
J. Fluid Mech. (2013), vol. 717, pp. 361–375. c© Cambridge University Press 2013 361
doi:10.1017/jfm.2012.576

Distributed lock-in drives broadband
vortex-induced vibrations of a long flexible

cylinder in shear flow

Rémi Bourguet1,†, George Em Karniadakis2 and Michael S. Triantafyllou3

1Institut de Mécanique des Fluides de Toulouse, Université de Toulouse and CNRS, Toulouse,
31400, France

2Brown University, Providence, RI 02912, USA
3Massachusetts Institute of Technology, Cambridge, MA 02139, USA

(Received 4 August 2012; revised 4 August 2012; accepted 17 November 2012;
first published online 1 February 2013)

A slender flexible body immersed in sheared cross-flow may exhibit vortex-induced
vibrations (VIVs) involving a wide range of excited frequencies and structural
wavenumbers. The mechanisms of broadband VIVs of a cylindrical tensioned beam of
length-to-diameter aspect ratio 200 placed in shear flow, with an exponentially varying
profile along the span, are investigated by means of direct numerical simulation. The
Reynolds number is equal to 330 based on the maximum velocity, for comparison with
previous work on narrowband vibrations in linear shear flow. The flow is found to
excite the structure at a number of different locations under a condition of wake–body
synchronization, or lock-in. Broadband responses are associated with a distributed
occurrence of the lock-in condition along the span, as opposed to the localized lock-in
regions limited to the high inflow velocity zone, reported for narrowband vibrations
in sheared current. Despite the instantaneously multi-frequency nature of broadband
responses, the lock-in phenomenon remains a locally mono-frequency event, since
the vortex formation is generally synchronized with a single vibration frequency at
a given location. The spanwise distribution of the excitation zones induces travelling
structural waves moving in both directions; this contrasts with the narrowband case
where the direction of propagation toward decreasing inflow velocity is preferred. A
generalization of the mechanism of phase-locking between the in-line and cross-flow
responses is proposed for broadband VIVs under the lock-in condition. A spanwise
drift of the in-line/cross-flow phase difference is identified for the high-wavenumber
vibration components; this drift is related to the strong travelling wave character of the
corresponding structural waves.

Key words: flow-structure interactions, vortex shedding, vortex streets

1. Introduction
Vortex formation downstream of a slender flexible structure with a bluff cross-

section induces unsteady forces on the body and can result in structural vibrations.

† Email address for correspondence: bourguet@imft.fr
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Vortex-induced vibrations (VIVs) of long deformable bodies are encountered in
a number of physical systems, especially in ocean and offshore engineering
systems, where they cause increased fatigue damage, and sometimes failure of
cables and marine risers. The prediction and attenuation of such vibrations require
detailed understanding of the distributed fluid–structure interactions involved in their
development.

The significantly simpler problem of a rigid circular cylinder, which is either
free to move or forced to oscillate in the cross-flow direction within a uniform
current, has served as the canonical problem to study the fundamentals of VIV
(Bearman 1984, 2011; Mittal & Tezduyar 1992; Carberry, Sheridan & Rockwell
2001; Williamson & Govardhan 2004; Klamo, Leonard & Roshko 2006; Leontini,
Thompson & Hourigan 2006). Maximum-amplitude self-excited oscillations occur
when the frequency of vortex formation is relatively close to the natural frequency
of the structure; then the frequency of vortex shedding can be entrained to become
equal to the frequency of vibration; this condition of wake–body synchronization is
referred to as lock-in. Under lock-in, the vortex shedding frequency can be driven
far from the Strouhal frequency; also, the vibration frequency can shift considerably
away from the original natural frequency in still water due to changes in the value
of the effective added mass (Williamson & Govardhan 2004). Substantial changes in
the cross-flow response and fluid forces were noted when the rigid cylinder is also
allowed to move in the in-line direction (Sarpkaya 1995; Jeon & Gharib 2001; Jauvtis
& Williamson 2004; Dahl et al. 2007, 2010).

The VIVs of slender flexible cylinders in non-uniform currents have typically high
structural wavenumbers and consist of a mixture of standing and travelling wave
patterns, often involving multiple frequencies of response (Newman & Karniadakis
1997; Chaplin et al. 2005; Lie & Kaasen 2006; Lucor, Mukundan & Triantafyllou
2006; Vandiver, Jaiswal & Jhingran 2009; Bourguet, Karniadakis & Triantafyllou
2011a). Since the vortex shedding frequency past a stationary cylinder depends on the
inflow velocity, a sheared oncoming current can potentially excite a range of natural
frequencies for a long deformable cylindrical structure. The shear rate in the oncoming
current and the profile of the flow velocity component normal to the structure are
important factors in the transition from mono- to multi-frequency vibrations (Vandiver,
Allen & Li 1996; Bourguet, Lucor & Triantafyllou 2012). For a flexible cylinder in
linear shear flow two types of responses were found, either a mono-frequency or a
narrowband multi-frequency response, exhibiting very similar features (Bourguet et al.
2012). For the latter case, a limited range of high-wavenumber vibration components
is excited in each direction (in-line and cross-flow). In both types of response, energy
is transferred from the fluid to the structure under a locally mono-frequency lock-in
condition, which occurs in a spanwise region located in the high-velocity zone and
characterized by an in-line/cross-flow response phase difference that lies within a
specific range.

Lucor, Imas & Karniadakis (2001) and Lucor et al. (2006) showed that
exponentially sheared currents can trigger cross-flow vibrations involving a much
wider range of frequencies, associated with both low and high spatial wavenumbers.
The main characteristics of these broadband structural responses can be captured by
means of an empirical representation of the flow through a distribution of wake
oscillators (Violette, de Langre & Szydlowski 2010). However, previous studies did
not provide information concerning wake patterns, fluid–structure energy transfer or
regarding the synchronization of the in-line and cross-flow vibrations.
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FIGURE 1. (a) Linear and (b) exponential inflow velocity profiles; (c,d) selected time series
of the cross-flow displacement along the span in the (c) linear and (d) exponential shear
flow cases; (e,f ) r.m.s. value of the (e) in-line displacement fluctuation and (f ) cross-flow
displacement, along the span.

Hence, the validity of the fluid–structure interaction mechanisms identified in the
narrowband VIV case is under question for broadband responses and the possible
occurrence of new phenomena needs to be investigated. To address these aspects,
a combined wake–body analysis of broadband VIVs is presented on the basis of
high-resolution simulation results issued from direct numerical simulation of the flow
past a tensioned beam, in conditions similar to those considered in a previous work on
narrowband responses reported by Bourguet et al. (2011a).

2. Formulation and numerical method
Direct numerical simulation of the incompressible Navier–Stokes equations is used

to predict the flow past a flexible cylinder exposed to a sheared oncoming cross-flow.
The inflow is parallel to the global x-axis and sheared along the global z-axis. The
current velocity profile is similar to the exponential profiles employed in the works
of Lucor et al. (2001, 2006), where structural vibrations involving a wide range of
frequencies have been observed. For comparison purposes, some results concerning
narrowband VIVs in linear shear flow reported in a previous paper (Bourguet et al.
2011a) are also presented. The linear and exponential velocity profiles are plotted in
figures 1(a) and 1(b). In both cases, the ratio between the maximum and the minimum
inflow velocities is set equal to 3.67. The cylinder diameter D and the maximum
oncoming flow velocity U, which occurs at z = 0, are used to non-dimensionalize the
physical variables. The Reynolds number based on D and the inflow velocity varies
from 90 to 330, a range where narrowband multi-frequency vibrations have been
observed in linear shear flow as reported in the above-mentioned work.
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The cylinder has a circular cross-section and an aspect ratio of L/D = 200, where
L is the length in its equilibrium position. It is pinned at both ends and free to
move in the in-line (x) and cross-flow (y) directions. The structural/fluid mass ratio
is defined as m = ρc/ρf D2, where ρc is the cylinder mass per unit length and ρf

the fluid density (Newman & Karniadakis 1997). The tension, bending stiffness and
damping of the structure are designated by T , EI and K, respectively. The in-line and
cross-flow displacements of the cylinder are denoted by ζx and ζy and the in-line and
cross-flow fluid force coefficients by Cx and Cy. The influence of gravity is neglected.
The cylinder structural dynamics are governed by an extensible tensioned beam model,
expressed as follows in non-dimensional formulation:

∂2ζ{x,y}
∂t2

− ω2
c

∂2ζ{x,y}
∂z2

+ ω2
b

∂4ζ{x,y}
∂z4

+ K

m

∂ζ{x,y}
∂t
= C{x,y}

2m
. (2.1)

Here t denotes the non-dimensional time variable, and ωc and ωb denote the cable
and beam phase velocities, defined as ω2

c = T/m and ω2
b = EI/m, respectively. As

in previous simulations concerning linear shear flow, the mass ratio is equal to six
(m= 6) and the structural damping is set to zero (K = 0) to allow maximum-amplitude
oscillations. The cable and beam phase velocities are set to comparable values,
(ωc, ωb) = (5, 10) in the present exponential shear case versus (ωc, ωb) = (4.55, 9.09)
in the linear shear case (Bourguet et al. 2011a).

The coupled fluid–structure system is solved by the parallelized code Nektar, based
on the spectral/hp element method (Karniadakis & Sherwin 1999). Details concerning
validation of the numerical method have been reported by Newman & Karniadakis
(1997) and Evangelinos & Karniadakis (1999). The computational domain (50D
downstream and 20D in front, above and below the cylinder) and discretization (2175
elements with polynomial order p = 7 in the (x, y) planes and 512 complex Fourier
modes in the z direction) are the same as in Bourguet et al. (2011a). A buffer region
(not presented in the following) is used to enforce the spanwise periodicity of the
inflow velocity profile implied by the Fourier expansion used in the z direction; this
technique has been validated in the above-mentioned reference. The present analysis is
based on time series of more than 300 time units, collected after convergence of the
time-averaged in-line displacement of the body.

3. Broadband structural responses
The mixed standing–travelling wave nature of the structural vibrations is illustrated

in figure 1(c,d), where selected time series of the cross-flow displacement are plotted
along the span for the linear and exponential flow velocity profiles. In the case of
linear shear, the structural waves appear mainly oriented from the high to the low
inflow velocity regions. In contrast, no preferential orientation of the waves can be
identified in the exponential shear case. Root mean square (r.m.s.) values of the
vibration amplitudes along the span are presented in figure 1(e,f ). The amplitudes
reached in the cross-flow direction and the amplitude ratio of approximately two
between the linear and exponential shear cases are comparable with those reported
for flexible cylinders allowed to move in the cross-flow direction only within similar
currents (Lucor et al. 2006). The ratio between the maximum r.m.s. values of the
cross-flow and in-line response amplitudes is similar for both profiles; the impact of
the Reynolds number on this ratio, which decreases at higher Reynolds number, has
been reported in a previous work (Bourguet et al. 2011a).
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FIGURE 2. Spatiotemporal spectral analysis of the cross-flow displacement in the (a) linear
and (b) exponential shear flow cases. Selected vibration frequencies are identified by white
vertical dashed lines. The wavenumbers of selected sine Fourier modes are indicated by
yellow horizontal dashed lines. Red crosses denote the natural frequencies associated with
these wavenumbers.

For a better quantification of the cylinder vibrations, a spatiotemporal spectral
analysis based on a two-dimensional fast Fourier transform of the structural responses
is performed. In figure 2, the cross-flow displacement power spectral density (PSD)
is plotted as a function of the temporal frequency and spatial wavenumber, in the
linear and exponential shear flow cases. Positive frequencies are considered and
thus negative wavenumbers correspond to waves travelling from high- to low-velocity
regions (increasing z) while positive wavenumbers are associated with waves travelling
in the other direction.

Both inflow velocity profiles lead to multi-frequency vibrations. As reported
previously (Bourguet et al. 2012), in linear shear flow, the structural response involves
a narrow range of excited frequencies. In contrast, the present exponential shear profile
leads to a large vibration bandwidth, also observed by Lucor et al. (2006) for free
oscillations in the cross-flow direction only. The ratio between the maximum and
minimum vibration frequencies is equal to 3.4 approximately in the exponential shear
case while it is smaller than 1.2 in the linear shear case.

The large frequency bandwidth of the structural response in the exponential shear
case is accompanied by the excitation of a wide range of spatial wavenumbers. Each
excited frequency is generally associated with a single structural wavenumber. The
excited wavenumbers involved in the cross-flow vibration correspond to sine Fourier
modes in the range n ∈ {4, 7, 8, 13} with the nth mode defined by sin(πnzD/L). With
similar structural parameters, only high wavenumbers associated with three adjacent
Fourier modes (n ∈ {13, 14, 15}) are noted in the linear shear case. The vibration in the
exponential shear case, characterized by a large frequency bandwidth and excitation of
both high and low structural wavenumbers, is referred to as a broadband response by
comparison with the narrowband response identified previously in linear shear flow.

As also noted in previous studies, each excited frequency in the cross-flow
direction can be related, with a ratio of two, to an excited frequency in the in-
line direction. As a consequence, the in-line structural response also presents a clear
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narrowband or broadband character, depending on the oncoming flow velocity profile.
In contrast to the pairs of in-line/cross-flow response frequencies, the corresponding
excited wavenumbers generally exhibit a ratio different from two; this behaviour
is expected because of the nonlinear frequency–wavenumber dispersion relation of
tensioned beams. The following dispersion relation may be used to estimate the natural
frequency f associated with the structural wavenumber k:

f =
√√√√ m

m+ π
4

Cm

k
√
ω2

c + 4π2ω2
bk2, (3.1)

where Cm is the added mass coefficient induced by the fluid forces in phase with the
body acceleration. Selected response frequencies and wavenumbers of selected sine
Fourier modes are indicated by dashed lines in figure 2. The natural frequencies
corresponding to the identified wavenumbers are indicated by red crosses. These
frequencies, based on the above dispersion relation with the fluid added mass
coefficient Cm = 1, may present significant departures from the actual peaks which
can be related to the effective added mass variability.

The comparison of the magnitudes of the negative- and positive-wavenumber PSD
peaks at each vibration frequency confirm the occurrence of waves travelling in both
directions in the broadband response case, as shown in figure 1(d); this aspect will be
clarified by the spanwise distribution of the excitation/damping regions in § 5.

In the case of narrowband vibrations, previous work has shown that the structural
responses remain instantaneously mono-frequency at a given spanwise location; the
overall multi-frequency character is due to a temporal drift of the instantaneous
response frequency, which switches among possible response frequencies (Bourguet
et al. 2011a). This behaviour is illustrated in figure 3(a) where a time series of the
cross-flow displacement in the linear shear case and the corresponding scalogram, i.e.
the squared magnitude of the signal’s continuous wavelet transform as a function of
the frequency and time, are presented.

Herein the question of the instantaneous mono- or multi-frequency nature of
broadband vibrations is addressed by a similar time/frequency analysis. A typical
time series of the broadband cross-flow response in a spanwise region where the four
vibration frequencies exhibit significant contributions is plotted in figure 3(b). In the
associated scalogram, a temporal shift similar to the narrowband response behaviour
can be noted between two intermediate frequencies (0.083 and 0.095). However, if
all four possible vibration frequencies are considered, it is clearly shown that multiple
frequencies, and thus multiple structural wavenumbers, can respond simultaneously. As
a consequence, the observed broadband VIVs can be regarded as an instantaneously
multi-frequency phenomenon.

Next, the occurrence of broadband structural vibrations is related to the
fluid–structure interaction mechanisms.

4. Distributed lock-in in shear flow
For a slender flexible body subject to multi-frequency VIVs in non-uniform current,

the lock-in condition can be defined at each spanwise location and each cross-flow
vibration frequency as the local synchronization between the body oscillation and
the vortex formation. The condition is referred to as non-lock-in if the structural
vibration and the vortex shedding frequencies do not coincide. The spanwise region
which envelopes all the locally locked-in locations at a given vibration frequency is
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FIGURE 3. Selected time series of the cross-flow displacement and corresponding frequency
content as a function of time (scalogram), in the (a) narrowband (linear shear flow, z = 7.5)
and (b) broadband (exponential shear flow, z = 9.4) response cases. Dashed lines denote the
vibration frequencies identified in figure 2.

referred to as the lock-in region. The vortex shedding frequency is established by
means of the PSD of the cross-flow component of the flow velocity downstream of
the cylinder, which is plotted along the span in the linear and exponential shear flow
cases in figure 4(a,b), respectively. The predominant cross-flow vibration frequencies
are indicated by vertical dashed lines in these figures.

Previous studies concerning flexible cylinders subject to mono-frequency or
narrowband VIVs in linear shear flow have highlighted a clear spanwise pattern of
wake–body synchronization (Lucor et al. 2001; Bourguet et al. 2011a). In this case,
as can be observed in figure 4(a), an area including all the lock-in regions at the
different vibration frequencies can be identified in the high inflow velocity zone. This
area covers approximately 35 % of the cylinder length while the rest of the span
corresponds to an area of non-lock-in. The question that arises is what lock-in/non-
lock-in pattern is associated with broadband VIVs.
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(exponential shear flow, (x, y)= (15, 0)) response cases. Dashed lines indicate the frequencies
of the cross-flow vibrations identified in figure 2 and yellow crosses show the local minima of
the cross-flow vibration PSD, at each frequency. (c) Spanwise evolution of the magnitude of
the inflow velocity profile shear rate.

In contrast to the case of narrowband vibrations, where the locally locked-in
locations are all localized in the high-velocity zone, the broadband response case
exhibits a distributed occurrence of the lock-in condition along the span, both in the
high- and low-velocity zones, as shown in figure 4(b).

The ratio between the maximum and minimum inflow velocities and the structural
properties in the broadband response case are similar to those considered in the
narrowband response case; the change from localized to distributed lock-in is thus
triggered by the shear profile. It can be noted that, at each vibration frequency, the
lock-in condition may be limited to a spanwise cell bounded by two successive local
minima of the cross-flow vibration PSD (equivalent to ‘nodes’; shown as yellow
crosses in figures 4a,b), as for instance for the three highest frequencies in the
exponential shear case, but can also occur over several cells. The magnitude of the
local shear rate defined as β = (1/Ua)∂Ul/∂z, where Ul and Ua are the local and
span-averaged inflow velocities, is plotted along the span in figure 4(c), for both
velocity profiles. In the case of non-uniform shear rate (figure 4b), it appears that no
well-defined wake–body synchronization area can be identified in the zone of large
shear magnitude (z ≈ 20), while a wide region of lock-in can be noted in the weakly
sheared zone (z > 110). This emphasizes the importance of the local shear rate for
the occurrence of the lock-in condition; this aspect is currently under investigation.
It is recalled that the present work aims at examining the possible extension of the
fluid–structure interaction mechanisms, previously studied for narrowband VIVs, to the
case of broadband vibrations; and at identifying novel phenomena associated with the
modification of the nature of the body response.

In both shear flow cases, the wake is composed of spanwise cells of constant
shedding frequency, as also reported for stationary cylinders with varying spanwise
conditions (e.g. Gaster 1971; Griffin 1985). The global decrease of the vortex shedding
frequency along the span is driven by the decrease of the inflow velocity through
the Strouhal relation. Under the lock-in condition, the wake is generally synchronized
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FIGURE 5. (Colour online) Instantaneous isosurfaces of spanwise vorticity downstream of
the cylinder: (a) narrowband (linear shear flow, ωz = ±0.3) response case; and (b) broadband
(exponential shear flow, ωz = ±0.15) response case. Part of the computational domain is
plotted. Arrows represent the sheared oncoming flow.

with a single structural frequency at each point of the span, even if several vibration
frequencies coexist. As a consequence, the lock-in phenomenon remains a locally
mono-frequency event, even in the case of broadband responses.

An overview of the wake patterns is presented in figure 5 by means of instantaneous
isosurfaces of the spanwise vorticity (z component), for both inflow velocity profiles.
The cellular pattern of vortex shedding frequency induces two predominant features
in the vortical wake, which are similar for the narrowband and broadband response
cases and also comparable with those described for stationary cylinders in shear flow:
the spanwise variation of the oncoming flow velocity in each cell of constant vortex
shedding frequency leads to an oblique orientation of the vortex rows as they form,
while vortex splitting events ensure the continuity of the vortex filaments between two
adjacent cells.

Previous experimental and numerical works concerning mono-frequency and
narrowband multi-frequency VIV of long flexible cylinders in shear flow have shown
that the lock-in condition is generally established through a particular type of figure-of-
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cylinder span: (a) histogram issued from the total displacement signals in the narrowband
response case (Φxy defined in (4.1)) and (b–e) difference between the spatial phases of the
principal components of the displacements presenting a frequency ratio of 2 in the broadband
response case (Φn

xy defined in (4.3)); (b) f n = 0.048; (c) f n = 0.083; (d) f n = 0.095; (e)
f n = 0.162. In (a), the limit of the spanwise zone including all the lock-in regions (global
lock-in region) is denoted by a horizontal dashed line. In (b–e), the lock-in region associated
with each vibration frequency is coloured in grey. In (e), the phase differences in the
case of pure travelling waves, based on the effective excited wavenumbers and the excited
wavenumbers estimated through the dispersion relation, are indicated by triangles and crosses,
respectively.

eight trajectories, the counter-clockwise orbits, where the body moves upstream at the
extrema of the cross-flow oscillation (Vandiver et al. 2009; Bourguet et al. 2011a,b).
Dahl et al. (2007) reported that the shed vorticity is stronger due to the upstream
motion of the cylinder and that the closer proximity of the body and the recently
shed vortices induced by these trajectories leads to a specific phasing between cylinder
motion and vortex suction forces, resulting in stable vibrations.

The phenomenon of phase-locking between the in-line and cross-flow responses
under the condition of wake–body synchronization is illustrated in figure 6(a) where
the histogram of phase difference between the narrowband vibrations occurring in each
direction is plotted along the span. The phase difference is defined as

Φxy =
[
pφx − qφy,mod 360◦

]
, (4.1)

where φx and φy are the instantaneous phases of the in-line and cross-flow responses.
The pair (p, q) = (1, 2) is chosen here since the synchronization is studied for a
frequency ratio of two between the responses in each direction. In this figure,
a horizontal dashed line indicates the limit of the area including all the locked-
in locations; this area is referred to as the global lock-in region. As previously
mentioned, Φxy lies mainly in the range associated with counter-clockwise trajectories
(Φxy ∈ [0◦, 180◦]) in this region.

The existence of a similar phase-locking mechanism of the responses for broadband
VIV is investigated in the following. In this case, multiple frequencies can respond
simultaneously at each spanwise location. The in-line and cross-flow displacements
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can be approximated using N + 1 temporal Fourier modes:

ζ{x,y} (z, t)≈
N/2∑

n=−N/2

an
{x,y} (z) exp (2πif nt)

=
N/2∑

n=−N/2

|an
{x,y}| (z) exp

(
i
(
2πf nt + ψn

{x,y} (z)
))

(4.2)

where f n = n/Ts and Ts is the sampling period. The complex modal coefficients an
x and

an
y are written in terms of their moduli and their spatial phases ψn

x and ψn
y . The phase

difference between the in-line and cross-flow responses occurring at frequencies 2f n

and f n, respectively, is evaluated as follows:

Φn
xy = [ψ2n

x − 2ψn
y ,mod 360◦]. (4.3)

The spanwise evolutions of the phase differences associated with the four
predominant cross-flow vibration frequencies are plotted in figure 6(b–e). In each plot,
the lock-in region including the locations locally locked-in at the studied frequency
is indicated in grey. Within each lock-in region, the phase difference remains smaller
than 180◦. It can be noted that the zone where Φn

xy > 180◦, for z ≈ 155 at f = 0.048,
is associated with a local interruption of the lock-in condition in figure 4(b). Hence,
the components of the in-line and cross-flow vibrations that are locally involved in
the lock-in phenomenon remain in a specific phase-difference range. Therefore, the
mechanism of vibration phase locking under the lock-in condition can be generalized
to the case of broadband VIV.

Another feature can be identified in the in-line/cross-flow response synchronization:
the vibration components involving high structural wavenumbers exhibit a clear drift
of their phase difference along the span, as can be observed in figure 6(e). This
phenomenon also occurs in the mono-frequency and narrowband multi-frequency VIV
cases (Bourguet et al. 2011a,b); it is related to the pronounced travelling wave
character of the response components, as discussed in § 5.

In the next section, the fluid–structure energy transfer is studied in light of the
distributed occurrence of the lock-in phenomenon and the impact of the spanwise
pattern of energy transfer on the resulting vibrations is analysed.

5. Fluid–structure energy transfer
The transfer of energy between the flow and the oscillating structure is quantified by

means of the time-averaged fluid force coefficient in phase with the cylinder velocity.
In the cross-flow direction, it can be defined as

Cfv =
√

2
〈

Cy
∂ζy

∂t

〉
√√√√〈(∂ζy

∂t

)2
〉 , (5.1)

where 〈·〉 denotes the time-averaging operator. The spanwise evolution of Cfv in
the narrowband response case is plotted in figure 7(a) (lower axis, full line). The
area encompassing the lock-in regions at all vibration frequencies, the global lock-
in region, is indicated in grey in this figure. As also reported in previous work
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FIGURE 7. Time-averaged cross-flow force coefficient in phase with the cylinder velocity
(lower axis, full line) and spatial phase of the cross-flow vibration (upper axis, dashed
line), along the cylinder span: (a) Cfv and spatial phases of the three predominant vibration
components in the narrowband response case; (b–e) modal Cfv and spatial phase of the
vibration component at frequency; (b) f n = 0.048; (c) f n = 0.083; (d) f n = 0.095; and (e)
f n = 0.162, in the broadband response case. The global lock-in region (in a) and the lock-in
region associated with each vibration frequency (in b–e) are coloured in grey.

(Bourguet et al. 2011a), the zone of positive energy transfer, i.e. where the flow
excites the structural vibrations (Cfv > 0), is located within the global lock-in region.
Outside of this region, the flow damps the body oscillations (Cfv < 0).

In the broadband response case, a frequency decomposition of Cfv is employed to
monitor the spanwise evolution of the energy transfer at the vibration frequencies, as
shown in figure 7(b–e) (lower axis, full line). Body excitation by the flow occurs
within the lock-in regions (areas in grey). However, unlike the narrowband case, the
excitation zones are distributed along the length of the cylinder, high-wavenumber
vibrations being excited on the high oncoming flow velocity side and low-wavenumber
responses on the low inflow velocity side.

The above analysis raises the question of the impact of the spanwise distribution
of the excitation/damping regions on the orientation of the structure travelling wave
responses. To address this question, the spatial phases ψn

y of the waves associated with
the predominant vibration frequencies are plotted along the span in figure 7 (upper
axis, dashed lines). Positive frequencies are considered (n ∈ [0,N/2]); the waves are
thus travelling in the direction of decreasing ψn

y . Pure travelling waves would exhibit
linear evolutions. The sawtooth perturbations are due to the underlying standing wave
character of the responses. For each excited frequency and regardless the narrowband
or broadband nature of the response, the structural wave travels from the excitation
region toward zones of damping by the flow. This observation is also verified for
the in-line vibrations, even though Cfv presents noisier patterns. As a consequence,
the overall broadband structural response is composed of waves travelling in both
directions, i.e. decreasing and increasing inflow velocity directions. This behaviour
contrasts with the narrowband response case where the travelling waves are all
oriented from the high to the low inflow velocity regions.
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The well-defined travelling wave character of the high-wavenumber vibration
components, which is induced by the distribution of the excitation and damping areas,
causes a persistent spanwise drift of the in-line/cross-flow phase difference. In the
case of a pure travelling wave, the phase of the nth mode is 2πf nt + 2πkn

{x,y}z + ηn
{x,y},

where kn
{x,y} is the excited structural wavenumber and ηn

{x,y} a constant phase lag. The
unwrapped phase difference between pairs of in-line/cross-flow vibration components
becomes

Φn
xy = 2π

(
k2n

x − 2kn
y

)
z+ η2n

x − 2ηn
y . (5.2)

As a result, the spanwise evolution of Φn
xy depends linearly on the difference between

the in-line wavenumber and a value equal to twice the cross-flow wavenumber.
The actual behaviour of the phase difference, in the present case of mixed
standing–travelling wave vibrations, follows closely the trend of pure travelling wave
responses, involving the effective excited wavenumbers (triangles in figure 6e). The
zig-zagging modulations are induced by the underlying standing wave patterns; pure
standing waves would lead to a discontinuous evolution of Φn

xy with two synchronized
states separated by 180◦ phase jumps located at the nodes of the in-line response. The
phase difference (5.2), based on estimates of the excited wavenumbers through the
dispersion relation (3.1) with Cm = 1 and the effective response frequencies, differs
slightly from the actual behaviour (crosses in figure 6e). This illustrates the effect of
the previously mentioned deviation from the dispersion relation, which assumes the
added mass coefficient is constant. No well-defined phase difference drift is noted
for the vibration components involving lower spatial wavenumbers due their stronger
standing wave nature.

6. Conclusions
The broadband VIVs of a long cylindrical tensioned beam in sheared current have

been investigated by means of direct numerical simulation. Mixed standing–travelling
wave vibrations including a wide range of excited frequencies and structural
wavenumbers have been triggered by an exponentially sheared inflow velocity profile,
with a maximum Reynolds number equal to 330.

For narrowband responses in linear shear flow, the lock-in condition is localized
and appears over a limited portion of the span, located in the high-velocity zone.
In contrast, for broadband VIVs involving similar structure and maximum/minimum
inflow velocity ratio, we find that the lock-in condition is distributed and may occur
along the entire cylinder length, and hence can occur in high- and low-velocity regions.
For each vibration frequency, the flow excites the structure oscillations under the
lock-in condition and damps them in the non-lock-in zones. The structural waves move
from the excitation to the damping regions; due to the distribution of the excitation
zones along the span, waves travelling in both directions can be noted; unlike the
narrowband case where the direction of decreasing inflow velocity is always preferred.

At a given spanwise location, we find that several frequencies and structural
wavenumbers can respond simultaneously, leading to instantaneously multi-frequency
vibrations; such vibrations differ from the instantaneously mono-frequency responses
noted for narrowband VIVs. However, the lock-in phenomenon remains a locally
mono-frequency event since the vortex shedding is generally synchronized with a
single vibration frequency at each point of the span. The wake pattern, composed
of spanwise cells of constant vortex shedding frequency, is characterized by oblique
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vortex shedding and vortex splittings, as also observed for a long cylinder, subject to
narrowband VIVs or stationary, in shear flow.

The phase difference between the components of the broadband in-line and cross-
flow vibrations occurring with a frequency ratio of two and locally involved in
the lock-in phenomenon, remains within a particular range, associated with counter-
clockwise figure-of-eight orbits in the case of mono-frequency responses. As a
result, we find that the mechanism of phase locking under the lock-in condition,
previously identified for mono-frequency and narrowband responses, also applies to
the studied broadband VIV. In addition, we find that a regular spanwise drift of the
in-line/cross-flow phase difference, similar to the drift observed for mono-frequency
and narrowband VIV, appears for the high-wavenumber vibration components of the
broadband responses, due to their pronounced travelling wave character.

Acknowledgements

The authors wish to acknowledge support from the BP-MIT Major Projects
Programme, monitored by M. Tognarelli and P. Beynet; and the Office of Naval
Research under Grants N00014-07-1-0135 and N00014-07-1-0446, monitored by
T. Swean, Jr.

R E F E R E N C E S

BEARMAN, P. W. 1984 Vortex shedding from oscillating bluff bodies. Annu. Rev. Fluid Mech. 16,
195–222.

BEARMAN, P. W. 2011 Circular cylinder wakes and vortex-induced vibrations. J. Fluids Struct. 27,
648–658.

BOURGUET, R., KARNIADAKIS, G. E. & TRIANTAFYLLOU, M. S. 2011a Vortex-induced vibrations
of a long flexible cylinder in shear flow. J. Fluid Mech. 677, 342–382.

BOURGUET, R., LUCOR, D. & TRIANTAFYLLOU, M. S. 2012 Mono- and multi-frequency
vortex-induced vibrations of a long tensioned beam in shear flow. J. Fluids Struct. 32, 52–64.

BOURGUET, R., MODARRES-SADEGHI, Y., KARNIADAKIS, G. E. & TRIANTAFYLLOU, M. S.
2011b Wake–body resonance of long flexible structures is dominated by counter-clockwise
orbits. Phys. Rev. Lett. 107, 134502.

CARBERRY, J., SHERIDAN, J. & ROCKWELL, D. 2001 Forces and wake modes of an oscillating
cylinder. J. Fluids Struct. 15, 523–532.

CHAPLIN, J. R., BEARMAN, P. W., HUERA-HUARTE, F. J. & PATTENDEN, R. J. 2005 Laboratory
measurements of vortex-induced vibrations of a vertical tension riser in a stepped current.
J. Fluids Struct. 21, 3–24.

DAHL, J. M., HOVER, F. S., TRIANTAFYLLOU, M. S., DONG, S. & KARNIADAKIS, G. E. 2007
Resonant vibrations of bluff bodies cause multivortex shedding and high frequency forces.
Phys. Rev. Lett. 99, 144503.

DAHL, J. M., HOVER, F. S., TRIANTAFYLLOU, M. S. & OAKLEY, O. H. 2010 Dual resonance in
vortex-induced vibrations at subcritical and supercritical Reynolds numbers. J. Fluid Mech.
643, 395–424.

EVANGELINOS, C. & KARNIADAKIS, G. E. 1999 Dynamics and flow structures in the turbulent
wake of rigid and flexible cylinders subject to vortex-induced vibrations. J. Fluid Mech. 400,
91–124.

GASTER, M. 1971 Vortex shedding from circular cylinders at low Reynolds numbers. J. Fluid Mech.
46, 749–756.

GRIFFIN, O. M. 1985 Vortex shedding from bluff bodies in a shear flow: a review. Trans. ASME J.
Fluids Engng 107, 298–306.

JAUVTIS, N. & WILLIAMSON, C. H. K. 2004 The effect of two degrees of freedom on
vortex-induced vibration at low mass and damping. J. Fluid Mech. 509, 23–62.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

57
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.576


Broadband vortex-induced vibrations of a long flexible cylinder in shear flow 375

JEON, D. & GHARIB, M. 2001 On circular cylinders undergoing two-degree-of-freedom forced
motions. J. Fluids Struct. 15, 533–541.

KARNIADAKIS, G. E. & SHERWIN, S. 1999 Spectral/HP Element Methods for CFD, 1st edn.
Oxford University Press.

KLAMO, J. T., LEONARD, A. & ROSHKO, A. 2006 The effects of damping on the amplitude and
frequency response of a freely vibrating cylinder in cross-flow. J. Fluids Struct. 22, 845–856.

LEONTINI, J. S., THOMPSON, M. C. & HOURIGAN, K. 2006 The beginning of branching behaviour
of vortex-induced vibration during two-dimensional flow. J. Fluids Struct. 22, 857–864.

LIE, H. & KAASEN, K. E. 2006 Modal analysis of measurements from a large-scale VIV model test
of a riser in linearly sheared flow. J. Fluids Struct. 22, 557–575.

LUCOR, D., IMAS, L. & KARNIADAKIS, G. E. 2001 Vortex dislocations and force distribution of
long flexible cylinders subjected to sheared flows. J. Fluids Struct. 15, 641–650.

LUCOR, D., MUKUNDAN, H. & TRIANTAFYLLOU, M. S. 2006 Riser modal identification in CFD
and full-scale experiments. J. Fluids Struct. 22, 905–917.

MITTAL, S. & TEZDUYAR, T. E. 1992 A finite element study of incompressible flows past
oscillating cylinders and aerofoils. Intl J. Numer. Meth. Fluids 15, 1073–1118.

NEWMAN, D. J. & KARNIADAKIS, G. E. 1997 A direct numerical simulation study of flow past a
freely vibrating cable. J. Fluid Mech. 344, 95–136.

SARPKAYA, T. 1995 Hydrodynamic damping, flow-induced oscillations, and biharmonic response.
J. Offshore Mech. Arctic Engng 117, 232–238.

VANDIVER, J. K., ALLEN, D. & LI, L. 1996 The occurrence of lock-in under highly sheared
conditions. J. Fluids Struct. 10, 555–561.

VANDIVER, J. K., JAISWAL, V. & JHINGRAN, V. 2009 Insights on vortex-induced, travelling waves
on long risers. J. Fluids Struct. 25, 641–653.

VIOLETTE, R., DE LANGRE, E. & SZYDLOWSKI, J. 2010 A linear stability approach to
vortex-induced vibrations and waves. J. Fluids Struct. 26, 442–466.

WILLIAMSON, C. H. K. & GOVARDHAN, R. 2004 Vortex-induced vibrations. Annu. Rev. Fluid
Mech. 36, 413–455.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

57
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.576

	Distributed lock-in drives broadband vortex-induced vibrations of a long flexible cylinder in shear flow
	Introduction
	Formulation and numerical method
	Broadband structural responses
	Distributed lock-in in shear flow
	Fluid--structure energy transfer
	Conclusions
	Acknowledgements
	References




