution is given by the following relation:

Dk =2e·
xe

ix e i2
2

K̂ 21
e (34)

The algorithm drives the variables d k ij to be equal to the
positive constant qij and udk ij u =0.

From the above analysis it is concluded that the proposed
adaptive algorithm obtains two targets. The first target is the
determination of the values of the environment stiffness
matrix elements. The second target is the change of the
uncertainty bounds according to the updated values of the
estimated stiffness matrix of the environment.

To achieve the first target a simple gradient adaptive
algorithm is used. Although the stability of the algorithm is
achieved the convergence of the estimated values to the real
ones is not guaranteed but it depends on the values of the
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vector xe in order to maintain the stability of the sliding
controller.

The achievement of second target is based on the
assumptions of constant Ke matrix and the constant distance
between the elements of matrices D and D (see equation
(31)). The second assumption is done in order to maintain
the stability of the proposed sliding controller.

The presented adaptive algorithm uses the estimation of
the environment stiffness matrix for the reduction of the
stiffness uncertainty bounds. According to this mechanism
dynamics is ‘transferred’ from the non-linear part of the
control law to the equivalent control law without any
reduction of the robustness of the sliding controller. The
interconnection between the sliding controller and the
adaptive algorithm is shown in Figure 2.

4. SIMULATION RESULTS FOR THE DEVELOPED
CONTROLLERS
In order to validate the performance of the developed
controllers two different simulations were performed. In the
first simulation the environment damping is neglected while
the stiffness matrix is assumed constant and diagonal. The
adaptive law estimates the stiffness parameters of the
environment and reduces the initially selected bounds of the
stiffness. In the second simulation the environment stiffness
is coupled and the used elastic model is nonlinear. In this
case the adaptive estimator is not combined with the force
sliding controller without the adaptive estimator, because
the proposed adaptive estimator is valid for constant
stiffness matrix only.

The robot manipulator used in the simulation is a two
D.O.F. planar rigid manipulator with a force sensor mounted
at the robot end point. The dynamic parameters of the robot
manipulator are the following:

l 1 =1m, l 2 =1m

m1 =10kg, m2 =10kg

where l 1 and l 2 are the lengths of the robot links, m1 and
m2 are the masses of the robot links.

The stiffness of the force sensor is the following:

KSO =F 104

0
0

104 G(N/m)

5.1 Example with Constant Stiffness Matrix
In the first example the inertia and stiffness matrices are the
following:

H e =F1
0

0
1GSN sec2

m D, Ke =F103

0
0

103G(N/m)

The control parameters are the following:

K̂e =F104

0
0

104G(N/m), Dk =F3
0

0
3G

N =F50
0

0
50G, L=F1.5

0
0

1.5G, G =F35
0

0
35G, g =100

In Figures 3–4 the desired and achieved forces applied to
the environment in x and y directions are shown. The
desired force waveform is drawn with dashed lines while the
response is drawn with solid line. As it can be seen the
steady state error is tiny, less than 0.2% and the settling time
is about 2 seconds. The transient part of the response
presents quickly damped oscillations due to the additional
damping term provided by the control system. Significantly
tiny is the size of the chattering effect in the force response.
In the steady state the chattering amplitude is near to zero
due to the action of the adaptive estimator, which reduces
the bounds of the environment stiffness uncertainty.

Fig. 2. Relation between the adaptive law and the control
system.

Fig. 3. Desired and achieved force on the environment along
x-axis.
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In Figures 5–6 the velocity of the environment in x and y
directions are shown. In these diagrams the action of the

damping provided by the control system is more obvious.
In Figures 7–8 the reduction of the elements of the matrix

Dk are shown. The initial value of both diagonal elements of
Dk is 3. At the steady state the elements of Dk are reduced
to 0.25 and 1.1, respectively. In the same time the adaptive
system estimates the actual values of the diagonal elements
of the environment stiffness matrix. The estimation error is
less than 0.01%. In the present case the elements of vector
xe have the same sign and the environment stiffness matrix
is diagonal. According to the results of the Appendix II the
estimated values of the environment stiffness matrix
convergence exponentially to the actual ones.

This combined action of the adaptive system results to the
near-smooth force response with respect to the sliding
controller stability.

4.2 Example with coupled and nonlinear stiffness matrix
In the second simulation the dynamic properties of the
environment are the following:

Fig. 4. Desired and achieved force on the environment along
y-axis.

Fig. 5. Velocity of the environment along x-axis.

Fig. 6. Velocity of the environment along y-axis.

Fig. 7. Reduction of environment stiffness boundaries along
x-axis.

Fig. 8. Reduction of environment stiffness boundaries along
y-axis.
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He =F 1
0

0
1GSN sec2

m D, Ke(xe)=F f (x)
210

210
f (x) G(N/m),

Ce =F 3
21

21
3 G(N·sec/m)

f (x)=H 5·105· ux u , ux u ≤2·1023

500, ux u >2·1023 J
The selected control parameters are the following:

K̂e =F 104

215
215
104 G(N/m) Dk =F 25

2
2

25 G

Ĉe =F 1.5
21

21
1.5 GSN sec2

m D, Dc =F 5
5

5
5 G

N =F 50
0

0
50 G, L=F 5

0
0
5 G, G =F 35

0
0

35 G

In Figure 9 the graph of f (x) is shown. It is obvious that
for small environment deflections, the diagonal stiffness
elements are low. Below the level of 2·1023 (m) the diagonal
stiffness elements are linear functions of the environment
deflection. After this level the diagonal stiffness elements
are constant and equal to 500 N/m.

In Figures 10–11 the desired and achieved forces applied
to the environment on x and y directions are shown. At the
beginning of the force response, oscillations appear due to
the low values of the diagonal elements of the stiffness
matrix. These oscillations are absorbed quickly by the
damping terms of the environment and the control system.
The error in the steady state is tiny, less than 0.2%. The
settle time for the force response in this simulation is about
2 sec. The oscillations in the force responses of the
environment in this case are bigger than the corresponding
oscillations appeared in the response shown in Figures 3–4.
This is caused by the small values of the stiffness of the
environment at the first steps of the simulation. In Figures
12–13 the velocities of the environment in x and y directions
are shown. In these figures the rate of absorption of the
transient response oscillations is shown better.

5 DISCUSSION ON THE METHOD
In this paper a sliding mode force controller is proposed.
The sliding error is formed by the signal of the end effector

Fig. 9. Environment stiffness.

Fig. 10. Desired and achieved force on the environment along
x-axis.

Fig. 11. Desired and achieved force on the environment along y-
axis.
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force sensor and the desired force. The environment acts as
a passive mechanism with inertia, damping and stiffness
properties. The exact models of the stiffness and damping
are not known, only the bounds of them are known.
Therefore, the proposed controller can encounter environ-
ments with structured or unstructured uncertainty. In the
proposed sliding mode controller, the function s/(is i2 +d)
was used instead of sign (s) function.15 This results to
smaller chattering amplitudes and easier determination of
the nonlinear part of the control law. Also the sliding error
is distributed to each axis according to the normalisation
law and the chattering effect is reduced. Velocity feedback is
added in order to reduce the velocities redundancy caused
by the form of the sliding error in the case of static load (see
equation (6)) and also to absorb the transient oscillations.

For the case where the environment stiffness is constant
and the environment damping can be neglected an adapta-
tion law is formed. The adaptation law reduces the
uncertainty because it narrows the bound of the stiffness
uncertainty. The small value of the uncertainty bounds
results to the smaller contribution of the nonlinear part of
equation (15) of the control law to the control input (see
equation (7)), while the equivalent control law given by

equation (5) is fed with the estimated values of the
environment stiffness matrix.

From the simulations, it is shown that the algorithm can
manipulate quite well environment with coupled, nonlinear
or linear stiffness. Although the simulated environment
stiffness was always lower than the force sensor stiffness, no
oscillations appeared in the steady state due to the use of
velocity feedback.

6. CONCLUSIONS AND FURTHER WORK
A robust force controller that can be combined with an
adaptive estimation module under specific circumstances is
presented. It is based on the sliding mode control. A
gradient adaptive algorithm is used for the estimation of the
stiffness of the environment when this is constant. The
controller was implemented for revolute robot manipulator
in the Cartesian space.

From the simulation results can be concluded that the
proposed controller guides the robot to apply the desired
forces to linear or nonlinear, coupled or uncoupled passive
mechanisms quite accurately. In the simulations the steady
state error is less than 0.2% in both cases. The settling time
depends on the values of the selected control parameters. In
the simulated cases, the control parameters are selected in
order to have small settling time with reasonable amplitudes
at the transient response oscillations. When the environment
presents high stiffness the settling time can be further
reduced while the overshooting is kept under desirable
limits.

As further work one can propose an experimental
application of the algorithm. The influence of the feedback
signals noise in the performance of the controller can be
investigated and the uncertainties of robot dynamics con-
sidered too into the non-linear part of the control law.
Finally, the extension of the proposed method for the
general problem of the Hybrid Force/Position control is a
very interesting task.
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APPENDIX I
In this appendix it will be proved that the matrix K 21

s is
positive definite. The mathematical formulation of this
proof is because the matrix K 21

so is positive definite. For the
matrix Kso the following relations are true:

ksoi, i
>0, ksoi, j

=0 ; i ? j (35)

The following relation gives the elements of the inverse
matrix of Kso:

{ksoi, i
}21 =1/ksoi, i

> 0, {ksoi, j
}21 =0 ; i ? j (36)

Therefore the matrix K 21
so is positive definite. The relation

between K 21
s and K 21

so is the following:

K 21
s =R 21 Kso R (37)

The following relation should be proved:

xT K 21
s x ≥0 (38)

From equation (37) results to the following relation:

xTK 21
s x=(xTR 21)K 21

so (Rx) (39)

If the transform matrix R is orthogonal then R21 =RT.
This happens in our application because matrix R is the
result of rotation of an orthogonal co-ordinate system. After
this consideration the equation (39) results to:

xTK 21
s x=(Rx)TK 21

so (Rx) (40)

From equation (40) results that K 21
s is positive definite

because K 21
so is positive definite.

The next step that is needed for the analysis of the
stability of the control system is to prove that K 21

s is

symmetric. From the above analysis it results that where R
is orthogonal then K 21

so is diagonal. According to these the
following relations are true.

K 2T
s =(R 21 K 21

so R)T ⇒K 2T
s =R 21 K 21

so R ⇒K2T
s =K 21

s (41)

APPENDIX II
In order to study the conditions under which the parameter
estimation error converges to zero it will be assumed that
the environment stiffness matrix satisfies the following
conditions:

Ke PR3
3 R3

rank(Ke)=3 (42)

{ke}i, j ={ke}j, i i=1 . . 3, j =1 . . 3

The environment stiffness matrix is symmetric
{ke}i, j ={ke}j, i i =1 . . 3, j =1 . . 3 due to the force compati-
bility and in the general case is coupled. The environment
stiffness matrix has the following form:

Ke =
k1, 1

k1, 2

k1, 3

k1, 2

k2, 2

k2, 3

k1, 3

k2, 3

k3, 3

(43)

From the above results that the number of the unknown
elements of the stiffness matrix is 6. Also the same from has
the matrix K̃e which is equal to matrix K̂e 2Ke. From
equation (21) and equation (22) results the following
system:

k̃1, 1

k̃1, 2

k̃1,3

k̃1, 2

k̃2, 2

k̃2,3

k̃1, 3

k̃2, 3

k̃3,3

xe1

xe2

xe3

=

y1, 1

y2, 1

y3, 1

y1, 2

y2, 2

y3, 2

y1, 3

y2, 3

y3, 3

y1, 4

y2, 4

y3, 4

y1, 4

y2, 5

y3, 5

y1, 5

y2, 6

y3, 6

k̃1, 1

k̃1, 2

k̃1, 3

k̃2, 2

k̃2, 3

k̃3, 3

(44)

The solution of the above system is the following:

Y =

xe1

0
0

xe2

xe1

0

xe3

0
xe1

0
xe2

0

0
xe3

xe2

0
0
xe3

(45)

According to [15], in order to achieve the convergence of p̃
to 0 the following condition has to be satisfied:

Et+T

t

Y T Ydt ≥ aI , a > 0 (46)
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After some calculations the above condition results to the
following conditions:

Cond.1

Et+T

t
x2

e1
dt ≥ r ,

Et+T

t
x2

e2
dt ≥ r ,

Et+T

t
x2

e3
dt ≥ r ,

Cond.2

Et+T

t
(x2

e1
+x2

e2
)dt ≥ r ,

Et+T

t
(x2

e1
+x2

e3
)dt ≥ r ,

Et+T

t
(x2

e2
+x2

e3
)dt ≥ r ,

Cond.3

Et+T

t
xe1

xe2
dt ≥ 0

Et+T

t
xe1

xe3
dt ≥ 0

Et+T

t
xe2

xe3
)dt ≥ 0

, r ≥ 0

(47)

The set of Cond.1 is always real. The set of Cond.2 is
satisfied always because the set of Cond.1 is satisfied. The
variable r can be selected according to the following norm:

r =min HEt+T

t
x2

e1
dt, Et+T

t
x2

e2
dt, Et+T

t
x2

e3
dt J (48)

For the set of Cond.3 the following conditions have to be
satisfied:

• The products xe1
xe2

, xe1
xe3

, xe2
xe3

are positive or
• The components of vector xe have at least one harmonic

component each of them.

In the case where the stiffness environment matrix is
decoupled it has the following form:

Ke =

k1, 1

0
0

0
k2, 2

0

0
0

k3, 3

(49)

From the above it follows that the number of the unknown
elements of the stiffness matrix is 3. In this case the
regression matrix Y is the following:

Y =

xe1

0
0

0
xe2

0

0
0
xe3

(50)

According to equation (47) and equation (50) the con-
vergence of the parameter estimation error is achieved when
the set of Con.1 is satisfied. As was mentioned before these
conditions are satisfied always, so when the environment
stiffness matrix is decoupled then the convergence of the
parameter estimation error is always guaranteed.
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