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SUMMARY
This paper investigates a battery snap-in operation performed by an industrial robot. The snap-fit
phenomenon is experienced during the insertion of batteries into the battery holder. In order to under-
stand the nature of the snap-fit phenomenon, the large displacement but small deformation theory is
used to model the insertion operation. The stability of equilibrium points is analysed in order to deter-
mine the so-called trip point. The purpose of the investigation is to augment the displacement control
of the robot with force feedback. A microcontroller-based measurement system is implemented to
provide the force feedback. The proposed method is valid for a class of snap-fit problems not only
for the investigated specific one.
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1. Introduction
Snap-fit joints1, 2 are frequently used in engineering practice to join two different components.3

During snap-in, one part is deflected and then locked into a depression on the joining partner.4 When
the joining operation is performed by a robot in ref. [5], the machine haptic concept should be uti-
lized,6–8 that is, the measurement of the force of the end effector is necessary. Determination of the
load-deflection curve is essential. A great many papers analyse load deflection curves in case of
snap through buckling phenomenon, for example, in refs. [9, 10] by models and experiments. The
hysteresis curve in ref. [4] can be recorded during the snap-in and snap-out processes.

To treat the deflection of the investigated battery holder, large displacement theory of the beam
model is required. The corotational approach11, 12 is often used for flexible structures to handle large
rotations of finite elements. Determination of the stability of the equilibrium points is necessary
to find the trip point, that is, the border of the stability. Mechanical stability in presence of non-
conservative forces usually is analysed by the theorem proposed by Salvadori in ref. [13]. The results
of the theoretical stability analysis can also be checked by simulation. The main purpose of this
paper is to simulate the snap-fit process and determine the stability of the equilibrium points via
measurement of the forces during insertion, where the end effector can release the battery. Thus,
the snap-in operation is terminated automatically. Otherwise, due to displacement control, undesired
high forces may occur or the battery may get stuck unexpectedly.

The rest of the paper is organized as follows: the corotational approach of the snap-fit process and
the stability of the equilibrium points are described in Section 2. The equilibrium points of the snap-fit
operation are also investigated by numerical simulation. Section 3 contains the displacement control
of the industrial robot including force feedback. A commercial load cell and an amplifier unit are used
to measure forces during insertion. The opening condition of the end effector is transmitted to the
industrial robot by an AVR-type RISC (Reduced Instruction Set Computing)-based microcontroller.
Practical measurements are performed to verify the snap-in and snap-out processes in Section 4.
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Fig. 1. The sequence of the batteries.
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Fig. 2. (a) A 2D model of the battery and battery holder; (b) ensuring the kinematical contact condition.

Finally Section 5 has concluding remarks. Appendix contains a nomenclature of the scalar and matrix
variables given in Tables AI and AII, respectively.

2. Modelling and Simulation of the Snap-fit Operation
A battery holder and one battery are shown in Fig. 1. In the sequel, snap-in and snap-out processes
of one battery and the plastic holder will be modelled and simulated. The model of the snap-in
operation is shown in Fig. 2 (a). Due to symmetry only half of the structure is considered with a two-
dimensional (2D) model. The battery shown by a half circle is considered to be rigid. The radius R of
the battery is 9 mm. The battery holder is represented by a slender flexible curved beam. The curved
beam consists of two arches having subtenses ϕ1 and ϕ2 with the same radius R as the battery has.
It is assumed that the rigid body and the flexible beam are in contact only in one point all along the
snap-in and snap-out processes. The insertion of the battery in direction y is prescribed by applying
specified uniform displacement. The necessary assembly force to perform the snap-fit process is
denoted by Fa.

In order to satisfy the kinematical contact condition (see Fig. 2 (b)), normal displacement un has
to be applied to the tip of the curved beam.

In the following, first the contact forces are determined for the snap-in and snap-out processes.
Next the stability of the interested equilibrium points is analysed with the help of Salvadori’s theorem.
Then results of the theoretical stability analysis are checked by numerical simulation.

2.1. Modelling snap-in and snap-out processes
The curved beam shown in Fig. 2 (a) is discretized by 2D straight beam elements without shear
deformation with large displacements using corotational approach.11 The number of elements ne

is 20, the number of nodes n is 21 and nodal point n is the contact point. The initial and current
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Fig. 3. The initial and current configurations of a beam element.

configuration of a beam element are shown in Fig. 3. Though the displacements and rotations are
large, small strains are assumed.

The angle α is measured from the initial configuration; the nodal rotations �1, �2 are in the global
coordinate system and the nodal rotations �1l, �2l are in a local coordinate system; and the angle β0

is the angle of the initial configuration and the angle β gives the deformed configuration. According
to Souza in ref. [14], the local nodal rotations can be determined without limitation on the range of
the rotation of the element

�1l = arctan

(
cos β sin β1 − sin β cos β1

cos β cos β1 + sin β sin β1

)
= arctan

(
sin �1l

cos �1l

)
, (1)

�2l = arctan

(
cos β sin β2 − sin β cos β2

cos β cos β2 + sin β sin β2

)
= arctan

(
sin �2l

cos �2l

)
, (2)

where β1 = �1 + β0 and β2 = �2 + β0. The local axial displacement is calculated as proposed by
Crisfield in ref. [11]:

uL = L2 − L2
0

L + L0
, (3)

where L0 and L are the lengths of the undeformed and the deformed beam elements, respectively.
The axial force in the beam is

P = EAuL

L0
, (4)

where E is Young’s modulus and A is the area of cross section of the beam. The local end moments
of the beam are related to the local nodal rotations

M1 = EI

L0
(4�1l + 2�2l), (5)

M2 = EI

L0
(2�1l + 4�2l), (6)

where I is the area moment of inertia of the beam.
Assuming no forces are applied between the nodes of a beam element, the shear forces at the

nodes are obtained as

https://doi.org/10.1017/S0263574719000614 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719000614


320 Snap-fit assembly process with industrial robot including force feedback

V1 = M1 + M2

L0
, (7)

V2 = −M1 + M2

L0
. (8)

The generalized nodal forces in Eqs. (4)–(8) are collected in the local internal element load vector f̄
e
i ;

see the Appendix. The corresponding vector of elementary nodal displacements q̄e is also given in
the Appendix. The element local internal load vector and the elementary nodal displacement vector
are transformed in the same way to the global coordinate system (x, y):

fe
i = TT

e f̄
e
i , qe = TT

e q̄e, (9)

where TT
e is the transpose of the transformation matrix Te given in the Appendix. The structural

internal load vector fi,

fi =
∑

e

f e
i , (10)

is obtained by performing the summation of all element vectors fe
i , which are of the same order as

the internal load vector fi. All entries in fe
i are zero except those which correspond to element e.15

Tangent stiffness matrix K̄
e
t in local coordinate system was derived by Crisfield in ref. [11] via

determining the changes in local ‘strain producing’ displacements and using virtual works both in
local and the global coordinate systems. The local tangent stiffness matrix K̄

e
t includes the local

linear K̄
e
L and geometric stiffness matrices K̄

e
t1, K̄

e
t2

K̄
e
t = K̄

e
L + K̄

e
t1 + K̄

e
t2, (11)

which are given in the Appendix. The element local stiffness matrix is also transformed to the global
coordinate system (x, y):

Ke
t = TT

e K̄
e
t Te. (12)

The tangent stiffness matrix of the complete element assemblage is

Kt =
∑

e

Ke
t , (13)

where the summation is performed as in Eq. (10).
During the snap-in or snap-out processes, there is a single point mechanical contact between the

battery and the battery holder. To describe the contact, one should introduce the terms of gap d and
contact pressure pc. When the two bodies are in contact, pc ≥ 0 and the gap d = 0, otherwise pc = 0
and d > 0 in the non-contact case. In the example considered here, the previous case holds during
the investigation. Therefore, it is enough to ensure the kinematical condition, that is, d = 0, as it is
shown in Fig. 2 (b).

It is advantageous to transform the displacements of the contacting node to a local coordinate sys-
tem with axes in the normal and the tangential directions. The normal and tangential unit vectors are
denoted en and et. A transformation matrix Tn can be constructed based on vectors en, et, according
to Fig. 2 (b):

Tn =
⎡
⎣ cos γ sin γ 0

− sin γ cos γ 0
0 0 1

⎤
⎦. (14)

The tangent stiffness matrix and the vector of internal forces can be decomposed into submatrices
separating them in accordance with the last node n and the rest of the nodes r:

Kt =
[

Kt(r,r) Kt(r,n)

Kt(n,r) Kt(n,n)

]
, fi =

[
fi(r)

fi(n)

]
. (15)
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The structural transformation matrix is also given by submatrices

T =
[

I 0
0 Tn

]
, (16)

where I is a unit matrix having the order as the matrix Kt(r,r).
In awareness of the transformation matrix T and the tangential stiffness matrix Kt and the internal

load vector fi can be transformed as

K̂t = TTKtT, (17)

f̂i = TTfi. (18)

Displacement boundary conditions at the clamped end of the curved beam and the prescribed
displacement un in node n need to be considered, which can be performed as given in refs. [11, 15].
To fulfil the contact conditions, the contact node of the beam is pushed by a kinematical load, which
is represented by a column vector fu making use of the calculated displacement un in normal direction
(see Fig. 2 (b)). The formula of the displacement is

un = R −
√

(x0 − xn)
2 + ( y0 − yn)

2, (19)

where R is the radius of the battery, x0, y0 are the coordinates of the battery’s centre, and xn, yn are
the current nodal coordinates of the tip of the slender beam.

The tangential friction force Fc is obtained by the sliding Coulomb friction law

Fc = μN, (20)

which is exerted on node n in the tangential direction and associated with load vector fc. The
equations used for Newton–Raphson iteration are for k = 1, 2, 3, ...,

t+�tK̂
(k)

t �q(k) = t+�tf(k)
u − t+�tf(k−1)

c − t+�tf̂
(k−1)

i . (21)

t+�tq(k) = t+�tq(k−1) + �q(k), (22)

with initial conditions

t+�tq(0) = tq, t+�tK̂
(0)

t = tK̂, t+�tf(0)
c = tfc,

t+�tf̂
(0)

i = tf̂i, (23)

where �q(k) is a vector of incremental nodal point displacements.
The iteration is terminated when the following condition is satisfied:∥∥�q(k)

∥∥∥∥t+�tq(k)
∥∥ ≤ tol, (24)

where tol is a displacement convergence tolerance.
Making use of force entries f̂ nx, f̂ ny of the internal load vector f̂i, the vertical component of the

normal contact load t+�tNy is obtained in every time step as

t+�tNy = −t+�t f̂ nx sin γ cos γ + t+�t f̂ ny(sin γ )2. (25)

It is noted that t+�tNy is regarded to be positive when it supports the battery in upward direction and
negative when it pushes the battery downward.

A special purpose program has been developed to simulate the complete cycle of the snap-in
and snap-out operations. The applied vertical displacement of the battery is 10.05 mm, which is
subdivided into ± 30 uniform increments.

The material of the battery cell holder is polycarbonate/acrylonitrile butadiene styrene (PC/ABS).
The Young’s modulus E of the battery holder is 2.415 GPa, the area of the cross section A is 18.25
mm2, and the area moment of inertia I is 1.52 mm4. A friction coefficient μ = 0.15 is applied. The
mass of the half battery is m = 0.0229 kg, and gravity g equal to 9.81 m/s2. The mass of the curved
beam is neglected.
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Fig. 4. The simulation process.

Fig. 5. Hysteresis of the insertion and removal operations.

The deformed shapes of the curved beam of the battery holder are drawn by dashed lines (see
Fig. 4), noting that only every third step is displayed. The snap-in and snap-out forces are deter-
mined and shown in Fig. 5. Forces F+

cy and F−
cy are the vertical components of the Coulomb friction,

and N+
y and N−

y are the vertical components of the normal forces computed for the snap-in and
snap-out operations, respectively. The necessary snap-in force F+

a and snap-out force F−
a are denoted

with solid lines. The dashed curved lines represent the vertical components of the normal supporting
forces. The half weight of the battery is denoted by a horizontal dashed line. Figures 6 and 7 may
help to interpret the meanings of N+

y , N−
y , F+

cy and F−
cy. It is noted that F+

cy and F−
cy are positive

value functions. The assembly forces F+
a and F−

a acting on the battery are obtained for down-
ward and upward motions forming a loop or a hysteresis curve. A similar hysteresis curve was
presented by Bader et al. in ref. [4] for snap-in and snap-out processes. The assembly forces are
calculated as

F+
a = N+

y + F+
cy, (26)

F−
a = N−

y − F−
cy. (27)

The functions determined for the forces N+
y , N−

y , F+
cy, F−

cy, F+
a and F−

a can be used directly for the
dynamic numerical analysis of the snap-in and snap-out processes in case of slip.

The values of the assembly forces F+
a and F−

a are different in any coordinate y. This fact gives
an opportunity for occurring stick phenomenon when the motion of the battery is stopped and
the direction of the velocity is changing while the assembly force is gradually changing from the
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Fig. 6. Free body diagram in a slightly inserted position of the battery: (a) the velocity is positive; (b) the
velocity is negative.
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Fig. 7. Free body diagram in an almost inserted position of the battery: (a) the velocity is positive; (b) the
velocity is negative.

value F+
a to F−

a . It is assumed when only normal contact force is present, its vertical component is
calculated as

N(0)
y = F+

a + F−
a

2
, (28)

where N(0)
y is also a function given in discrete points.

When adhesion takes place, that is, when stick may occur, a tangential force would also arise at the
contact point in addition to the normal contact force. In order to determine the stiffness coefficient
in vertical direction associated with the supporting curved beam, two additional computations are
needed assuming frictionless contact, that is, μ = 0. To perform it, first the vertical position of the
node n is determined due to contact. Then 1 N force is exerted on the deformed beam as shown in
Fig. 8. The computed displacement increment �y provides the stiffness coefficient when the battery
is at the location point C (see Fig. 9):

ky = 1

�y
= 1

1.5643 · 10−6
= 6.393 · 105 N/m. (29)

2.2. Stability of the equilibrium points
The concept of stability was dealt with in mechanics to describe some types of equilibrium of a sys-
tem in the early times.13 Mechanical stability problems to be considered include dissipative friction
forces in addition to conservative ones. Therefore, the stability of the equilibrium points could be
analysed by Theorem 1, which is given as follows.
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Fig. 8. Determination the stiffness coefficient ky in case of adhesion.

Fig. 9. Determination of the equilibrium points A, B and C.

Theorem 1. (Salvadori in ref. [13]). If the potential energy � has a minimum at q = 0, the
equilibrium at q = 0 is isolated; the dissipation is complete, that is, for some function a ∈K :
(Q · q̇) ≤ − a(‖q̇‖), then the equilibrium q = q̇ = 0 is asymptotically stable. If � has no minimum
at q = 0, then the equilibrium q = q̇ = 0 is unstable.

Remark: A function of class K is a function a: R+ →R+, continuous, strictly increasing, with
a(0) = 0. In Theorem 1, q is column vector of generalized displacements, q̇ is column vector of the
generalized velocities and Q is row vector of the generalized forces.

The Voigt–Kelvin viscoelastic model is used to describe the adhesion, while sliding friction is
given by the Coulomb law in ref. [16]. The friction force Ffy in direction y is given as

Ffy =

⎧⎪⎨
⎪⎩

−F+
cysgn( ẏ), in case of slip, ẏ > 0,

−F−
cysgn( ẏ), in case of slip, ẏ < 0

−ky ( y − y0) − dyẏ, in case of stick,

(30)

where ky is the stiffness coefficient and dy is the damping parameter, both of them being represented
in direction y. Stick takes place if F−

a ( y) <
(
N0

y ( y) + ky ( y − y0)
)
< F+

a ( y).
Stability analysis of the equilibrium positions for y ∈ [yA; yB] is performed in three equilibrium

points A, B and C (see Fig. 9). Positions of points A, B and C are given as yA = 3.15 mm, yB = 5.95
mm and yC = 5.2 mm, respectively. Slip takes place in the equilibrium points A and B, while point C
is a candidate for stick. For the latter case in the vicinity of point C, the force displacement function
is represented by a steep curve which is denoted by a thin solid line (see Fig. 9).

Equilibrium of point A is written as (see Fig. 6 (b))

0 = mg − N−
y ( yA) + F−

cy( yA). (31)
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The potential energy associated with conservative forces is

�( y) = −mgy +
∫ y

0
N−

y (s)ds. (32)

The derivative of Eq. (32) with respect to y is

∂�

∂y

∣∣∣∣
yA

= −mg + N−
y ( yA) �= 0. (33)

Comparing Eqs. (31) and (33), one can say that the potential energy has no minimum at the equilib-
rium point. Therefore according to Theorem 1, point A is unstable. It means that the battery would
be snapped-out unexpectedly.

The equilibrium equation in point B is (see Fig. 7 (a))

0 = mg − N+
y ( yB) − F+

cy( yB). (34)

The potential energy of the conservative forces is

�( y) = −mgy +
∫ y

0
N+

y (s)ds. (35)

The first derivative of Eq. (35) with respect to y is

∂�

∂y

∣∣∣∣
yB

= −mg + N+
y ( yB) �= 0. (36)

One can say that point B is also unstable since the right-hand sides of Eqs. (34) and (36) are different.
It means that point B is a trip point; that is, the battery will snap-in autonomously.

The equilibrium of the intermediate point C can be written according to Fig. 9 as

0 = mg − N(0)
y ( yC) − ky( yC − y0). (37)

The coordinate y0 represents the zero tangent contact force due to stick and is calculated as

y0 = yC − mg − N(0)
y ( yC)

ky
, (38)

and the obtained value of y0 is 5.1992 mm. The �( y) potential in the vicinity of point C is

�( y) = −mgy +
∫ y

0
N(0)

y (s)ds + 1

2
ky ( y − y0)

2 . (39)

If the total potential energy has a minimum according to Theorem 1, the equilibrium point is stable.
The first derivative of the potential energy is

∂�

∂y

∣∣∣∣
yC

= −mg + N(0)
y ( yC) + ky ( yC − y0) = 0. (40)

Comparing Eqs. (37) with (40), one can say that the potential energy may have a minimum, which can
be confirmed by taking the second derivative of the potential energy with respect the displacement,
that is,

∂2�

∂y2

∣∣∣∣
yC

= ∂N(0)
y ( y)

∂y

∣∣∣∣∣
yC

+ ky > 0. (41)

Since the value of
∂N(0)

y ( y)

∂y

∣∣∣
yC

is −696 N/m, and the value of ky is 6.393 · 105 N/m, the total potential

has a minimum at point C. Referring to Theorem 1 instead of column vectors, scalar variables are
present in this example, that is, q̇ = ẏ and Q = −dyẏ; furthermore, −a(‖ẏ‖) = − 1

2 dyẏ2, point C is
asymptotically stable.
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Fig. 10. (a) Displacements at points A and B; (b) velocities at points A and B.

2.3. Numerical analysis of the equilibrium points A, B and C
In this subsection, the stability results obtained in Section 2.2 will be checked by numerical sim-
ulation perturbing the equilibrium positions. Three initial value problems (IVPs) associated with
equilibrium points A, B and C are set up.

IVP for point A is

mÿ = mg − N−
y + F−

cy, (42)

with initial values y(0) = 3.15 mm and ẏ(0) = −1 mm/s.
IVP for point B is

mÿ = mg − N+
y − F+

cy, (43)

with initial values y(0) = 5.95 mm and ẏ(0) = 1 mm/s.
IVP for point C is

mÿ = mg − N0
y − ky ( y − y0) − dyẏ, (44)

with initial values y(0) = 5.2 mm, ẏ(0) = 1 mm/s. The stiffness coefficient ky is 6.393 · 105 N/m and
the damping parameter dy is 102 Ns/m.

A special purpose program has been written to check the results of Section 2.2. Initial value prob-
lems for equilibrium points A, B and C have been solved numerically with time step �t = 10−6 s,
and the obtained results for displacements and velocities are shown in Figs. 10 and 11. The displace-
ments and velocities of the battery at point A are denoted by dashed lines and the corresponding
curves at point B are represented by solid lines. The displacements and the velocities of the battery
at the vicinity of point A and point B are increasing in time (see Fig. 10 (a) and (b)); therefore, these
equilibrium points are unstable. The displacements and velocities of the battery at the vicinity of
point C are shown in Figure 11 (a) and (b). After velocity perturbation, the battery returns back to
the equilibrium point C . Thus point C is asymptotically stable.

The numerical simulations confirm the results of the theoretical stability analysis based on
Theorem 1.

3. Experimental Set-up and Control Strategy
The snap-in and snap-out processes are performed with a 6-DoF (Degrees of Freedom) Fanuc LR
Mate 200iC industrial robot. A beam-type load cell is used to measure the assembly forces. The
rated maximum measurable force of the load cell is 50 N – a holder unit has been designed and
manufactured to fix it during the measurement (see Fig. 12). Furthermore, a supporting structure of
the battery holder has been designed to keep the battery holder in a fixed position during assembly
(see Fig. 13 (b)). The calculation of the necessary assembly force Fa is based on the dimensions of
Fig. 13 (a).

Tasks such as assembly, which involve extensive contact with the environment, are often better
handled by controlling the forces of interaction between the manipulator and the environment rather
than simply controlling the position of the end effector.17

https://doi.org/10.1017/S0263574719000614 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719000614


Snap-fit assembly process with industrial robot including force feedback 327

5.19996

5.19998

5.2

5.20002

5.20004

5.20006

5.20008

5.2001

5.20012

0 0.0015 0.003 0.0045

D
is

pl
ac

em
en

t [
m

m
]

Time [s]

–0.5

–0.25

0

0.25

0.5

0.75

1

0 0.0015 0.003 0.0045

V
el

oc
ity

 [
m

m
/s

]

Time [s]

(a) (b)

Fig. 11. (a) Displacements at point C; (b) velocities at point C.

Fig. 12. The load cell.

(a) (b)

Fig. 13. (a) Dimensions of the supporting structure for the battery holder; (b) 3D model of the unit.

Since the function of the assembly force Fa shown in Fig. 9 is not monotonic and double valued
along the interested displacement region, force control is not applicable self-evidently. Choosing the
weight of the battery as a reference value of the force feedback, it is equal to the assembly force in
more than one point. It means that such a process would be prematurely terminated at the beginning
of the assembly without reaching the trip point denoted by B. Force control could be applied on the
curve section between the maximum value of the assembly force and the force at point B. However
the maximum value of the assembly force is not known a priori, it can be predicted by simulation or
measurement only approximately.

In addition to the difficulties mentioned above and the available Fanuc robot without open access
controller, displacement control, that is, a set-point tracking control scheme, is used enhanced with
force feedback for the sake of convenience. The force feedback is used for event handling, that is,
to determine the location of the trip point. It is noted that the measured signal of the force feedback
is converted into a Boolean variable, which is provided for the robot. Its reference value is Boolean
true.

The block scheme of the test bench is shown in Fig. 14. An HX711 module is a 24-bit Sigma-
delta A/D converter, which is specially designed for load cells. The module can produce up to 80
samples per second. The microcontroller (μC) is an AVR-type and RISC-based ATmega328, which
can compute the values of the force. A printed circuit board was created to connect it with the A/D
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Fig. 14. The block scheme of the system.

Fig. 15. The measurement system: 1 – Fanuc robot; 2 – end effector; 3 – battery; 4 – battery holder; 5 –
supporting structure; 6 – load cell; 7 – μC and A/D converter; 8 – Relay R2; 9 – laptop.

converter module. The relays are represented by R1 and R2 (see Fig. 14). The μC can send a signal
to the R-30iA Mate robot controller (ROC), and vice versa by the relays.

The insertion of the battery based on displacement control enhanced with force feedback. In a step-
by-step process, small increments in displacements are applied and the assembly force is checked in
order to find the trip point in each increment. The test bench of the system, which can perform the
assembling of batteries and battery holder, is shown in Fig. 15. The elements of the test bench are
denoted by item numbers 1–9.

The robot moves from its base position to battery feeder (item 3) and grips the first battery.
Thereafter, it is positioned close to the battery holder (item 4). The process continuous with call-
ing a subroutine given in Table I. In which relay R1 is switched on for 0.1 s and then is switched off
(see lines 1–3). Due to these commands, relay R2 is set to basic state. A target coordinate is defined
and its initial value is equal to the assumed coordinate of the inserted battery (line 4). Thereafter
the starting point of the insertion, that is, feed motion is above 10 mm from the assumed assembled
position and then the robot is moved to this later position (see lines 5, 6). A cycle is defined between
labels 1 and 2, in which displacement increments are applied step by step (see lines 8–11); further-
more the assembly force is measured by the μC. In each step, the displacement increment is equal to
0.5 mm. The end effector (item 2) is moved with constant velocity along these increments. The cycle
is terminated when the trip point is reached given in line 10, which is based on the algorithm of the
μC given in Table II. The relay R2 of the μC is represented by a digital input of the robot. Thereafter
the battery is released by macro OPEN.

The algorithm given in Table II determines the trip point, which is located on the downhill side of
the force displacement curve (see Fig. 5). It means that the peak of the curve should be passed during
insertion. This peak value depends on also the velocity but it is usually roughly equal to a nominal
force Fnom, which is determined by a previous experiment. The actual value of the assembly force is
denoted by Fa,i in step i and its previous value is Fa,i−1. In order to find the maximum occurring force
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Table I. Subroutine to insert the battery

1 DO[107]=ON;
2 WAIT 0.1(sec);
3 DO[107]=OFF;
4 PR[79:TARGET]=PR[R[64]];
5 PR[79,3:TARGET]=PR[79,3:TARGET]+10;
6 J PR[79:TARGET] 100% FINE;
7 LBL[1];
8 PR[79,3:TARGET] = PR[79,3:TARGET]-DISPINCR;
9 J PR[79:TARGET] 100% CNT66;
10 IF DI[113] = ON,JMP LBL[2];
11 JMP LBL[1];
12 LBL[2];
13 OPEN;

Table II. Algorithm in order to find the trip point

1 if (Fa,i > Fmax)
2 Fmax = Fa,i;
3 if((Fa,i < Fa,i−1) && (Fa,i < Gbat) && ((abs(Fmax-Fnom)/Fnom) < ε))
4 {
5 Switch relay (R2);
6 }

a variable Fmax is used to store it (see lines 1–2), its initial value is equal to zero. The weight of the
battery is denoted by Gbat. Passing the trip point the actual force is decreasing and smaller than Gbat.
An additional condition, that is, the nominal force Fnom and the maximum force Fmax are compared
to each other when the difference is within a tolerant ε, ensures that the trip point is not a premature
one. The control flow diagram of the insertion process detailed above is also shown in Fig. 16.

To make a long story short, the displacement control of the robot is performed by the original
R-30iA Mate Fanuc ROC using teach pendant programming technique, which provides digital input
from the μC determining the trip point. When the trip point is reached, the μC sends a Boolean
true signal to terminate the feed-motion of the robot and to open the end effector, otherwise it sends
Boolean false signal.

4. Measurements
During the snap-in operation, the robot is controlled primarily by position. The force feedback aug-
ments the position control; that is, it interrupts in the trip point and lets the system terminate the
snap-in process autonomously.

Measurements are performed to validate the results obtained by simulation. The hysteresis dia-
gram of the assembling operation is shown in Fig. 17. The experimental measurement of the snap-in
and snap-out operations are denoted by solid lines. The dashed lines represent the result of the sim-
ulation. The weight of one battery is indicated by dotted line. The points A′ and B′ are the trip points
of the snap-in and snap-out operations, respectively. Between these points stick may take place.

During the snap-in operation point, B′ is unstable in accordance with Theorem 1. The insertion
of the battery without force feedback is shown in Fig. 18 (a). One can see that the assembly force
may reach undesirably high values. Displacement control including force feedback can resolve this
problem because the end effector is opened at point B′ (see Fig. 18 (b)), and the snap-in process is
terminated autonomously.

5. Conclusions
This paper presented a study about a battery snap-fit operation performed by an industrial robot. The
main goal of the paper was to enhance the control of the robot by means of force feedback.
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START SUBROUTINE INSERTION

Initialization of R1, 
R2 and Fmax

Switching relay R1, R2
(Table I: lines 1-3)

Motion to starting position
(Table I: lines 4-6)

Measurement of Fa,i

Fa,i> Fmax

(Table II: line 1)

Fmax = Fa,i

(Table II: line 2)

Condition of trip point
(Table II: line 3)

R2= TRUE
(Table II: line 5)

R2= TRUE

Motion by an increment
(Table I: lines 8-9)

Opening the end-effector
(Table I: line 13)

NO

YES

NO

YES

NO

YES

END

Fig. 16. Flow chart diagram of the snap-in process.

A flexible battery holder is modelled with a slender beam structure undergoing large displacements
but small deformations using corotational approach. The simulation of the snap-in and snap-out
processes provided the forces which were necessary to perform the operations. In awareness of the
load history, what formed a hysteresis curve helped to determine equilibrium points including the
trip point from which the snap-fit process was terminated autonomously. The equilibrium points
have been studied analytically and numerically. The results obtained by analyses were verified by
measurements. Experimental results and the computations showed a good agreement for the hys-
teresis curves. A test bench has been developed to measure the assembly forces and to evaluate the
load history determining the trip point. The displacement control of a Fanuc robot was enhanced
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Fig. 17. Measurement of the insertion and removal operation.
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Fig. 18. Load history of the mounting operation: (a) without force feedback and (b) with force feedback.

with force feedback; at the trip point, the displacement control was interrupted and the end effector
was opened. This technical solution can protect both the robot and the assembling structure from
overloading.

The presented method can be used not only for battery snap-fitting, but also for a class of problems.
For this reason, an intelligent end effector is planned to be designed, which can be applied for snap-fit
operations in industrial circumstances.
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Appendix
The local internal element load vector with the generalized nodal forces and the corresponding
elementary nodal displacement vector are as follows:

f̄
e
i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−P

V1

M1

P

V2

M2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, q̄e =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1

v1

�1l

u2

v2

�2l

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A1)

The transformation matrix is

Te =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos β sin β 0 0 0 0

− sin β cos β 0 0 0 0

0 0 1 0 0 0

0 0 0 cos β sin β 0

0 0 0 − sin β cos β 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A2)

where β is the angle of the deformed configuration (see Fig. 3).
The local elementary linear stiffness matrix of Eq. (11) is given as

K̄
e
L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AE
L0

0 0 −AE
L0

0 0

0 12EI
L3

0

6EI
L2

0
0 − 12EI

L3
0

6EI
L2

0

0 6EI
L2

0

4EI
L0

0 − 6EI
L2

0

2EI
L0

−AE
L0

0 0 AE
L0

0 0

0 − 12EI
L3

0
− 6EI

L2
0

0 12EI
L3

0

−6EI
L2

0

0 6EI
L2

0

2EI
L0

0 − 6EI
L2

0

4EI
L0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A3)
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Table AI. Scalar variables.

Notation Meaning

R Radius of the battery
ϕ1, ϕ2 Two arches of the curved beam
Fa Assembly force
un Normal displacement
x, y Global Cartesian coordinate system
xL, yL Local Cartesian coordinate system
ne Number of elements
n Number of nodes
α Rigid-body rotation angle of beam
�1, �2 Rotation of node 1, node 2
�1l, �2l Rotation of node 1, node 2 in local frame
β0 Initial orientation angle for beam element
β Final orientation angle for beam element
L0 Initial length of beam element
L Current length of beam element
P Axial force in beam
E Young’s modulus
A Area of beam
M1, M2 Local end moments of beam at node 1, node 2
I Area moment of inertia
V1, V2 Shear forces of node 1, node 2
d Contact gap
pc Contact pressure
γ Angular coordinate of contacting point

measured from horizontal line
x0, y0 Initial coordinates of the battery’s centre
xn, yn Current nodal coordinates of contact node n
Fc Tangential friction force of contact node
μ Friction coefficient
t Time
�t Time increment
tol Displacement convergence tolerance
f̂nx, f̂ny Force entries of internal load vector in contact node n

t+�tNy Normal contact load
m Mass of the half battery
g Gravity
F+

cy, F−
cy Vertical components of the Coulomb forces

N+
y , N−

y Vertical components of the normal forces
F+

a , F−
a Assembly forces

N(0)
y Vertical component of the normal force

when only normal contact force is present
ky Stiffness coefficient in vertical direction
�y Computed displacement increment
� Potential energy
K A function a: R+ →R+, continuous and strictly increasing
Ffy Friction force in direction y
dy Damping parameter
y0 The position of the zero tangent contact force
A, B, C Equilibrium points
yA, yB, yC Position of the equilibrium points
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Table AII. Matrices.

Notation Meaning

f̄
e
i Local internal element load vector

q̄e Local vector of elementary nodal displacements
fe
i Global internal load vector

qe Global elementary nodal displacement vector
TT

e Transpose of transformation matrix
fi Structural internal load vector
K̄

e
t Local tangent stiffness matrix

K̄
e
L Local linear stiffness matrix

K̄
e
t1, K̄

e
t2 Local geometric stiffness matrices

Ke
t Element stiffness matrix in global coordinate system

Kt Tangent stiffness matrix of the complete element assemblage
en, et Normal and tangential unit vectors
Tn Transformation matrix
T Transformation matrix
I Unit matrix
K̂t Transformed tangential stiffness matrix
f̂i Transformed internal load vector
fu Column vector of the kinematical load
fc Column vector of nodal point forces associated with friction force Fc

f̂i Transformed vector of internal loads
�q(k) Vector of incremental nodal point k displacements in iteration step
t+�tq(k−1) Vector of nodal point displacements at time t + �t in iteration step k − 1
t+�tq(k) Vector of nodal point displacements at time t + �t in iteration step k
t+�tK̂

(0)

t Transformed stiffness matrix at time t + �t in initial step
t+�tK̂

(k)

t Transformed stiffness matrix at time t in iteration step k
t+�tf(k)

u Column vector of the kinematical load at time t + �t in iteration step k
t+�tf(k−1)

c Vector of nodal point forces associated with friction force at
time t + �t in iteration step k − 1

t+�tf̂
(k−1)

i Transformed vector of internal loads at time t + �t in iteration step k − 1
tq Convergent solution vector of nodal point displacements at time t
tK̂ Stiffness matrix calculated at convergence at time t
tfc Convergent vector of nodal point forces associated with

friction force Fc at time t
tf̂i Convergent transformed vector of internal loads at time t
q Column vector of generalized displacement
q̇ Column vector of generalized velocities
Q Row vector of generalized forces
Kt(n,n) Submatrix of the tangent stiffness matrix associated with contact node n
Kt(r,r) Submatrix of the tangent stiffness matrix associated with rest of the nodes
Kt(r,n) Submatrix of the tangent stiffness matrix associated with contact node n

and rest of the nodes
fi(n) Subvector of internal forces associated with contact node n
fi(r) Subvector of internal forces associated with rest of the nodes
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The local geometric stiffness matrices are as follows:

K̄
e
t1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 AEul

L2
0

0 0 −AEul

L2
0

0

0 0 0 0 0 0

0 0 0 0 0 0

0 −AEul

L2
0

0 0 AEul

L2
0

0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A4)

K̄
e
t2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 M1+M2

L2
0

0 0 −M1+M2

L2
0

0
M1+M2

L2
0

0 0 −M1+M2

L2
0

0 0

0 0 0 0 0 0

0 −M1+M2

L2
0

0 0 M1+M2

L2
0

0

−M1+M2

L2
0

0 0 M1+M2

L2
0

0 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A5)

The velocities and the accelerations are approximated by the Newmark method with trapezoid
rule based on the following approximations:

t+�ty = ty + �t

2

(
tẏ + t+�tẏ

)
, (A6)

t+�tẏ = tẏ + �t

2

(
tÿ + t+�tÿ

)
. (A7)

The equations used in the Newton–Raphson iteration are given in the sequel for k = 1, 2, 3, ...,. The
displacement is updated as

t+�ty(k) = t+�ty(k−1) + �y(k). (A8)

The velocity is calculated as

t+�tẏ(k) = 2

�t

(
t+�ty(k−1) + �y(k) − ty

) − tẏ. (A9)

The acceleration is given as

t+�tÿ(k) = 4

�t2

(
t+�ty(k−1) + �y(k) − ty

) − 4

�t
tẏ − tÿ. (A10)

IVP for point A is

mt+�tÿ(k) + (ke + ks) �y(k) = mg − t+�tN−(k−1)
y + t+�tF−(k−1)

cy , (A11)

with initial values t+�ty(t) = ty, t+�tẏ(t) = tẏ and t+�tÿ(t) = tÿ,

where ke = ∂N−
y

∂y

∣∣∣
t+�ty(k−1)

= ke and ks = ∂F−
cy

∂y

∣∣∣
t+�ty(k−1)

.

IVP for point B is

mt+�tÿ(k) + (ke − ks) �y(k) = mg − t+�tN+(k−1)
y − t+�tF+(k−1)

cy , (A12)

with initial values t+�ty(t) = ty, t+�tẏ(t) = tẏ and t+�tÿ(t) = tÿ,
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where ke = ∂N+
y

∂y

∣∣∣
t+�ty(k−1)

= ke and ks = ∂F+
cy

∂y

∣∣∣
t+�ty(k−1)

.

IVP for point C is

mt+�tÿ(k) + (
ke + ky

)
�y(k) = mg − t+�tN0(k−1)

y − ky
(

t+�ty(k−1) − y0
) − dy

t+�tẏ(k), (A13)

with initial values t+�ty(t) = ty, t+�tẏ(t) = tẏ and t+�tÿ(t) = tÿ,

where ke = ∂N0
y

∂y

∣∣∣
t+�ty(k−1)

= ke and ky = 6.393 · 105 N
m and dy = 102 Ns

m .

Substituting (A9) and (A10) into (A11)–(A13) then performing straightforward manipulations,
the unknown displacement increment �y(k) can be determined for the three initial value problems
defined above.
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