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We identify mechanisms through which open-loop control of thermoacoustic instability
is achieved in a laminar combustor and characterize them using synchronization theory.
The thermoacoustic system comprises two nonlinearly coupled damped harmonic
oscillators – acoustic and unsteady heat release rate (HRR) field – each possessing
different eigenfrequencies. The frequency of the preferred mode of HRR oscillations is
less than the third acoustic eigenfrequency where thermoacoustic instability develops.
We systematically subject the limit-cycle oscillations to an external harmonic forcing
at different frequencies and amplitudes. We observe that forcing at a frequency near
the preferred mode of the HRR oscillator leads to a greater than 90 % decrease in
the amplitude of the limit-cycle oscillations through the phenomenon of asynchronous
quenching. Concurrently, there is a resonant amplification in the amplitude of HRR
oscillations. Further, we show that the flame dynamics plays a key role in controlling
the frequency at which quenching is observed. Most importantly, we show that
forcing can cause asynchronous quenching either by imposing out-of-phase relation
between pressure and HRR oscillations or by inducing period-2 dynamics in pressure
oscillations while period-1 in HRR oscillations, thereby causing phase drifting between
the two subsystems. In each of the two cases, acoustic driving is very low and hence
thermoacoustic instability is suppressed. We show that the characteristics of forced
synchronization of the pressure and HRR oscillations are significantly different. Thus,
we find that the simultaneous characterization of the two subsystems is necessary to
quantify completely the nonlinear response of the forced thermoacoustic system.

Key words: instability control, laminar reacting flows

1. Introduction
Lean combustion systems are prone to high-amplitude pressure oscillations that

are established due to positive feedback between the acoustic pressure fluctuations
(p′) of the combustor and the heat release rate (HRR) fluctuations (q̇′) taking place
inside it. The occurrence of such high-amplitude self-sustained pressure oscillations
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in combustors is known as thermoacoustic instability (Lieuwen & Yang 2005). The
sustainability of thermoacoustic instability depends closely on the energy balance
inside the combustor. The time-averaged acoustic power production is defined as

P =
1

NT

∫ NT

0
p′(t)q̇′(t) dt, (1.1)

where p′ and q̇′ are the pressure and HRR fluctuations about the mean, respectively,
and N represents the total number of cycles, each having a time period of T , with
which we compute the average. The necessary conditions for the growth of acoustic
energy inside a combustor are given by the modified Rayleigh criterion. It states that
there is a growth in acoustic energy when: (1) the instantaneous phase difference
between pressure and HRR fluctuations remains bounded such that |1φp′q̇′ |<π/2 and
(2) the volume integral of acoustic power sources in the combustor is higher than the
acoustic efflux (loss) across the control surface (Rayleigh 1878; Poinsot & Veynante
2005).

The problem is exacerbated by the fact that thermoacoustic systems are exceedingly
complex, and are capable of exhibiting n-periodic, quasiperiodic, chaotic and
intermittent dynamics in addition to the comparatively well-studied limit-cycle
oscillations (Juniper & Sujith 2018). Thermoacoustic instability is a significant
problem in gas turbine engines used for propulsion and power generation systems
and can lead to critical operational failures. Thus, control strategies are crucial for
extending the longevity of gas turbine engines.

1.1. Control strategies for suppressing thermoacoustic instability
Control strategies for mitigating thermoacoustic instability are classified into passive
control and active control. Active control is further referred to as active closed-loop
control if there is real-time feedback from the combustor to the actuator; otherwise,
it is called active open-loop control.

Passive control strategies involve design changes of the combustor to either
increase the net acoustic efflux or disrupt the phase relationship of the flame–acoustic
interaction, or both (Richards, Straub & Robey 2003; Noiray et al. 2007). Usually,
acoustic damping is increased by installing baffles, dampers and resonators. In some
cases, extensive design changes may be necessary, as is exemplified by the 2000
full-scale tests that the F-1 engine had to go through before the right combination
of injector–baffle configuration could be finalized (Oefelein & Yang 1993). Passive
control strategies are trial-and-error based, and the high cost incurred during the
design and testing of passive control strategies in real-time propulsion systems proves
to be a significant deterrent against this type of control strategy. However, in the
absence of other viable control strategies, passive control is the most common way
of dealing with thermoacoustic instability.

Active closed-loop control involves the control of thermoacoustic instability through
the use of feedback mechanisms such as adaptive choker plates capable of altering
upstream acoustic boundary conditions (Dowling et al. 1988; Dowling & Morgans
2005) or harmonic drivers to generate anti-phase sound, or anti-sound, at the frequency
of thermoacoustic instability (Lang, Poinsot & Candel 1987). Such methods have
shown promise but are not used extensively in the field. Reviews on the state of the
art of active control of thermoacoustic instability can be found in Docquier & Candel
(2002) and Zhao et al. (2018).
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Open-loop control in a laminar thermoacoustic system 884 A2-3

In contrast, active open-loop control is achieved through external forcing of the
thermoacoustic system and does not rely on real-time feedback from the combustor.
Thus, open-loop control systems are much easier to design and are considerably
cheaper. In open-loop control, high-amplitude limit-cycle oscillations are controlled by
subjecting them to harmonic forcing at a frequency away from the natural frequency
of oscillations. Open-loop control results in a significant decrease in the amplitude
of thermoacoustic oscillations through a process known as asynchronous quenching
(Guan et al. 2019a; Mondal, Pawar & Sujith 2019). The term asynchronous indicates
that quenching of oscillations takes place at a forcing frequency away from the
frequency of limit-cycle oscillations. Although not referred to by this terminology,
studies in the past (Lubarsky, Shcherbik & Zinn 2003; Bellows, Hreiz & Lieuwen
2008) have shown this state in turbulent combustors. Quenching has been hypothesized
to be due to the destruction of the feedback loop responsible for thermoacoustic
instability (Lubarsky et al. 2003), which leads to very low time-averaged acoustic
power production (Guan et al. 2019a; Mondal et al. 2019). A number of studies
have shown that quenching causes a significant decrease in the limit-cycle amplitude
(greater than 80 % decrease of the root mean square (r.m.s.) value and 90 % of
spectral amplitude) across a variety of combustors such as electrically heated Rijke
tubes (Mondal et al. 2019), laminar combustors (Guan et al. 2019a) and turbulent
combustors (Shcherbik et al. 2003; Bellows et al. 2008).

Despite such prospects, open-loop control, and active control in general, is
constrained by the limited bandwidth of actuated fuel valves (Zhao & Morgans
2009). Besides, there is inadequate knowledge about the physical mechanisms that
lead to quenching. In addition, the range of forcing frequencies over which quenching
takes place is still unclear. Some studies have shown that quenching is only observed
when the forcing frequency is lower than the frequency of limit-cycle oscillations
(Lubarsky et al. 2003; Bellows et al. 2008; Mondal et al. 2019); whereas others have
demonstrated that quenching is possible even if the forcing frequency is lower and
higher than the frequency of limit-cycle oscillations (Balusamy et al. 2015; Guan
et al. 2019a). However, no study has described the reason behind such a frequency
dependence of asynchronous quenching in a given thermoacoustic system.

During open-loop control, the flame is perturbed simultaneously at the frequency
of self-excited thermoacoustic instability and the frequency of external forcing. The
presence of multiple frequencies makes it quite challenging to measure the response
of the system. Nonlinear flame-describing functions, as proposed by Noiray et al.
(2008) for measuring the nonlinear flame response at a single frequency, have been
used to measure the flame response in the presence of incommensurate frequencies
in the system (Orchini & Juniper 2016). However, they also pointed out the high
cost of computation associated with the prediction of the amplitude of quasiperiodic
oscillations. Further, Balusamy et al. (2017) pointed out that the determination of
flame-describing functions can be quite a challenge as external forcing can trigger
self-excited thermoacoustic oscillations, which can lead to unreliable approximations
of the gain and phase of the flame response. Thus, alternative measurement tools are
required to characterize the nonlinear flame response associated with the relatively
high forcing amplitudes used for quenching of thermoacoustic oscillations.

Recent studies have attempted to quantify the nonlinear response of thermoacoustic
instability to external forcing. As a result, several nonlinear phenomena such as
frequency entrainment (Lieuwen & Neumeier 2002; Bellows et al. 2008; Balusamy
et al. 2015), a shift in the natural acoustic response of the combustor (Lubarsky et al.
2003; Bellows et al. 2008; Balusamy et al. 2015) and frequency pulling/pushing
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(Balusamy et al. 2015) have been identified. Guan et al. (2019b) showed that
open-loop control through transient forcing could be used to achieve quenching of
about 50 % of the amplitude of limit-cycle oscillations. In many of these recent studies,
both numerical (Kashinath, Li & Juniper 2018) and experimental (Balusamy et al.
2015; Guan et al. 2019a,b; Mondal et al. 2019), the nonlinear interaction between
forcing and thermoacoustic instability is explained using concepts of synchronization
theory (Balanov et al. 2008). In the present work, we also resort to the framework
of synchronization theory. We discuss the relevant concepts next.

1.2. Forced synchronization
In the framework of forced synchronization, the harmonic forcing and the self-excited
limit-cycle oscillations are idealized as two oscillators which are unidirectionally
coupled, i.e. only forcing affects the limit-cycle oscillations, and not vice versa. Forced
synchronization is achieved whenever the frequency of the limit-cycle oscillations
locks with the frequency of external forcing ( fn1 = ff ), and the time evolution of the
phase difference between them becomes bounded to a small interval µ (<2π) around
some mean value C, i.e. |1φF,p′(t)−C| = |φF − φp′ −C|6µ (Pikovsky & Maistrenko
2012). We refer to the forcing as F, the forcing frequency as ff , the unforced natural
frequency of the limit-cycle oscillations in p′ as fn0 and the response frequency of
the natural oscillations under forcing as fn1, where fn1 may or may not be the same
as fn0. In the above definition, the condition of |1φF,p′(t)− C| 6 µ is referred to as
phase locking, and the state of fn1 = ff is referred to as frequency entrainment of fn1
by the external forcing at ff .

In general, the forced synchronization of an oscillator is characterized in terms
of locking and suppression (Balanov et al. 2008). For small frequency detuning,
1f = |ff − fn1|/fn0 6 ε, where ε � 1, the transition to synchronization is associated
with the spectral peak at fn1 moving towards the spectral peak at ff , when the forcing
amplitude is increased. The state of synchronization achieved in this manner is called
locking. For larger frequency detuning, 1f = |ff − fn1|/fn0 > ε, upon increasing the
forcing amplitude, the spectral amplitude associated with fn1 gradually diminishes,
before vanishing completely. Synchronization attained in this manner is referred to as
suppression. Thus, the states of locking and suppression are two different pathways to
the same final state of forced synchronization. Each of these two pathways involves
different types of bifurcations. The reader is referred to Balanov et al. (2008) for
a general treatment of this topic and to Kashinath et al. (2018) and Mondal et al.
(2019) for its implementation in thermoacoustics.

1.3. Forced synchronization in hydrodynamic and thermoacoustic systems
It is quite well established that thermoacoustic instability arises out of an interplay
between the various subsystems inside a combustor – flow dynamics, combustion
and acoustics. Thus, understanding the effect of forcing on each of these subsystems
simultaneously becomes necessary. In the recent past, many studies have attempted
to characterize the nonlinear effect of forcing on each of these individual subsystems
and their combinations using synchronization theory.

For hydrodynamic systems, Juniper, Li & Nichols (2009) reported frequency
entrainment of reacting and non-reacting, globally unstable hydrodynamic jets. For
a non-reacting low-density self-excited jet, the route to forced synchronization was
illustrated by Li & Juniper (2013a,b,c). They observed that the system response
was asymmetric about fn0 and forced synchronization was achieved only for
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ff < fn0. Later, Pawar et al. (2018) quantified the effect of forcing on a preheated
bluff-body-stabilized flame. They found that synchronization characteristics of the
top and bottom branch of the flame exhibit significant asymmetry depending upon
the density ratio of the unburned reactants to products. These results indicate that
the stability of the underlying flow field has a significant effect on its response to
external forcing.

For a swirl-stabilized combustor exhibiting thermoacoustic instability, Bellows
et al. (2008) were able to quench acoustic pressure oscillation to about 90 % of the
unforced spectral amplitude and ∼65 % of the unforced r.m.s. value when ff < fn0.
Although not discussed in their study, quenching was associated with the forced
synchronization of thermoacoustic instability. In a similar system, Balusamy et al.
(2015) observed forced synchronization of limit-cycle oscillations for both ff < fn0
and ff > fn0. However, they did not comment on the overall decrease in the amplitude
of limit-cycle oscillations when forced synchronization was achieved. The locking
and suppression route to forced synchronization of limit-cycle oscillation has been
shown in a numerical study of a laminar burner (Kashinath et al. 2018) and in an
experimental study of a Rijke tube (Mondal et al. 2019). Kashinath et al. (2018)
also demonstrated the forced synchronization of quasiperiodic and chaotic oscillations
arising in a thermoacoustic system.

Recent systematic studies of Guan et al. (2019a) and Mondal et al. (2019) have
shed more light on asynchronous quenching. They observed that the asynchronous
quenching of limit-cycle oscillation is achieved when the following conditions are
satisfied: (i) limit-cycle oscillation is synchronized to the forcing and (ii) the forcing
frequency is far away from the natural frequency. Asynchronous quenching has
been observed in a variety of systems such as plasmas (Keen & Fletcher 1970),
control systems (Fjeld 1974) and ionization waves (Ohe & Takeda 1974). However,
as mentioned before, the frequency at which asynchronous quenching is observed
remains a confounding aspect in recent studies of open-loop control.

1.4. Contributions of the present study
In many of the previous studies of open-loop control (Lubarsky et al. 2003; Bellows
et al. 2008; Guan et al. 2019a), the forced response of thermoacoustic systems is
characterized in terms of the acoustic response alone. In other words, the acoustic
response is considered to be representative of the thermoacoustic system under
external forcing. However, as we show in our study, the response of the flame to
forcing is considerably different from that of the acoustic field of the combustor and,
therefore, measuring the acoustic response alone may not be enough to characterize
the system behaviour completely. We consider the thermoacoustic system to be a
system of two mutually coupled nonlinear oscillators: the acoustic pressure (p′)
and the HRR (q̇′) oscillators. During stable combustor operation, both acoustic
and HRR oscillators act like damped oscillators possessing different eigenmodes.
During thermoacoustic instability, both of them oscillate at the frequency of
limit-cycle oscillation, which develops close to the third acoustic eigenfrequency
of the combustor.

Our objective is to simultaneously investigate the effect of harmonic forcing
on the acoustic pressure and HRR oscillations developed during thermoacoustic
instability. We characterize the forced synchronization of acoustic pressure and HRR
oscillations and show that acoustic pressure and HRR oscillations have different
forced synchronization characteristics at different conditions of forcing. Previous
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studies have reported quenching of limit-cycle oscillations either for ff < fn0 alone
(Lubarsky et al. 2003; Bellows et al. 2008; Mondal et al. 2019) or for both ff < fn0
and ff > fn0 (Balusamy et al. 2015; Guan et al. 2019a). We find that asynchronous
quenching of the limit-cycle oscillation is attained when the forcing frequency is in
the vicinity of the preferred mode ( fq) of the flame, which is lower than fn0 in our
system. Thus, the inherent flame response plays a significant role in controlling the
quenching characteristics of thermoacoustic instability in the system. Asynchronous
quenching results in a 92 % drop in p′rms and greater than 99 % drop in the spectral
amplitude of acoustic pressure oscillations (|p̂( fn1)|). In addition, quenching can be
achieved by forcing amplitudes which are just 10 % of the amplitude of limit-cycle
oscillations.

We also present a systematic discourse on how the coupling between p′ and q̇′ is
affected as forcing parameters are changed. We further quantify the same using the
variation in phase-locking value (PLV), a measure that quantifies the synchronization
behaviour of coupled oscillators (2.2), between p′ and q̇′ as a function of the forcing
frequency. We find that under some forcing conditions, p′ and q̇′ undergo a transition
to period-2 oscillations, somewhat similar to what had been predicted in a prior
numerical study by Kashinath et al. (2018).

The rest of the paper is organized as follows. In § 2, we introduce the experimental
set-up and the methodology. In § 2.3, we characterize the forced response of the
combustor during stable operation, and the stable flame in unconfined and confined
state. In § 3.1, we discuss the forced response of themoacosutic oscillations. In §§ 3.2
and 3.3, we focus exclusively on the forced synchronization of p′ and q̇′, respectively.
In § 3.4, we consider the effect of forcing on the coupling between p′ and q̇′. In § 3.5,
we show the possibility of period-2 behaviour of p′ and q̇′ arising due to forcing.
Finally, we present the conclusions from the study in § 4.

2. Methodology
2.1. Experimental set-up and measurements

The experiments were conducted using a laminar combustor capable of supporting
multiple flames, as shown in figure 1. Such an arrangement was originally utilized
by Matsui (1981) for flame transfer function measurements, and used more recently
by Kabiraj et al. (2012a) for illustrating the different dynamical states possible in a
thermoacoustic system. In this set-up, the burner tube is enclosed by a glass duct
whose bottom end is acoustically closed, and the top end is acoustically open to the
atmosphere. The glass tube and the burner tube are of equal length, L = 800 mm.
The glass duct has an inner diameter of 50 mm, while the burner tube has an inner
diameter (db) of 16 mm. On the burner tube, a copper plate with seven holes is
mounted. The height of the copper plate is 20 mm. The diameter (d) of each of
these seven holes is 2 mm (upper inset of figure 1). Premixed conical flames are
anchored on these holes (see lower inset of figure 1). A fine wire mesh is kept on
the perforated copper plate to stabilize the flame.

The flame location (xf ) inside the glass duct can be varied using a traverse
mechanism, having a least count of 1 mm, attached to the glass tube. The height
of the flame is around Hf = 6 mm (see figure 1). The flame is quite small in
comparison to the duct length Hf /L= 6/800∼ O(10−3) and the acoustic wavelength
Hf /λ= 6/1067∼O(10−3). Here, λ is the wavelength of the third acoustic eigenmode,
which is λ = 4L/3 = 1067 mm. In other words, the flame is compact, and hence
we use the burner surface location from the open end of the glass tube to be
representative of the flame location xf throughout this study.
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PMT

CH* filter

Pressure transducers

Perforated plate

Traverse mechanism

Premixing chamber

P1

P2

xf

6 mm

Fuel

Air

Glass duct

Burner tube

Settling chamber

Loud speakers

FIGURE 1. Schematic of the laminar burner with which forcing experiments were
conducted. Insets show the geometry of the burner exit where the flames are anchored
and an actual flame image during stable operation. There are seven conical flames whose
height during stable combustion is Hf ≈ 6 mm.

The burner tube is connected to a settling chamber with diameter D = 223 mm.
As D/db = 13.94 (or AD/Adb = 194.25, where A is the cross-sectional area), the
transmission coefficient (T ) of the acoustic waves to travel from the burner tube to
the settling chamber can be calculated as T = 4ADAdb/(AD + Adb)

2
∼ 0.02 (equation

10.10.8 from Kinsler et al. (1999)). Thus, the transmission coefficient is quite low.
Further, the air and liquefied petroleum gas (40 % propane and 60 % butane by
volume) are mixed in a premixing chamber which is connected to the settling
chamber through a braided hose of diameter 2 mm. The transmission coefficient of
the connection from the settling chamber to the inlets of air and fuel supply line is
also quite low. Thus, we can be reasonably assured that the settling chamber prevents
acoustic waves from travelling upstream of the combustion chamber to the fuel and
air supply connections and causing fluctuations in the equivalence ratio.

Air and liquefied petroleum gas flow rates were maintained constant at ṁa =

5.8 slpm and ṁf = 0.2 slpm using Alicat MCR 100 slpm and Alicat MCR 10 slpm
mass flow controllers throughout the experiments, respectively. The uncertainty levels
are ±0.8 % of the controlled reading and ±0.2 % of the full-scale flow measurements.
The equivalence ratio (φ) for this flow condition is 0.53. The thermal power of
the laminar combustor is approximately 290 W. The nominal velocity at the exit of
the burner tube is Ū = 4.55 m s−1. The cold-flow Reynolds number based on the
diameter of the perforations is Red = 583. The maximum uncertainty in the indicated
values of φ is ±1.6 %, and for Ū and Red it is ±0.8 %.
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Pressure measurements were acquired using two PCB 103B02 pressure transducers
mounted at a distance of 200 mm from the open end and 50 mm from the closed
end of the glass duct, as indicated by P1 and P2, respectively, in figure 1. The
sensitivity and resolution of the two pressure transducers are 217.5 mV kPa−1 and
0.2 Pa, respectively. The uncertainty in pressure measurements is ±0.15 Pa. The
HRR is measured using a Hamamatsu H5784 photomultiplier tube (PMT) equipped
with a CH∗ filter. The CH∗ filter has a bandwidth of 10 nm and is centred around
431.4 nm to capture the photons emitted by CH∗ radicals in the flame. The PMT
measures the global HRR of all seven flames anchored on top of the burner tube.
The pressure transducer and PMT measurements were acquired using a 16-bit NI
USB 6343 data acquisition system at a sampling frequency of 10 kHz. The acoustic
pressure measurements presented in the paper are from the transducer located at P1 so
that the simultaneous measurements of p′ and q̇′ were acquired at the same location,
and there is no artificially introduced phase delay between them. Flame images were
acquired using a Phantom V12.1 camera at a framing rate of approximately ten times
the frequency of the signal we wanted to measure.

The inlet flow is harmonically perturbed using four Ahuja AU-60 PA loudspeakers
connected in parallel and mounted at the bottom of the settling chamber. All
the speakers have an impedance of 16 � and an operational frequency range of
160–7000 Hz. The speakers are connected in parallel to an Ahuja UBA-500M
power amplifier and the gain is set at a value of 3 units for all the experiments.
The harmonic forcing signal is generated using a Tektronix arbitrary waveform
generator and input to the amplifier. With the waveform generator, we can control
the amplitude (Af , in mV) and the frequency ( ff , in Hz) of the sinusoid signal.
Throughout the paper, whenever we mention the amplitude of forcing, we refer to the
peak-to-peak amplitude of the sinusoidal waveform that is input to the amplifier. We
force the system during the state of thermoacoustic instability at four different forcing
amplitudes, 10, 30, 50 and 70 mV, in the frequency range 200 6 ff 6 400 Hz. For
Af > 30 mV, frequency sweeping is performed in steps of 5 Hz (or 1f /fn0 ≈ 0.014)
in the region of quenching, i.e. 0.65 < ff /fn0 < 0.87 (or 240 < ff < 320 Hz), and in
steps of 10 Hz otherwise. Thus, we capture every transition in the system dynamics
with sufficiently high certainty.

The damping in the system was measured during cold-flow experiments using an
acoustic pulse. The exponential decay rate of the acoustic waves in the combustor was
found to be 30.8 s−1. For all experiments, we ensured that the decay remains within
±10 % of the indicated value to ensure repeatability in the experiments. Also, before
every experiment, the air column inside the glass duct was heated by keeping the
flame at a distance of 51 cm from the open end where the combustor exhibits stable
operation. We found that a heating time of approximately 15 minutes was enough for
the wall temperature to saturate. The wall temperature, measured using a thermocouple
attached to the glass tube at 10 cm from the open end, saturated to Tsat ≈ 160± 5 ◦C.

During each experiment involving external forcing, the forcing signal was switched
off, and the system was allowed to regain its original state of limit-cycle oscillations
before embarking on the next forcing cycle at a different condition of forcing. Such
caution is necessary to ensure that the system does not retain any memory of the
previous forcing conditions.

The repeatability of the experiments was ensured for over 10 realizations of the
experiment. Even though the parametric points where the synchronization states were
achieved had some variability, the trend of the results remained the same during all
trials. In other words, for a given Af , the range of ff /fn0 over which different states of
forced synchronization (such as phase locking, intermittent phase locking and phase
drifting) were achieved had small variations.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

88
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.884


Open-loop control in a laminar thermoacoustic system 884 A2-9

2.2. Nonlinear time series analysis
2.2.1. Measuring frequency response

The frequency contents of the acoustic pressure (p′) or the HRR (q̇′) signals are
evaluated using the fast Fourier transform algorithm. The datasets are sampled at a
frequency of 10 kHz to resolve the limit-cycle signal of 368 Hz and prevent any
spectral leakage. The sampling frequency is about 27 times that of the unforced limit-
cycle oscillations. We acquired about 50 000 data points or about 1840 cycles of the
oscillations at any given forcing condition. The fast Fourier transform algorithm was
implemented using a frequency resolution of 0.153 Hz per bin for a total of 32 768
bins.

2.2.2. Phase-space reconstruction
The transition to forced synchronization is characterized by reconstructing the phase

space on which the dynamics of the forced system evolves. For any arbitrary initial
condition, the asymptotic state of a nonlinear system evolves in the phase space
to a set of numerical values which make up the attractor of the system. Thus, the
topological features of the attractor quantify the asymptotic dynamics of the system.

Phase space is reconstructed using Takens’ delay embedding theorem (Takens
1981). The optimum time delay is obtained using average mutual information (Fraser
& Swinney 1986) and the embedding dimension on which the dynamics evolve is
calculated through Cao’s method (Cao 1997). The calculations of average mutual
information and embedding dimension are detailed in appendix A.

The trajectories of a periodic system form a closed orbit known as a limit-cycle
attractor. However, the presence of noise in the signal leads to a finite width of the
limit-cycle attractor. When the system dynamics contains two or more dependent
frequencies, for example, a signal containing superharmonics ( f , 2f , . . .) leads to a
closed structure with multiple loops in phase space. The number of loops indicates the
number of subharmonics that are present in the signal. In the case of a quasiperiodic
signal, i.e. a signal with at least two incommensurate frequencies ( f1/f2 ∈ I, where I
is the set of irrational numbers), the trajectory evolves on a T2-torus. A T2-torus is
defined as the product of two circles, T2

= S1× S2, where the trajectory rotates around
each of the two circles (S1, S2) with the two incommensurate frequencies present in
the system (Nayfeh & Balachandran 2008). Thus, in the case of quasiperiodic signals,
the phase-space trajectory comes arbitrarily close to its origin without actually closing
on itself. The forcing frequency ( ff ) reported in our study is incommensurate with the
frequency of the unforced limit-cycle oscillations ( fn0). Hence, we get quasiperiodic
dynamics whenever the amplitude of forcing is not high enough to cause forced
synchronization.

2.2.3. Instantaneous phase calculation
In order to examine the synchronization between any two given oscillators,

determination of the instantaneous phase of each signal becomes important. All
the signals that we consider here are periodic and narrowband in nature. Thus, the
sufficient conditions are fulfilled for utilizing the concept of analytic signal introduced
by Gabor (1946). We construct a complex analytic signal ζ (t) from a scalar signal
x(t), such that ζ (t)= x(t)+ iH[x(t)] =A(t)eiφ(t), where φ(t) is the instantaneous phase
and A(t) is the instantaneous amplitude of the analytic signal. Here H refers to the
Hilbert transform, which is defined as

H[x(t)] = PV
1
π

∫
∞

−∞

x(τ )
t− τ

dτ . (2.1)
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Here, the integral is evaluated for the Cauchy principal value (PV). The instantaneous
phase difference between two signals, x1(t) and x2(t), is then evaluated as 1φx1,x2(t)=
φx1(t) − φx2(t). Synchronization of x1 with x2 is achieved when the relative phase
between them becomes bounded to a small interval µ (<2π) around some mean value
C; i.e. |1φx1,x2(t)−C|6µ (Pikovsky & Maistrenko 2012). If the unwrapped relative
phase between any two signals shows unbounded and monotonic increase/decrease in
time, the signals are said to be desynchronized, and the trend of increasing/decreasing
phase difference is termed as phase drifting.

Note that for calculating the relative phase of p′ or q̇′ with forcing, we use a
reference sinusoidal signal of unit magnitude having the same frequency as that of
the forcing ff . Therefore, the temporal evolution of the relative phase of p′ or q̇′ with
forcing is meaningful, but the actual value is arbitrary. Accordingly, we make all our
observations of forced synchronization of acoustic and HRR oscillations based on the
trend that the time evolution of the relative phase follows.

2.2.4. Phase-locking value
We calculate the PLV in order to quantify the synchronization between two signals.

The PLV is defined as the absolute value of the mean phase difference between two
signals where the instantaneous phase differences (1φ) are expressed as complex
unit-length vectors, i.e. ei1φ (Lachaux et al. 1999; Mondal, Pawar & Sujith 2017).
Mathematically, the PLV is defined as

PLV=
1
N

∣∣∣∣∣
N∑

j=1

exp(i1φx1,x2(tj))

∣∣∣∣∣ , (2.2)

where the phase difference at the instant tj is 1φx1,x2(tj) = φx1(tj) − φx2(tj). The PLV
lies close to 0 for desynchronized signals and close to 1 for perfectly synchronized
signals. For cases with partial synchronization such as intermittent phase locking, the
PLV lies between 0 and 1.

2.3. Characterization of thermoacoustic subsystems
2.3.1. Forced acoustic response of the combustor during stable operation

The glass duct is acoustically open at the top (acoustic pressure p′(x/L = 0) ≈ 0)
and closed at the bottom end (acoustic velocity u′(x/L = 1) ≈ 0). In the absence
of combustion (no flame), forcing the combustor leads to resonant amplification of
the forcing signal at ff = 109, 326 and 543 Hz. The amplification corresponds to the
frequency of the first three acoustic eigenmodes ( fn = nc/4L, where n = 1, 3 and 5,
and c is the speed of sound at 300 K) of the closed–open glass duct (figure is not
shown here).

We next measure the response of the acoustic pressure fluctuations to forcing
during stable combustor operation (i.e. no thermoacoustic instability). When xf ,
the distance of the flame from the open end, is increased, the system dynamics
undergoes a subcritical Hopf bifurcation from a steady state to limit-cycle oscillation
at xf = 187 mm (xf /L = 0.23). Upon decreasing xf , we notice that the transition
from limit-cycle oscillation to steady state happens at xf = 150 mm (xf /L = 0.19)
through the fold point. Hence, we measure the acoustic response of the system
by keeping xf = 140 mm (xf /L = 0.18), as this location is outside the bistable
zone and forcing cannot trigger the system dynamics to the state of thermoacoustic
instability. So, xf = 140 mm corresponds to stable combustor operation. At this xf ,
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FIGURE 2. Illustration of the inherent response of different subsystems of the
thermoacoustic system during stable operation. (a) Forced acoustic response of the long
duct (L = 800 mm) as a function of ff measured at the flame location xf = 140 mm.
(b) Forced response of HRR fluctuations in the flame as a function of ff measured without
confinement (s), in a short tube (f) (L= 400 mm and xf = 200 mm) and in a long duct
(p) (L = 800 mm and xf = 140 mm). The amplitude of forcing is fixed at Af = 50 mV
for both (a) and (b). The right-hand axis in (b) corresponds to a larger HRR response for
the case with longer duct.

the acoustic response of the duct is measured in terms of the r.m.s. value of the
pressure oscillations as a function of the forcing frequency ff and amplitude Af . In
other words, we measure p′rms(Af , ff )=

√
〈p′(t)2〉, where p′(t) is the mean subtracted

signal measured after external forcing has been set at a fixed value of ff and Af , and
〈·〉 indicates time-averaged quantity.

In figure 2(a), we plot p′rms(Af , ff ) as a function of ff at Af = 50 mV. The forcing
frequency is normalized by the frequency of the unforced limit-cycle oscillations fn0=

368 Hz obtained when xf is fixed at 200 mm. The resonant amplification of forcing
is visible for the first ( f1 = 125 Hz), third ( f3 = 360 Hz) and fifth ( f5 = 580 Hz)
harmonics of the glass duct, which correspond to the first three acoustic eigenmodes
of the stable combustor.

2.3.2. Forced HRR response of the stable flame
We ascertain the stability of the flame by subjecting it to forcing in unconfined

and confined conditions. The premixed flame remains linearly stable to low-amplitude
perturbations for all lean operating conditions. Forcing the flame at higher amplitudes
(Af > 50 mV) does not trigger the flame to self-excited oscillations, indicating its
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nonlinear stability (Huerre & Monkewitz 1990). Consequently, we do not consider the
flame to be a self-sustained oscillator but a damped harmonic oscillator.

Next, we measure the inherent flame response to forcing in unconfined and confined
conditions. We use two different glass ducts to measure the flame response in the
confined condition. We use a short duct and a long duct of length L = 400 mm
and L = 800 mm, respectively. For the longer tube, we measure the flame response
during stable operation with the flame location from the open end at xf = 140 mm,
as discussed previously. We repeat the same experiment by keeping xf = 200 mm
for a short duct of L= 400 mm to verify the response measured for the unconfined
flame and the confined flame inside the long duct. We use the short duct because
its harmonics are present at sufficiently high frequencies and forcing in the range of
amplitudes and frequencies used in this study cannot trigger self-excited limit-cycle
oscillations. Thus, in either of the two cases with confinement, we ensure that forcing
does not trigger self-excited limit-cycle oscillations, and the measured flame response
is unaffected by self-excited limit-cycle oscillations.

Keeping the location of the flame from the open end of the short duct (xf =

200 mm) and long duct (xf = 140 mm) constant, we perform frequency sweeping
at fixed Af = 50 mV. We measure q̇′rms(Af , ff ) =

√
〈q̇′(t)2〉 for a given Af and ff . In

figure 2(b), we plot the resulting flame response as a function of ff for Af = 50 mV,
and normalize it with q̄, which is the mean of the instantaneous HRR time series q̇(t).

We observe that the HRR response is similar for the unconfined and confined flame.
We note that the HRR response is amplified for forcing frequencies close to 290 and
480 Hz (figure 2b). Unlike the acoustic response, the maxima in the flame response
are attained at frequencies which are not integral multiples of each other, indicating
the nonlinear nature of the flame. We observe that the amplification in HRR response
takes place around the same frequencies for all three cases. The only difference is that
the magnitude of q̇′rms for the longer duct is about an order of magnitude greater than
that for the other two cases (shown by the ordinate on the right-hand side in figure 2b).
This difference in magnitude is possibly due to the relative location of the flame with
respect to the acoustic velocity anti-node of the duct. We also notice that the increase
in the amplitude of the response is not sharp but gradual, indicating that the flame is
quite receptive to forcing over a broad frequency range. The flame responds well to
the external forcing, showing a clear periodic response at each forcing frequency. Thus,
we presume that the flame is analogous to a damped harmonic oscillator, which has
preferred modes in the vicinity of ff = 290 Hz and ff = 480 Hz. Of these two modes,
we find that the mode at 290 Hz plays a vital role in determining the frequency at
which quenching of thermoacoustic instability occurs (explained further in § 3). We
refer to this as the preferred mode of the flame with frequency fq= 290 Hz (subscript
q is used as the flame response is quantified through HRR fluctuations q̇′). Finally,
comparing the forced acoustic and HRR responses (figures 2a and 2b), we notice that
the response of the stable flame is quite different from the acoustic response during
stable combustor operation. Specifically, the frequencies at which the two subsystems
show resonant response to forcing do not match each other.

Figure 3 depicts the variation in the flame structure of the stable flame confined
inside the long duct (L = 800 mm) for xf = 140 mm, and subjected to forcing
at the frequency of preferred mode of the flame at ff = fq = 290 Hz and at the
third harmonic of the duct at ff = f3 = 360 Hz. We contrast the flame dynamics at
the frequency of the preferred mode, which is the parametric location of optimal
quenching of thermoacoustic instability, and the frequency at which limit-cycle
oscillations develop when xf is changed. We plot the time series of the height of
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FIGURE 3. Dynamics of the stable flame when subjected to forcing at different forcing
frequencies measured for the long duct (L= 800 mm and xf = 140 mm). (a–c) Time series
of the height of the central flame (Hf ) when subjected to forcing at ff = fq = 290 Hz
and ff = f3 = 360 Hz at constant Af = 50 mV. Enlarged portion of the Hf time series for
(b) ff = 290 Hz and (c) ff = 360 Hz. (d,e) Instantaneous flame images corresponding to
the points marked in the time series in (b,c).

the flame (Hf ) in figure 3(a–c). We consider the height of the flamelet at the centre
to be representative of the height of the flamelets (indicated in figure 3d). The
mean height of the flame for ff = 290 Hz is H̄f = 8.8 mm and for ff = 360 Hz is
H̄f = 8.6 mm (figure 3a). The mean height of the flame is approximately the same
for ff = 290 and 360 Hz. However, the fluctuations in the flame height are much
more pronounced for ff = 290 Hz. These fluctuations in the flame height are visible
quite clearly from the instantaneous flame images over a cycle of forcing as shown
in figure 3(d). In contrast, the fluctuations are not readily apparent when the flame
is forced at ff = 360 Hz, as shown in figure 3(e). The large fluctuations in flame
height or, equivalently, flame area when ff = fq manifest in the amplification of the
HRR response observed in figure 2(b) for ff in the vicinity of fq. This fact further
corroborates that the preferred mode of the flame indeed exists at ff = fq ≈ 290 Hz
and is disparate from the acoustic frequencies of the combustor.

2.3.3. Characteristics of self-excited limit-cycle oscillations
The self-excited response of the laminar combustor used in the present study

due to a variation in the flame location (xf ) has been characterized thoroughly by
Kabiraj et al. (2012a) and Kabiraj, Sujith & Wahi (2012b). This system is capable of
displaying a variety of dynamical states such as limit-cycle, period-k, quasiperiodic
and chaotic oscillations when the location of the flame is systematically varied in the
system (Kabiraj et al. 2012a,b). However, in the present study, we consider only the
control of limit-cycle oscillation on account of it being the most commonly occurring
dynamical state of unstable combustor operation. Accordingly, we set the equivalence
ratio (φ = 0.53) and mass flow rates (ṁ = ṁa + ṁf = 6 slpm) for which we obtain
constant-amplitude limit-cycle oscillations.

As discussed previously, the system undergoes a subcritical Hopf bifurcation at
xf = 187 mm (xf /L = 0.23) and transitions to a state of limit-cycle oscillations.
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Since we obtain limit-cycle oscillations for xf > 187 mm, we fix the position of the
flame as xf = 200 mm (xf /L = 0.25) for all the experiments with open-loop forcing.
The frequency of limit-cycle oscillation at xf = 200 mm is fn0 = 368 ± 5 Hz. The
associated spectral amplitude of the pressure oscillations is |p̂( fn0)| = 105 Pa (or
134 dB), and the r.m.s. value is p′rms ∼ 140 Pa. During thermoacoustic instability,
both the acoustic pressure and HRR oscillate at fn0. The frequency of the limit-cycle
oscillations corresponds to the third harmonic of the closed–open duct. The small
increase in the eigenfrequency of the system from 360 Hz when xf = 140 mm (see
figure 2a) to 368 Hz at xf = 200 mm is expected as a larger portion of the glass
duct is heated along with very large fluctuations in the HRR due to thermoacoustic
instability. As a result, there is an increase in the speed of sound inside the duct,
which leads to an increase in the frequency of the eigenmodes of the combustor
(Sujith, Waldherr & Zinn 1995).

3. Results and discussion

As mentioned earlier, we measure the forced response of thermoacoustic oscillations
by keeping the flame location fixed at xf = 200 mm (xf /L = 0.25), where there are
strong self-excited limit-cycle oscillations with frequency fn0 = 368 ± 5 Hz and
p′rms ∼ 140 Pa. Once the limit-cycle oscillations are stabilized, the forcing parameters
(amplitude, Af , and frequency, ff ) are systematically altered, leaving all the other
control parameters (such as flame location, xf , and equivalence ratio, φ) unchanged.

3.1. Forced response of thermoacoustic oscillations
Figure 4 shows the response of thermoacoustic instability to external forcing as a
function of ff and Af . As before, the response is measured in terms of the r.m.s.
value as it is a measure of the energy content of the signal regardless of the specific
frequency content. As external forcing induces additional frequencies in the signal,
measuring the response at any given frequency would only provide an incomplete
picture of the response.

At a very low amplitude of forcing (Af = 10 mV), the thermoacoustic system
remains unaffected as indicated by the relative insensitivity of p′rms and q̇′rms to a
change in ff as shown in figures 4(a) and 4(b), respectively. On increasing the
amplitude of forcing to Af = 30 mV, we notice a small decrease in p′rms (figure 4a),
while q̇′rms shows a corresponding increase in the frequency range 0.7< ff /fn0 < 0.82.
The decrease in p′rms and the increase in q̇′rms for 0.7 < ff /fn0 < 0.82 become more
pronounced as we increase the forcing amplitude first to 50 mV and then to 70 mV.
At Af = 70 mV, we notice a maximum decrease in p′rms at ff /fn0 = 0.79. Here, we
achieve about 92 % decrease in p′rms from an initial unforced value of p′rms = 140 Pa
at ff /fn0 = 0 to p′rms = 11.8 Pa at ff /fn0 = 0.79. The decrease in the amplitude of
limit-cycle oscillations due to forcing at a frequency away from the natural frequency
is referred to as asynchronous quenching (Guan et al. 2019a; Mondal et al. 2019).
We notice that with increasing amplitude of forcing, there is a progressively greater
quenching of p′rms and a wider frequency range over which quenching is observed
(shaded region in figure 4). In contrast, q̇′rms shows an amplification in the frequency
range 0.7< ff /fn0< 0.82. For both Af = 50 and 70 mV, the increase in q̇′rms/q̄ observed
in figure 4(b) is quite comparable to the amplification achieved when the stable flame
is forced (see figure 2b). Clearly, this increase in q̇′rms/q̄ is analogous to the resonance
observed at the frequency of the preferred mode of the stable flame in figure 2(b).
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FIGURE 4. Demonstration of open-loop control of thermoacoustic instability. Response of
(a) acoustic pressure (p′rms) and (b) normalized HRR fluctuations (q̇′rms/q̄) as a function
of the normalized forcing frequency ( ff /fn0). (c) The time-averaged acoustic power
production, P (1.1), of the thermoacoustic system as a function of the normalized forcing
frequency at the indicated amplitude of forcing (Af ). The shaded region indicates the
region of asynchronous quenching for Af > 30 mV. The axis on the top indicates ff . The
error bars represent twice the standard deviation of the time series obtained for any given
ff and Af .

Figure 4(c) shows the dependence of time-averaged acoustic power production, P
(1.1), on the forcing frequency at different Af . Notice that P follows a similar trend to
p′rms. At low forcing amplitude, the time-averaged acoustic power production remains
very high (figure 4c). Increase in forcing amplitude in the range 0.7 < ff /fn0 < 0.82
causes a progressively higher reduction in the magnitude of P . So, even though
there is an increase in q̇′rms/q̄ for 0.7 < ff /fn0 < 0.82 (figure 4b), the coupling of
p′ and q̇′ is such that the acoustic power production is very low and hence the
system cannot sustain thermoacoustic instability. The maximum reduction in p′rms is
obtained at ff /fn0 = 0.79 at which point the acoustic power production is also at
its lowest, i.e. P ∼ 0.01 a.u. Thus, there is a negligible contribution of the flame
to the acoustic energy in the combustor during the state of quenching of limit-cycle

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

88
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.884


884 A2-16 A. Roy and others

p� (1
0 

Pa
 d

iv
-

1 )

p� (t
 +

 2
†)

p �(t + †) p� (t)1.00 1.05 1.10
t (s) t (s)f/fn0

0.50 0.75 1.00 1.25 0 2

|p(
f)
|(1

0 
Pa

 d
iv

-
1 )

ff

2ff

fn1

fn0
fq

0
-0.2

0

-200

-200
0

-200

-500

0

0

0

-0.2

0.2

-0.4

ff/fn0

Unforced

0.65

0.68

0.69

0.71

0.72

Î
ƒ p

�, F f
/2

π

(i)

(ii)

(iii)

(iv)

(v)

(vi)

(a) (b) (c) (d)

FIGURE 5. Depiction of forced synchronization of the acoustic pressure oscillations with
increasing ff at a fixed Af = 70 mV. (a) Time series, (b) amplitude spectrum and (c) the
phase portrait of the pressure fluctuations. (d) The time evolution of phase difference
between p′ and forcing, 1φp′,Ff . Dashed lines in (b) indicate the frequency of unforced
limit cycle ( fn0) and preferred mode of the flame ( fq). Note that the ordinate is different
for (a,b) where each division represents 10 Pa.

oscillations. At other forcing frequencies, the acoustic power production remains quite
high, indicating the inefficacy of forcing to control thermoacoustic instability.

Of particular note here is that the flame significantly affects the frequency at which
quenching is observed. We hypothesize that external forcing at the frequency of
the preferred mode of the flame, which is disparate from the eigenfrequency of the
combustor, is responsible for the asynchronous quenching of pressure oscillations in
our system. One possible explanation is that as the forcing frequency is close to the
preferred mode of the flame, HRR oscillations are amplified. In contrast, since the
forcing frequency is far away from the frequency of acoustic eigenmode, a standing
wave cannot be established inside the duct. As a result, the thermoacoustic feedback
loop is disrupted, and the modified Rayleigh criterion (acoustic driving greater than
damping) is not satisfied even though the amplitude of HRR oscillations are very
large.

In the subsequent sections, we methodically describe the changes in the response
of acoustic and HRR oscillations as the frequency or amplitude of forcing is varied
systematically. We also quantify the changes in the dynamics of pressure and HRR
oscillations relative to the forcing frequency by measuring the evolution of the relative
phase, i.e. 1φp′,F and 1φq̇′,F. The instantaneous phase is calculated using the method
of Hilbert transform (2.1) as detailed in § 2.2.3.

3.2. Effect of forcing on the dynamics of acoustic pressure oscillations
3.2.1. Varying forcing frequency: ff /fn0 = 0→ 0.72 at Af = 70 mV

Figure 5 depicts the forced synchronization of p′ as ff is varied at a fixed
Af = 70 mV. When forcing is absent, p′ is periodic with only one characteristic
frequency, fn0 (figure 5bi). Increase in ff /fn0 to 0.65 leads to increasingly modulated
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FIGURE 6. Demonstration of forced synchronization of acoustic pressure oscillations with
increasing Af at a constant ff /fn0 = 0.71 (or ff /fq = 0.9). (a) Time series, (b) amplitude
spectrum and (c) the phase portrait of p′ for the indicated values of Af shown in the last
column. Torus-birth and torus-death bifurcations take place when Af is increased from 10
to 30 mV and from 50 to 70 mV, respectively. Note that the ordinate is different for (a,b)
where each division represents 10 Pa.

p′ signal (figure 5aii), indicating the presence of two incommensurate frequencies
(figure 5bii). Accordingly, the phase-space trajectory lies on a T2-torus. Such a
quasiperiodic behaviour persists for 0.68 < ff /fn0 < 0.71. In this range of ff /fn0,
the spectral amplitude of forcing is lower but comparable to the amplitude of
limit-cycle oscillations at fn1 (see figure 5biii,iv). Here, fn1 is the response frequency
of the limit-cycle oscillations to forcing. We notice that the spectral amplitude of
limit-cycle oscillations at fn1 continues to decrease (see the transition from figures 5biii
to 5biv). For ff /fn0< 0.71, the unwrapped relative phase between the acoustic pressure
oscillations and forcing (1φp′,Ff ) shows unbounded and monotonic variation in time
(figures 5dii–5div), indicating desynchronized nature of the signals.

For ff /fn0 = 0.71 and 0.72, the spectral amplitude of p′ at fn1 (figure 5bv,vi)
decreases to ∼99 % of the unforced spectral amplitude. This corresponds to ∼80 %
decrease in p′rms from the unforced value, as can be observed from figure 4(a). We
further observe a transition from a state of phase drifting (figure 5div) to phase
locking (figure 5dv) in the relative phase plot between pressure and forcing signals.
Recall from § 1.2 that forced synchronization is said to be achieved if the forcing
frequency is the only characteristic frequency in the signal and the instantaneous
relative phase between the response and forcing becomes bounded to 2π. Thus, at
ff /fn0 = 0.71, the acoustic pressure oscillations associated with limit-cycle oscillations
have undergone forced synchronization.

3.2.2. Varying forcing amplitude: Af = 0→ 70 mV at ff /fn0 = 0.71
Next, we characterize the forced synchronization of acoustic pressure oscillations as

the forcing amplitude is increased at a fixed forcing frequency ff /fn0= 0.71. At Af = 0,
we notice the characteristic frequency ( fn0) of limit-cycle oscillations in the amplitude
spectrum (figure 6bi) and the associated single closed-loop attractor (figure 6ci).
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FIGURE 7. Transition to forced synchronization of the HRR oscillations for increasing ff
at fixed Af = 70 mV. (a) Time series, (b) amplitude spectrum and (c) the phase portrait of
the normalized HRR fluctuations measured for the indicated values of forcing frequency.
(d) Time evolution of phase difference between q̇′ and the forcing, 1φq̇′,Ff .

An increase in Af to 30 mV leads to a transition from limit-cycle to quasiperiodic
dynamics (figure 6ciii). The acoustic response remains quasiperiodic with further
increase in forcing amplitude (figures 6ciii,6civ). Finally, at Af = 70 mV, we notice
that there is only one characteristic frequency ( ff ) in the system (figure 6bv) and the
relative phase becomes bounded (figure 5dv), indicating the forced synchronization
of p′.

Thus, in either of the two cases ff /fn0 = 0→ 0.72 at Af = 70 mV and Af = 0→
70 mV at ff /fn0 = 0.71, the dynamics of pressure oscillations transitions from limit
cycle at fn0 to quasiperiodicity with frequency fn1 and ff , and back to limit cycle
at ff . The associated bifurcations are: limit cycle to quasiperiodic through torus-birth
bifurcation, and quasiperiodic to limit cycle through torus-death bifurcation (Balanov
et al. 2008; Li & Juniper 2013b; Kashinath et al. 2018).

3.3. Effect of forcing on the dynamics of HRR oscillation
Now, we characterize the response of the HRR oscillations when subjected to forcing
at constant Af = 70 mV. Figure 7 shows the transition in the response of HRR as
ff is increased. In the absence of forcing ( ff /fn0 = 0), we observe that the dynamics
of HRR has a narrowband peak at fn0 (figure 7bi). However, the time series of this
signal exhibits visible modulations (figure 7ai). Such modulations could be a result
of the low flame intensity, making the signal highly susceptible to ambient noise.
Consequently, the phase-space trajectory appears to be scattered about the limit-cycle
attractor (figure 7ci).

At ff /fn0 = 0.65, we observe that the spectral amplitude of HRR oscillations at
ff is larger than but comparable to the spectral amplitude at fn1 (i.e. q̂( ff ) > q̂( fn1);
figure 7bii). The presence of these incommensurate frequencies in the spectrum
results in the existence of a distinct T2-torus in the phase space, indicative of the
quasiperiodic nature of HRR oscillations (figure 7cii). At this ff , forcing also leads to
phase locking of HRR signal with random phase slips interspersed in it (figure 7dii).
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Here, phase slips refer to jumps in the mean value of the phase difference between
q̇′ and forcing in integer multiples of 2π radians, as indicated in figure 7(dii). This
is referred to as intermittent phase locking of the forcing and HRR oscillations.

For ff /fn0 = 0.68, the spectral amplitude of HRR oscillations at fn1 is very low
in comparison to the spectral amplitude of forcing at ff (figure 7biii). Figure 7(diii)
shows that the HRR oscillations are phase-locked to forcing, indicating the occurrence
of forced synchronization of HRR oscillations in the system. Increase in forcing
frequency ( ff /fn0 > 0.68) leads to a progressive decrease in the spectral amplitude of
HRR fluctuations at fn1 to the point where it completely disappears at ff /fn0 = 0.71
(figure 7bv).

The transition of HRR oscillations from the unforced limit cycle at fn0 to limit-
cycle oscillations at ff during the process of forced synchronization follows a similar
change to that undergone by the acoustic pressure oscillations (figure 5). However,
the frequency range over which q̇′ is synchronized to forcing is larger than that for
p′. Similarly, the transition in the dynamics of HRR oscillations for an increase in
Af at a given ff is similar to the acoustic response plotted in figure 6 but has not
been shown here for brevity. The only difference is that for a given ff , q̇′ undergoes
forced synchronization at a lower Af than p′ does. A possible explanation for such an
occurrence might be the fact that the flame is more receptive to the external harmonic
forcing whenever the forcing frequency is close to the frequency of the preferred mode
of the flame.

Recently, in an electrically heated horizontal Rijke tube, Mondal et al. (2019)
showed that when pressure oscillations are forced at a frequency close to fn0,
there is a quenching of the spectral amplitude of pressure oscillations at fn1 due to
synchronization, while the spectral amplitude at ff undergoes resonant amplification.
As a result, they observed high amplification in the r.m.s. value of acoustic pressure
oscillations, which they referred to as synchronance (synchronization–resonance).
We observe similar behaviour in our system. The forced synchronization of HRR
oscillations around fq (figure 7v,vi) is observed simultaneously with the enhancement
in q̇′rms (figure 4b). Thus, we possibly observe synchronance in the HRR oscillations
at ff = fq.

The combined forced synchronization of acoustic pressure and HRR oscillation
is quite important. We observe only small reductions in the amplitude of p′ when
only q̇′ is synchronized to forcing (for ff /fn0 < 0.7 in figure 4a). We notice a very
high reduction in the amplitude of thermoacoustic instability when both p′ and
q̇′ undergo forced synchronization at ff /fn0 = 0.72 in figure 4(a). In some of the
previous studies (Balusamy et al. 2015; Kashinath et al. 2018; Guan et al. 2019a;
Mondal et al. 2019), the forced synchronization of acoustic pressure is observed
around the acoustic eigenfrequency of the combustor. In contrast, we find that the
forced synchronization of the two oscillators takes place around the frequency of
the preferred mode of the flame instead of the acoustic eigenfrequency. Thus, we
conclude that the flame exerts significant control on the dynamics of asynchronous
quenching and forced synchronization characteristics of the limit-cycle oscillations.

3.4. Effect of forcing on the coupling between the acoustic and HRR oscillations
Here, we assess and quantify the effect of forcing on the mutual coupling of the
acoustic pressure and HRR oscillations. Figure 8 displays the time-averaged acoustic
power production, P , as a function of the forcing frequency at fixed Af = 70 mV. The
associated time evolutions of the phase difference (1φp′,q̇′(t)) between the acoustic
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FIGURE 8. Effect of forcing on the mutual coupling between acoustic pressure and HRR
oscillations. The time-averaged acoustic power production (P) is plotted as a function of
the normalized forcing frequency ff /fn0 at Af = 70 mV. The insets (a–g) indicate the time
evolution of 1φp′,q̇′ (in radians) at the indicated forcing frequencies. The inter-relationship
among p′, q̇′ and F is indicated below the figure. The symbol ‘⇔’ indicates that a state
of synchronization exists between any two given oscillators, while ‘6⇔’ indicates that the
two oscillators remain desynchronized.

pressure and HRR oscillations are also shown at different forcing frequencies. In
thermoacoustic systems in general, the coupling between p′ and q̇′ is asymmetric and
nonlinear (Godavarthi et al. 2018). Thus, the quantification of the response of the
coupling between p′ and q̇′ to external forcing is of particular significance.

The effect of forcing on the system has been divided into seven regions depending
upon the inter-relationship between the three oscillators: p′, q̇′ and F. In figure 8,
we indicate the existence of some form of synchronization among each of the
oscillators with ‘⇔’. These states of synchronization are either the state of forced
synchronization or state exhibiting partial synchronization such as intermittent phase
locking. The desynchronization between any two given oscillators is indicated with
‘6⇔’. Thus, regions I and VII correspond to states where only p′ and q̇′ are mutually
synchronized. In regions II–VI, q̇′ and forcing remain synchronized, while p′ is
synchronized to forcing only in regions III and V. In regions III and V, all three
oscillators are synchronized to each other.

In region I, the effect of forcing is negligible. Therefore, forcing cannot affect the
coupling between p′ and q̇′, and the relative phase between p′ and q̇′ oscillates around
a mean (1φp′,q̇′) of −2.1◦ and a standard deviation of ±9.4◦, which is equivalent
to p′ and q̇′ being nearly in phase with each other (figure 8a). Thus, there is a net
positive acoustic driving in the system and the acoustic power production is quite high
(P = 1.49 a.u.). For ff /fn0 < 0.58, forcing can only cause intermittent phase slips in
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the state of phase locking between p′ and q̇′ (figure 8b). Each of the remaining pair
of oscillators, p′–forcing and q̇′–forcing, remain desynchronized.

For ff /fn0 in the range 0.58–0.69 (region II), we notice that forcing causes disruption
in the coupling between p′ and q̇′, and 1φp′,q̇′ shows unbounded and monotonic
growth (figure 8c). In this region, forced synchronization of q̇′ is established (see
figures 7dii–7div). However, the net forcing amplitude is still insufficient to cause
forced synchronization of p′, as can be seen from the phase drift in the relative phase
plot in figures 5(dii)–5(div).

Regions III, IV and V together constitute the frequency range over which we
observe a significant quenching of limit-cycle oscillations for Af > 30 mV (as
shown in figure 4). In region III, both p′ and q̇′ exhibit phase locking with
forcing (figures 5dv and 6dv). Consequently, phase locking between p′ and q̇′
(see figure 8d) is established. The relative phase between p′ and q̇′ oscillates about
1φp′,q̇′=81.5◦±22.6◦. Thus, the pressure and the HRR oscillations are nearly π/2 rad
out of phase with each other. As a result, there are alternate cycles of acoustic driving
(when 1φp′,q̇′ <π/2) and damping (when 1φp′,q̇′ >π/2) in the system such that there
is a positive but very low value of net acoustic power production, P = 0.02 a.u.

In region IV, only q̇′ is synchronized with forcing. This is due to period-2 dynamics
of the pressure oscillations. We elaborate on the period-2 dynamics in p′ and q̇′
further in § 3.5. Region V is akin to region III and each of the three oscillators
remain synchronized. At this point, the relative phase between p′ and q̇′ is observed
to oscillate about 1φp′,q̇′ = −277.1◦ ± 25◦ ∼ −3π/2 ≡ π/2 rad (figure 8e). The
time-averaged normalized power production is again very low with P = 0.04 a.u.

For 0.82< ff /fn0< 1 (regions V, VI and VII), the impact of forcing on the dynamics
of the acoustic pressure and HRR oscillations progressively decreases. In this range
of ff , we notice that the 1φp′,q̇′ transitions from a state of phase locking at about
∼π/2 rad (at ff /fn0= 0.82 in figure 8e), to intermittent phase locking (at ff /fn0= 0.83
in figure 8f ), to phase drifting (at ff /fn0 = 0.85 in figure 8g), to intermittent phase
locking (at ff /fn0= 0.93 in figure 8h) and, finally, to in-phase locking (at ff /fn0= 1 in
figure 8i). At ff /fn0= 1, the relative phase between p′ and q̇′ oscillates about 1φp′,q̇′ =

13◦ ± 18.8◦ ∼ 0 (figure 8g). Thus, p′ and q̇′ are in phase and result in maximum
acoustic driving, leading to a very high acoustic power production, P = 1.3 a.u.

We next quantify the effect of forcing on the coupled behaviour of pressure and
HRR oscillations. We use PLV to measure the extent of phase locking between the
acoustic and HRR oscillations during forcing as defined in (2.2).

Figure 9 plots PLV between the pairs of signals p′–q̇′, p′–F and q̇′–F as a function
of the forcing frequency at Af =70 mV. The PLV of p′–q̇′ corresponds quite well with
the phase-locking characteristics seen in figure 8. For ff /fn0 < 0.68, there is an almost
monotonic drop in the PLV of p′–q̇′. The decrease in PLV is a result of the presence of
desynchronized quasiperiodic dynamics in both p′ and q̇′. The PLV of p′–q̇′ increases
to a very high value for 0.72< ff /fn0<0.75, indicating the relatively high synchronized
behaviour between them (figure 8d). Following this, we observe a drop in the PLV
of p′–q̇′. The drop occurs due to the existence of different dynamics in both p′ and
q̇′, where p′ has period-2 dynamics (figure 10biii) and q̇′ has limit-cycle dynamics
(figure 10diii). This results in phase drifting in their relative phase (figure 10eiii), and,
thus, the low value of PLV between them (discussed further in § 3.5). For 0.85 <
ff /fn0 < 1.2, the PLV of p′–q̇′ increases and reaches a value very close to 1 because
the forcing becomes ineffective to disrupt the mutual coupling of p′ and q̇′.

The PLV between p′ and F is also consistent with our observations in § 3.2. It
attains a very low value for frequencies where the forcing is insufficient to cause
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FIGURE 10. Plot depicting the different dynamical states of the thermoacoustic system
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phase portrait of the normalized p′ and q̇′, respectively. (e) The time evolution of the
instantaneous relative phase plot between p′ and q̇′, i.e. 1φp′,q̇′(t), for the indicated values
of ff /fn0 (last column) at Af = 70 mV.

forced synchronization (0 < ff /fn0 < 0.72 and 0.82 < ff /fn0 < 1.2). Further, its value
is quite high whenever forced synchronization of the acoustic response is achieved.
Meanwhile, the PLV of q̇′–F depicts the large frequency range over which forced
synchronization of HRR oscillations is attained (0.59 < ff /fn0 < 0.86). The increase
in PLV at ff /fn0 = 1 of p′–F and p′–q̇′ is the trivial case when the forcing frequency
is approximately the same as the frequency of limit-cycle oscillations, due to which
we obtain phase locking between the indicated pair of oscillators.
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ff /fn0 p′ q̇′ 1φp′,F(t) 1φq̇′,F(t) 1φp′,q̇′(t)

0.71 LC LC PL PL PL at ≈π/2
0.72 P2 P2 PL PL PL at ≈π/2
0.75 P2 LC IPL PL IPL
0.79 P2 LC PD PL PD
0.82 LC LC PL PL PL at ≈−π/2
0.83 QP QP IPL PL IPL

TABLE 1. Different dynamical states of p′ and q̇′ associated with variation in the values
of ff in regions III to V of figure 8 at Af = 70 mV. The dynamical states of p′ and q̇′
and the relative phase (1φ) are indicated for different forcing frequencies. The different
dynamical states are abbreviated as: LC, limit cycle; QP, quasiperiodic; P2, period-2; PL,
phase locking; IPL, intermittent phase locking; PD, phase drifting. The transition of any
subsystem from one dynamical state to another with variation in forcing frequency is
associated with the following bifurcations (Kuznetsov 2013): LC (figures 5v and 7v) →
P2 (figure 10i) – period doubling; P2 (figure 10iii) → LC (figure 10iv) – period-halving;
and LC (figure 10iv) → QP – torus-birth (figure 10v).

3.5. Period-2 response of the system during forced synchronization
3.5.1. Varying forcing frequency: ff /fn0 = 0.72→ 0.8 at Af = 70 mV

Now, we consider the response of acoustic pressure and HRR oscillations for
0.72 < ff /fn0 < 0.8, which spans regions III–V in figures 8 and 9. At ff /fn0 = 0.72
(in region III, figure 8d), there is a phase locking of p′ and q̇′ with the forcing
signal (refer to figures 5dvi and 7dvi). From figure 10(ei), we see that p′ and q̇′
exhibit phase locking with each other. From the amplitude spectrum, we note that
|p̂(2ff )|/|p̂( ff )| ∼ 10−1 (figure 10ai). The frequencies which are integer multiples of
each other and are of comparable amplitudes manifest in the phase-space trajectory
as an additional loop in the limit-cycle attractor of both p′ (figure 10bi) and q̇′
(figure 10di). This is indicative of the period-2 nature of these signals. Other linear
combinations of ff , 2ff and fn1 (e.g. peak at 2ff − fn1) are also visible in the spectrum.
However, the magnitudes of these additional peaks are quite small and can be ignored.
As forcing frequency is increased ( ff /fn0 = 0.72→ 0.79), the phase-space trajectory
of acoustic pressure oscillations indicates period-2 oscillations more clearly (see
figure 10biii). The amplitude spectrum shows that the dominant frequency switches
from ff at ff /fn0= 0.72 to 2ff at ff /fn0= 0.79 all the while showing period-2 dynamics
in pressure oscillations. In contrast, the dynamics of HRR oscillations loses period-2
oscillations and regains limit-cycle oscillations at ff /fn0 = 0.79 (figure 10diii).

The different dynamics of p′ and q̇′ also affects their mutual coupling, as is
observed from figure 10(e). We notice that the instantaneous relative phase plot
shows a state of phase locking when both pressure and HRR oscillations have
period-2 behaviour (figure 10ei). The state of mutual synchronization between p′ and
q̇′ is lost as forcing frequency is increased. The state of phase locking transitions to
intermittent phase locking (figure 10eii), and finally to phase drifting (figure 10eiii)
when acoustic pressure undergoes period-2 oscillations and HRR undergoes period-1
limit-cycle oscillations. The phase drifting between pressure and HRR oscillations is
also responsible for the lowest acoustic power production (P = 0.01) for ff /fn0= 0.79
in region IV (figure 8).

We summarize the dynamics of the two subsystems taking place in regions III–V
of figure 8 in table 1. The transition in the dynamics is also indicated in table 1.
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FIGURE 11. The transition from limit-cycle oscillations to period-2 acoustic oscillations
as a result of the increase in the amplitude of forcing. (a) The time trace of p′, (b) the
amplitude spectra and (c) the phase portrait for Af shown in the last column for fixed
ff /fn0 = 0.79 or equivalently at ff = fq. Torus-birth and period-doubling bifurcations take
place when Af is increased from 10→ 30 mV and from 30→ 50 mV, respectively.

For example, for ff /fn0 : 0.71→ 0.72, the state of p′ changes from limit cycle (LC)
to period-2 (P2). The bifurcation associated with this change is a period-doubling
bifurcation.

3.5.2. Varying forcing amplitude: Af = 0→ 70 mV at ff /fn0 = 0.79
Figure 11 shows the transition of forced response of acoustic pressure oscillations

from limit-cycle to period-2 oscillations for increasing Af at fixed ff /fn0= 0.79 which
is at the frequency of the preferred mode of the flame; i.e. ff = fq. At Af = 10 mV,
the forcing amplitude is too low to effect any noticeable change in the limit-cycle
dynamics (figure 11ii). At Af = 30 mV, the response shows quasiperiodic dynamics,
as can be seen from the T2-torus in the phase space (figure 11ciii). For Af = 50 and
70 mV, we observe that the amplitude of limit-cycle oscillations at fn1 undergoes
quenching (figure 11biv,v), while the dynamics transitions to pronounced period-2
oscillations (figure 11civ,v).

We conjecture that the observed period-2 behaviour in p′ when ff ≈290 Hz ( ff /fn0≈

0.79) is due to the forcing signal exciting the fifth harmonic of the glass duct. The
fifth harmonic is related to the preferred mode of the flame through the linear relation
f5≈ 2fq (figure 2b). As a result, the high amplitude of forcing in the frequency range
280< ff <300 Hz excites the fifth harmonic of the combustor, resulting in the period-2
behaviour. Similar period-2 behaviour in the acoustic response has been reported in a
numerical study by Kashinath et al. (2018). They reported a period-doubling route to
chaos with increasing amplitude of forcing at ff = fn0. In contrast, we observe period-2
oscillations at ff = fq 6= fn0. Moreover, we did not observe the period-doubling route to
chaos because a further increase in the amplitude of forcing led to a loss of flame
stability and the flame undergoes blow-out.
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4. Conclusion
In this paper, we study the mechanism through which open-loop control of

thermoacoustic instability is attained in a laminar premixed combustor with the
aid of synchronization theory. We achieve open-loop control by subjecting the system
to external harmonic forcing. We consider the acoustic pressure and HRR fluctuations
to be two different oscillators having a disparate response when they are subjected to
external forcing.

We draw the following conclusions from our analysis:

(i) We find that the flame possesses a preferred mode whose frequency is disparate
from the acoustic eigenfrequencies of the combustor. When the limit-cycle
oscillations are forced at a frequency around the frequency of the preferred mode
of the flame, there is an amplification in the response amplitude of the HRR
oscillations. Concurrently, we observe a reduction of 90 % and 99 % in the r.m.s.
value and spectral amplitude of the pressure oscillations relative to the unforced
values, respectively. This decrease in amplitude of thermoacoustic oscillations is a
result of asynchronous quenching. We hypothesized that asynchronous quenching
is observed only below fn0 because the frequency of the preferred mode is lower
than the frequency of limit-cycle oscillations. We further showed that increasing
the amplitude of forcing widens the frequency range over which asynchronous
quenching can be effected. In practical systems, the presence of such a large
region of quenching would then allow for the effective design of controllers with
the flexibility of operation at one of these frequencies.

(ii) We show that the synchronization characteristics of the acoustic and HRR
responses differ from each other significantly. In particular, we find that HRR
oscillations are synchronized to forcing for a broader frequency range than the
acoustic pressure oscillations. We also show that the maximum decrease in the
amplitude of limit-cycle oscillations is attained only when both the acoustic and
HRR oscillations synchronize with forcing.

(iii) We show that forcing causes asynchronous quenching when the forcing frequency
is near the frequency of the preferred mode of the flame either (a) by causing the
limit-cycle oscillations to be phase-locked with forcing or (b) by changing the
dynamics of the acoustic response alone to period-2 oscillations. In the former
case, the coupling is established at nearly π/2 rad out-of-phase, while in the
latter case, there is phase drifting between acoustic and HRR oscillations due to
differences in their dynamics. In either case, the time-averaged acoustic power
production becomes very low, leading to the quenching of acoustic pressure
oscillations.

(iv) We also provide the experimental evidence of period-2 behaviour in acoustic
pressure fluctuations attained during the asynchronous quenching of limit-cycle
oscillations. The fifth acoustic mode of the duct is related to the preferred mode
of the flame through the relationship f5 ≈ 2fq. So, forcing near fq triggers the
fifth harmonic ( f5) of the duct and leads to the period-2 oscillations. In this
state, dynamics of acoustic pressure oscillations shows period-2 characteristics,
while HRR oscillations retain period-1 limit-cycle oscillations.

As a final remark, we note that it may be possible to decouple the acoustic and the
HRR response of a real-time combustor by introducing a forcing mechanism capable
of perturbing the flame over a range of narrowband frequencies. The choice of
forcing frequency depends on the parametric region for which we observe quenching
of limit-cycle oscillations. A possible forcing mechanism, other than actuators, could
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be a strategically placed delta wing or bluff body capable of generating vortices
at a particular frequency upstream of the principal flame holder, thus affecting the
flame directly. However, the applicability of such an open-loop control in turbulent
combustors and practical gas turbine systems through such targeted forcing remains
to be explored.
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Appendix A. Phase-space reconstruction

We construct the phase space using the delay embedding theorem proposed by
Takens (1981). The theorem lays down the conditions under which the phase space
can be reconstructed from a sequence of scalar measurements of the system dynamics.
The reconstructed manifold has a one-to-one mapping to the original manifold,
thus preserving the topology of the manifold and its dynamical invariants such as
Lyapunov’s exponent, correlation dimension, etc.

Here, we unfold the original attractor into an m-dimensional Euclidean delay vector
space, capturing different segments of history of a given variable X:

ξ(t)= [X(t), X(t+ τ), X(t+ 2τ), . . . , X(t+ (m− 1)τ )], ξ ∈Rm. (A 1)

Here, X represents the measured variables {p′, q̇′}.
For faithfully reconstructing the phase space, determination of the optimum time

delay, τ , and minimum embedding dimension, m, is crucial. If τ is too low, the
vectors would be very strongly correlated, while if it is too large, the vectors would
be weakly correlated, prone to random noise and numerical inaccuracies. Optimum
time lag will result in m mutually independent vectors over which the attractor can
be unfolded to the maximum possible extent.

The optimum time lag was calculated using average mutual information (Fraser
& Swinney 1986). The average mutual information indicates the average information
about X(t+ τ) that can be predicted from the original vector X(t), and is calculated
as

I(τ )=
n∑

i=1

P[X(ti)∩ X(ti + τ)] log2
P[X(ti)∩ X(ti + τ)]

P[X(ti)]P[X(ti + τ)]
, (A 2)

where n is the number of samples and P is the probability that X(t) has a value
of X(ti), and P[X(ti) ∩ X(ti + τ)] indicates the joint probability. The time at which
I(τ ) attains its first local minima is considered to be the optimum time delay. For
the unforced limit-cycle oscillations, the variations of the average mutual information
as a function of the non-dimensional time delay (τ fn0) for p′ and q̇′ are plotted in
figures 12(a) and 12(b), respectively.
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FIGURE 12. The average mutual information as a function of the non-dimensional time
lag for (a) p′ and (b) q̇′ signals during unforced limit-cycle oscillations. The corresponding
value of optimum time lag is indicated at the location of the first minima of the average
mutual information.

The embedding dimension, m, is determined through Cao’s method (Cao 1997).
This is an optimized version of the false nearest-neighbour method. A false neighbour
to a point in the phase space is that which moves away from its nearest neighbour
with an increase in the embedding dimension. In Cao’s method, the number of
false neighbours that each point has in the phase space is tracked as the embedding
dimension is increased. Given the optimum delay, we can then construct the measure
a(i,m) as

a(i,m)=
‖Xi(m+ 1)− Xn(i,m)(m+ 1)‖
‖Xi(m)− Xn(i,m)(m)‖

, (A 3)

where i = 1, 2, . . . , (N − mτ) and n(i, m) is the index of the point nearest to point
Xi in the phase space. Here ‖ · ‖ is the Euclidean norm between two points. We
can average over the false neighbours to obtain a measure only dependent on the
embedding dimension and the optimum time lag as

E(m)=
1

N −mτopt

N−mτopt∑
i=1

a(i,m). (A 4)

The increase in the measure with an increase in the embedding dimension can be
determined by defining E1(m) as

E1(m)=
E(m+ 1)

E(m)
. (A 5)

The minimum embedding dimension required for the input signal X(t) is determined
as the dimension above which E1(m) saturates. Since all acoustic and HRR signals
that we acquire are deterministic with well-defined periodicity during the state of
thermoacoustic instability, the minimum embedding dimension calculated in this
manner suffices for our objective (Nair 2014). The measure E1 as a function of
the embedding dimension has been plotted in figure 13 for p′ and q̇′ exhibiting
limit-cycle oscillations and no external forcing. For unforced cases, m= 5 is enough
to reconstruct the limit-cycle attractors; however, for cases where the dynamics shows
a quasiperiodic behaviour in the presence of forcing, m= 8 is required. For visualizing
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FIGURE 13. The variation of the measure E1 as a function of the dimension (m) for
(a) p′ and (b) q̇′ associated with unforced limit-cycle oscillations, determined from Cao’s
method.

the qualitative features of the attractor for all cases, we project the trajectories onto
m= 3, as shown in figures 5(c) and 7(c).
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