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ABSTRACT

It is essential for insurance regulation to have a clear picture of the risk mea-
sures that are used. We compare different mathematical interpretations of the
Solvency Capital Requirement (SCR) definition from Solvency II that can be
found in the literature. We introduce a mathematical modeling framework that
enables us to make a mathematically rigorous comparison. The paper shows
similarities, differences, and properties such as convergence of the different SCR
interpretations. Moreover, we generalize the SCR definition to future points in
time based on a generalization of the value at risk. This allows for a sound def-
inition of the Risk Margin. Our study helps to make the Solvency II insurance
regulation more consistent.
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1. INTRODUCTION

Solvency II is the new regulatory framework of the European Union for in-
surance and reinsurance companies. It will replace the Solvency I regime and
is set to become effective probably in 2016. One main aspect of Solvency II
is the calculation of the Solvency Capital Requirement (SCR), which is the
amount of its own funds (i.e. capital) that an insurance company is required
to hold. For the calculation of the market-consistent values of liabilities, Sol-
vency II suggests using a cost-of-capital method and defines the Risk Mar-
gin (RM). In order to calculate the SCR, each company can choose between
setting up its own internal model and using a provided standard formula.
The calculation standards were defined in the documents of the Committee of
European Insurance and Occupational Pensions Supervisors (CEIOPS), but
they are mainly described only in words. To our knowledge, the only truly
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mathematical definitions for the SCR and the RM currently exist for the stan-
dard formula.

Since Solvency II will have a significant impact on the European insur-
ance industry, a large number of papers have already been published on that
topic. For example, Devolder (2011) studies the capital requirement under dif-
ferent risk measurements; Eling et al. (2007) outline the characteristics of Sol-
vency II; Doff (2008) makes a critical analysis of the Solvency II proposal; Stef-
fen (2008) gives an overview of the project; Filipović (2009) analyzes the aggre-
gation in the standard formula; Holzmüller (2009) focuses on the relationship
between the United States’ risk-based capital standards, Solvency II, and the
Swiss Solvency Test; Sandström (2006) shows the path from historical regula-
tion to Solvency II; and Sandström (2011) gives a detailed overview over the
Solvency II project. Wüthrich andMerz (2013) discuss general solvency aspects
mathematically rigorously, but do not focus on Solvency II problems. Only a
few papers give a mathematically substantiated definition of the Solvency II
SCR (e.g. Barrieu et al., 2012; Bauer et al., 2012; Devineau and Loisel, 2009;
Kochanski, 2010). All of these papers define the SCR only at time 0. Möhr
(2011) gives a rigorous definition for any point in time, but does not specify
the definition of a conditional value at risk. Ohlsson and Lauzeningks (2009)
also define the SCR for any point in time, but only within a chain ladder frame-
work. Kriele and Wolf (2007) present a fairly general definition for the future
value at risk, assuming that the underlying probability space has some specific
structure. Another problem is that different mathematical definitions are used.
The reason is that the directive of the European Parliament and the Council
(2009) describes the SCR only in words, and from a mathematical point of
view, there is room for interpretation. This paper yields the first mathemati-
cal analysis of similarities and differences of the various interpretations of the
SCR.

The RM is supposed to enable the calculation of the liabilities’ market-
consistent values; however, it is discussed less in the literature. For example,
Floreani (2011) studies conceptual issues relating to the RM in a one-period
model, Kriele and Wolf (2007) consider different approaches for a RM, Möhr
(2011) proposes a framework for the market-consistent valuation of insurance
liabilities using cost of capital and shows that the resulting value is sometimes
smaller than the sum of best estimate and RM, Salzmann and Wüthrich (2010)
analyze the RM in a chain ladder framework, and Wüthrich et al. (2011) use
the probability distortion to define a RM. Generally, the RM is defined by a
cost-of-capital approach and is based on minimal future SCRs. However, no
broad definitions forminimal future SCRs currently exist in the literature, which
subsequently lacks a mathematically correct definition of the RM. This paper
contributes to this problem by introducing a dynamic and minimizing SCR
definition.

The paper is structured as follows. In Section 2 we present different inter-
pretations of the fundamental SCR definition. In order to end up with mathe-
matically well-defined SCR definitions, in Section 3 we discuss necessary and
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sufficient assumptions and restrictions. All following sections base on these
specifications. Section 4 transfers the SCR definitions to any point in time. Sec-
tion 5 compares the different definitions. In Sections 6 and 7, we study conver-
gence and invariance properties of the SCR definitions. With the help of the
generalized SCR definitions of Section 4, we present a sound definition of the
RM in Section 8. Section 9 gives an overview of the main findings.

2. THE REGULATORY FRAMEWORK

In this section we discuss the fundamental definition of the SCR, taking into
account regulatory requirements. In the directive of the European Parliament
and the Council (2009), which is the binding framework for Solvency II, we find
the following two definitions of the SCR:

• Article 101 of the directive requires that the SCR “shall correspond to the
value at risk of the basic own funds of an insurance or reinsurance undertak-
ing subject to a confidence level of 99.5% over a one-year period.”

• At the beginning of the directive, an enumeration of recitals is given that has
been attached to the directive. Recital 64 of the directive (European Parlia-
ment and the Council, 2009, page 24) says that “the Solvency Capital Re-
quirement should be determined as the economic capital to be held by insur-
ance... undertakings in order to ensure... that those undertakings will still be
in a position with a probability of at least 99.5%, to meet their obligations to
policy holders and beneficiaries over the following 12 months.”

However, from a mathematical point of view, there is room for interpretation,
andwe have to clarify the fundamental definition of the SCR. First we introduce
some notation.

Definition 2.1 (assets and liabilities). Let (�,F,P) be a probability space with
filtration (Ft)t≥0 and let F0 = {∅, �}. We assume that (Ki

t )t∈N0, (H
i
t )t∈N0,

(Lt)t∈N0 , (Zt)t∈N are adapted real-valued stochastic processes (1 ≤ i ≤ m).

1. Let Ki
t > 0 be the capital accumulation function that gives the market

value of investment i at time t (1 ≤ i ≤ m) and let Kt = (K1
t , ..., K

m
t ).

2. Let Hi
t be the units of asset K

i
t that the insurer holds at time t ∈ N0 (1 ≤

i ≤ m) and let Ht = (H1
t , ..., Hm

t ).
3. We define At := Ht · Kt :=

∑m
i=1 H

i
t K

i
t as the market value of the assets

that an insurer holds at time t. For technical reasons, we generally assume
that At = 0 implies Ht = (0, ..., 0) which is needed in (2.4).

4. If At ∈ R \ {0}, we define θ it := Hi
t K

i
t

Ht ·Kt
as the proportion that the market

value of investment i has on the total market value of the asset portfolio. We
call (θt)t := (θ1

t , ..., θ
m
t )t the asset strategy of the insurer.

5. Let Lt be the time t market-consistent value of liabilities of the insurer,
which is also called technical provisions in Solvency II.

6. Let Nt = At − Lt be the net value of assets minus liabilities at time t. In
the literature, it is also denoted as available capital. For simplification, we
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assume that the basic own funds and the eligible own funds are equal and
correspond to the net value.

7. Let Zt be the sum of all payments that the insurer makes or receives on the
interval (t−1, t] in time tmoney, including any premiums, costs, and benefits
from new and old business as well as payments to and from the shareholder.
Payments from the insurance company have a negative and payments to the
company a positive sign.

The framework focuses on the assets, while we do not specify here how the
market-consistent value of liabilities are calculated. For the following investi-
gation, it does not matter if the market-consistent value is derived from a RM
approach, a risk-neutral martingale measure, some real-world risk measure, or
any other approach. We discuss the RM approach which is in line with the Sol-
vency II framework in Section 8. For a general discussion of the valuation of
insurance liabilities, we refer to Wüthrich et al. (2010).

The discount factor v(t, t+1) for the time period (t, t+1] of any investment
Ht with corresponding strategy θ t is defined as

v(t, t + 1) := Ht · Kt

Ht · Kt+1
=

( m∑
i=1

θ
i
t

Ki
t+1

Ki
t

)−1

. (2.1)

We define 0
0 = 1 and 1

0 = ∞. Furthermore, we define VaRα(Y) := inf{y ∈ R :
P(Y ≤ y) ≥ α} for α ∈ (0, 1). The following definitions are possible interpreta-
tions of the SCR definition in the Solvency II framework.

(a) One possible interpretation of Article 101 is

SCR0 := VaR0.995(N0 − v(0, 1)N1) (2.2)

for a positive random variable v(0, 1), not necessarily of the form (2.1). The
proper choice of the discount factor v(0, 1) is unclear. Article 101 does not
give a definite answer.

(a1) Let θnumt be an asset strategy that correspond to a numeraire such
that the appendant discount factor vnum(t, t + 1) has a represen-
tation of the form (2.1). Thus, a possible specification of defini-
tion (2.2) is

SCRnum
0 := VaR0.995(N0 − vnum(0, 1)N1) . (2.3)

Note that the discount factor vnum(t, t + 1) is usually random and
that Artzner et al. (2009) prefer the use of the term eligible asset
instead of numeraire. They also discuss a framework with several
eligible assets. Such a SCR definition can be found, for example,
in Ohlsson and Lauzeningks (2009), Floreani (2011), Möhr (2011),
and Bauer et al. (2012). They all specify the numeraire to be the
discount factor corresponding to a riskless interest rate. Such a rate
can be theoretically derived from a model, or it can simply be de-
fined as the returns on government bonds or real bank accounts.

https://doi.org/10.1017/asb.2014.10 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2014.10


FUNDAMENTAL DEFINITION OF THE SCR IN SOLVENCY II 505

Only Devineau and Loisel (2009) use such a definition without fur-
ther restricting the choice of the numeraire.

(a2) Let vreal(t, t+1) be a discount factor that relates to the real capital
gains that the insurance company fromDefinition 2.1 actually earns
on its assets in the time period (t, t + 1], which is defined with the
strategy θt and (2.1). The following representations are equivalent

vreal(t, t + 1) = Ht · Kt

Ht · Kt+1
= At

At+1 − Zt+1
. (2.4)

For At = 0 we have by Definition 2.1 Ht = 0 and consequently
Ht · Kt+1 = 0, recall that 0

0 = 1 and 1
0 = ∞. Thus, another possible

specification of definition (2.2) is

SCRreal
0 := VaR0.995(N0 − vreal(0, 1)N1). (2.5)

We are not aware of such a definition in the literature, although it
has advantageous properties, as we will see later on.

(b) Assuming the existence of a martingale measure Q that allows for a risk-
neutral valuation of assets and liabilities, some authors (e.g. Kochanski,
2010; Barrieu et al., 2012) define the SCR according to Article 101 as

SCRQ
0 := VaR0.995

(
EQ

(
vnum(0, 1)N1

) − vnum(0, 1)N1
)
. (2.6)

If vnum(0, t)Nt is a Q-martingale, we obtain N0 = EQ(vnum(0, 1)N1), and
SCRnum

0 and SCRQ
0 are equal.

For the calculation of the subsequent SCR definitions, we have to minimize the
value of the asset portfolio. Because upsizing and downsizing of the asset port-
folio can be disproportional to the existing portfolio, we have to extend our
modeling framework.

Definition 2.2 (upsizing and downsizing of assets).

1. The new net value at time t is defined by Ñt = At + Ãt − Lt where Ãt
is one potential shift of the assets at time t. We assume that At and Lt are
invariant with respect to the hypothetical capital inflow/outflow Ãt, i.e. when
Ãt changes, At and Lt do not change.

2. We assume that an upsizing or downsizing of the asset portfolio at time
t ∈ N0 follows an adapted management strategy function ht that gives
for every shift Ãt the corresponding units of the investments, i.e. ht(Ãt)
is Ft-measurable and ht(Ãt) · Kt = Ãt for all possible market value
shifts Ãt.

3. We also use the notation H̃t = ht(Ãt) to describe possible shift of the units
of assets at time t ∈ N0 with corresponding investment strategy θ̃t. Note that
H̃t and θ̃t change when Ãt changes. Again, we assume that Ãt = 0 implies
H̃t = (0, ..., 0), i.e. ht(0) = 0.
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The intuition behind the assumption that At and Lt are invariant with re-
spect to Ãt is that the asset shift is only meant to adapt the solvency
level of the insurance company but shall not interact with its business
plan.

(c) A mathematical interpretation of Recital 64 of the directive leads to

SCR0 := inf
Ã0

{
N0 + Ã0 : P

(
NÃ0
1 ≥ 0

) ≥ 0.995
}
,

where NÃ0
1 is the net value at time one under the hypothetical assumption

that the asset value at time zero was shifted by Ã0. Actually, the net value
should be positive in the whole time interval [0, 1]. Since no insurance com-
pany is able to provide this information, we reduce our investigation to a
yearly time grid. Bauer et al. (2012) state that this is the intuitive definition
of the SCR, while SCRnum

0 is an approximation of it.
For the minimization of N0 + Ã0, there are two possibilities: The assets can
be reduced or increased by a given strategy, or we evenminimize with respect
to all reducing strategies. Consequently, we split up definition (c) into (c1)
and (c2).
(c1) Let h0 be a given management strategy as in Definition 2.2. Then one

interpretation of Recital 64 is

SCRh
0 := inf

Ã0

{
N0 + Ã0 : P

(
N1 + h0(Ã0) · K1 ≥ 0

) ≥ 0.995
}
, (2.7)

where we assume that the infimum exists.
(c2) By minimizing over all possible strategies h0 in the first interpretation,

we get another interpretation of Recital 64

SCRin f
0 := inf

h0
SCRh

0

(2.8)
= inf

H̃0

{
N0 + H̃0 · K0 : P

(
N1 + H̃0 · K1 ≥ 0

) ≥ 0.995
}
,

where we assume that the infimum exists. The second equality holds,
since for every H̃0 there is a h0 with h0(H̃0 ·K0) = H̃0 and since for every
h0 and Ã0 there is a H̃0 with H̃0 = h0(Ã0). Note that by Definition 2.2
we have that Ã0 = 0 implies H̃0 = 0 which corresponds to h0(0) =
0. The existence problem of the infimum is discussed in Artzner et al.
(2009) for finite�. Their condition for existence is that no acceptability
arbitrage exists. Here we also allow for infinite �, and some sufficient
conditions for the existence of the infimum will be given in the next
section.
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FIGURE 1: Development of the assets.

The different interpretations of the SCR lead us to the following questions:

(1) Are the aforementioned interpretations of Article 101 and Recital 64 con-
sistent? If not, which additional assumptions do we need to make them con-
sistent?

(2) Are (some of) the different definitions equivalent? If not, can we find addi-
tional conditions that make (some of) them equivalent?

(3) If the different definitions cannot be harmonized, are there other arguments
that support or disqualify some versions?

So far, we have only discussed the definition of a present SCR that gives the
solvency requirement for today. However, for the calculation of the RM, which
will be discussed in more detail in Section 8, we also have to define future SCRs
that describe solvency requirements at future points in time.

(4) How can we mathematically define an SCRs that describes the solvency re-
quirement at a future time s > 0 ?

In the Solvency II standard formula, the one-year perspective is replaced by
shocks that happen instantaneously. Consequently, there is no discount factor,
and so the standard formula does not answer the questions.

The following example illustrates the SCR definitions. The example is kept
very simple in order to make the differences between the definitions more clear.

Example 2.3 (SCR of a riskless insurer). We consider a time horizon of one
year and a financial market with two assets, a riskless bond K1 and a stock K2,
which both have a price of K1

0 = K2
0 = 100 at time 0. Two scenarios � =

{ω1, ω2} may occur; see Figure 1. Both scenarios shall have the same probabil-
ity, P({ω1}) = P({ω2}) = 0.5. We consider a simplified insurance company that
is closed to new business and which has an asset portfolio with no bonds and
two stocks, H0 = (H1

0 , H2
0 ) = (0, 2). The insurance portfolio consists of just

one unit-linked life-insurance with a sum insured of K2
1 at time 1. As no assets

are traded during the year, we obtain N0 = 100 and N1 = K2
1 . In the following,

we calculate the SCR according to the different definitions.

(a1) We choose the riskless bond as the numeraire, which leads to a riskless
discount factor of vnum(0, 1) = 1.05−1. By definition (2.3), we obtain

SCRnum
0 = VaR0.995

(
100 − 1.05−1K2

1

) = 100
7

.
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FIGURE 2: SCRh
0 calculated for different choices of θ̃2

0 .

(a2) Since vreal(0, 1) = 100
K2

1
, the SCR according to definition (2.5) is

SCRreal
0 = VaR0.995

(
100 − 100

K2
1

K2
1

)
= 0 .

(b) Since we can show that Q({ωi }) = P({ωi }) = 0.5 for i = 1, 2, we
have EQ(vnum(0, 1) N1) = 100 = N0, and consequently SCRQ

0 is equal to
SCRnum

0 .
(c1) Definition (2.7) requires minimization of the additional assets Ã0 by a
strategy h0. We assume that h0 is a nonnegative linear function, i.e. there
are θ̃1

0 , θ̃
2
0 ∈ [0, 1] with θ̃1

0 + θ̃2
0 = 1 and h0(Ã0) = (Ã0 θ̃1

0 /K
1
0 , Ã0 θ̃2

0 /K
2
0 )

T.
Thus, we get

N1 + h0(Ã0) · K1 = N1 + Ã0

(
θ̃1
0
K1

1

K1
0

+ θ̃2
0
K2

1

K2
0

)
.

By minimizing Ã0 under the condition P(N1 + h0(Ã0) · K1 ≥ 0) ≥ 0.995,
we get

SCRh
0 = 100 + max

{−120(1.05 + 0.15 θ̃2
0 )

−1; −90(1.05 − 0.15 θ̃2
0 )

−1} ,

which is visualized in Figure 2. We observe that the SCR highly depends
on the choice of the reduction strategy. Since stocks are the only assets of
the company, it seems to be a proper choice to reduce the assets by selling
stocks. This would lead to an SCR of 0.
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(c2) We use the right-hand side of (2.8) to calculate SCRin f
0 . Straightfor-

ward calculations show that the condition P(N1 + H̃0 · K1 ≥ 0) ≥ 0.995 is
fulfilled if and only if

H̃1
0 ≥

⎧⎪⎪⎨⎪⎪⎩
− 90
105

(
1 + H̃2

0

)
, H̃2

0 ≥ −1

−120
105

(
1 + H̃2

0

)
, H̃2

0 ≤ −1

.

The infimum of N0 + H̃0 · K0 is in both cases 0 with the strategy H̃0 =
(0, −1). Consequently, we obtain SCRin f

0 = 0.

The numerical example shows that the different SCR definitions are not gen-
erally equivalent. Then which SCR is adequate here, zero or greater than zero?
Let us recall the fundamental intention of the Solvency II project. According to
Recital 16 (European Parliament and the Council, 2009, page 8) “the main ob-
jective of insurance and reinsurance regulation and supervision is the adequate
protection of policy holders and beneficiaries.” Consequently, if the company
holds one stock, it has a perfect hedge for the liabilities, and the policy holder
is sufficiently protected. Hence, it seems reasonable to set SCR0 equal to zero.
However, from a shareholder’s perspective it is not necessarily optimal to per-
fectly hedge the liabilities (see Wüthrich and Merz, 2013). The SCR definitions
that are most frequently used in the literature, namely SCRnum

0 and SCRQ
0 , both

lead to an SCR larger than zero.

To keep the example as simple as possible, we used a binomial model for the
development of the stock. However, we can construct similar examples formany
kinds of stock models. For the calculation of SCRreal

0 the stock price at time 1
is irrelevant, and for reasonable stock developments SCRh

0 is still equal to zero
for θ̃2

0 = 1 and positive for θ̃2
0 �= 1.

3. DISCUSSION OF RECITAL 64

Analogously to (2.1) and (2.4), we define the discount factor for one possible
additional asset portfolio Ãt as

vh(t, t + 1) := H̃t · Kt

H̃t · Kt+1
= ht(Ãt) · Kt

ht(Ãt) · Kt+1
= Ãt

Ãt+1
, (3.1)

where Ãt+1 is the time t+ 1 value of Ãt. In general, the return of the additional
assets can depend on the amount of additional assets. In order to simplify the
mathematical structure in (2.7), we assume that the discount factor vh(t, t + 1)
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is invariant with respect to Ãt, i.e.

vh(t, t + 1) = Ãt
ht(Ãt) · Kt+1

= a
ht(a) · Kt+1

, for all a ∈ R.

This assumption does not fully agree with insurance practice, but it will often
be an acceptable approximation.

Proposition 3.1. Suppose that all investment portfolios with value zero (almost
surely) at time 1 necessarily have value zero at time 0. Then the discount factor
vh(0, 1) is invariant with respect to Ã0 for all possible capital markets (Kt)t if
and only if h0 is a linear function, i.e. h0(Ã0) = Ã0B0 for a constant vector B0.

Proof. Let vh(0, 1) be invariant with respect to Ã0. For any Ã0 we get that

Ã0

h0(Ã0) · K1
= vh(0, 1) = 1

h0(1) · K1
, almost surely,

which is equivalent to (Ã0h0(1) − h0(Ã0)) · K1 = 0 almost surely. By assump-
tion this implies that (Ã0h0(1) − h0(Ã0)) · K0 = 0. Note that the denominator
h0(1) · K1 is never zero: h0(1) · K1 = 0 implies h0(1) · K0 = 0 which leads to the
contradiction 1 = h0(1) ·K0 = 0 because of Definition 2.2. As the set of all pos-
sible capital markets K0 at time 0 includes a basis ofRd , we necessarily conclude
that Ã0h0(1) − h0(Ã0) = 0. Hence, h0 is linear and we can define B0 := h0(1).
The other way round it is obvious that h0 linear implies that vh(0, 1) is invariant
with respect to Ã0.

If there existed an investment portfolio with value zero at time 1 but with a value
unequal to zero at time 0, there exists arbitrage in the market.

Because of this proposition, in the following we always let h0 be a linear
function. Analogously, we say that also the ht, t ∈ N, shall be linear, which
implies that vh(t, t + 1) is invariant with respect to Ãt for each t ∈ N. As vnum

corresponds to a linear management strategy, all Solvency II SCR definitions
that we found in the literature implicitly assume linear management strategies.
In practice, management strategies for the excess assets may be non-linear, and
linearity can be seen as a first-order approximation of non-linear management
decisions.

Proposition 3.2. Suppose that h0(Ã0) = Ã0B0, where we find both positive and
negative signs in the components of B0. Furthermore, we assume that there exists
ameasurable set M⊂ �with 0.005 < P(M) < 0.995. Then there are H0, (Lt)t∈N0 ,
(Zt)t∈N, and (Kt)t∈N0 such that

inf
Ã0

{
N0 + Ã0 : P

(
N1 + h0(Ã0) · K1 ≥ 0

) ≥ 0.995
} = inf ∅

whileVaR0.995(N0−v(0, 1)N1) is a finite real number for any real random variable
v(0, 1).
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Proof. We choose (Kt)t∈N0 in such a way that we have M = {ω ∈ � :
vh(0, 1)(ω) < 0}. Let M := � \ M. We define H0, (Lt)t∈N0 , (Zt)t∈N, and (Kt)t∈N0

such that N0 = 0 and

N1 =

⎧⎪⎪⎨⎪⎪⎩
1

vh(0, 1)
on M,

− 1
vh(0, 1)

on M.

Then the inequality N1+h(Ã0)·K1 ≥ 0 holds onMandM if and only if Ã0 ≤ −1
and Ã0 ≥ 1, respectively. Consequently,

{
N0 + Ã0 : P

(
N1 + h0(Ã0) · K1 ≥

0
) ≥ 0.995

} = ∅. On the other hand, for any real random variable v(0, 1), all
α-quantiles, α ∈ (0, 1), of the random variable N0 − v(0, 1)N1 exist and are
finite.

The proposition shows that— under the assumptions that wemade so far—
it can happen that the SCR according to Article 101 of the Solvency II directive
exists while the SCR according to Recital 64 of the Solvency II directive does
not. In the proof we construct such inconsistencies by letting vh(0, 1) be nega-
tive on the set M. In order to avoid such inconsistencies we make the following
assumption.

Assumption 3.3 (linearity and nonnegativity of ht). Weassume that themanage-
ment strategy function ht is linear, i.e. ht(Ãt) = Ãt Bt, and that the Ft-
measurable random vector Bt takes only values in [0, ∞)m \ {0}.
Assumption 3.3 excludes acceptability arbitrage in the sense of Artzner et al.
(2009), but only for the shifting portfolio H̃t. The total portfolio Ht + H̃t may
have short-long positions. From Definition 2.2 and Assumption 3.3 we get that
1 = ht(1) · Kt = Bt · Kt.

Remark 3.4 (nonnegativity of the asset strategy vector Bt). The assumption
that Bt takes only values in [0, ∞)m \ {0} is sufficient to ensure that vh(t, t+1) is
strictly positive. In some sense this assumption is also necessary: If Bt equals the
zero vector with positive probability, then the assumption ht(Ãt) ·Kt = Ãt is vi-
olated. If Bt has negative entries with positive probability, then we can construct
a financial market (Kt)t for which Bt · Kt+1 is negative with positive probability.
Thus, in order to ensure vh(t, t+1) = (Bt ·Kt+1)

−1 > 0 for all kinds of financial
market models (Kt)t, the random vector Bt must almost surely take values in
[0, ∞)m \ {0}. This positivity property will play a crucial role later on. It implies
that a decrease (an increase) of At by Ãt < 0 (Ãt > 0) at time t cannot result in
an increase (a decrease) of the asset value one year later, i.e. we always have

At + Ãt < At =⇒ At+1 + Ãt+1 < At+1,

At + Ãt > At =⇒ At+1 + Ãt+1 > At+1.
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Capital that is added at time t in order to increase the solvency level lets the
insurer always be financially better off after one year and never the other way
round.

The denominator h(Ãt) · Kt+1 of the discount factor vh(t, t+ 1) defined in (3.1)
can get zero, but Bt ·Kt+1 is always positive since all entries of Kt+1 are positive,
all entries of Bt are nonnegative, and Bt is not the zero vector. Therefore in the
following we always use the definition

vh(t, t + 1) := Bt · Kt

Bt · Kt+1
= 1

Bt · Kt+1
. (3.2)

Under the condition of Assumption 3.3 definitions (2.7) and (2.8) change. Un-
less stated otherwise, from now on we assume that the management strategy in
SCRh

0 (cf. (2.7)) fulfills Assumption 3.3 and that SCRin f
0 is defined as follows

SCRin f
0 = inf

B0∈[0,∞)m\{0},B0·K0=1
inf
Ã0

{
N0 + Ã0 : P(N1 + Ã0 B0 · K1 ≥ 0) ≥ 0.995

}
.

(3.3)

These changes in the definitions of SCRh
0 and SCRin f

0 cannot be found in
Recital 64, but we make them for two reasons. First, we showed in Propo-
sition 3.2 that without Assumption 3.3 it is possible to construct examples
where the SCR is equal to the infimum of the empty set, which is not a sound
definition for the SCR. Second, one key aspect of this paper is the question
whether Article 101 and Recital 64 are consistent. When Assumption 3.3 does
not hold we know from Proposition 3.2 that Article 101 and Recital 64 cannot
be consistent in general. Consequently, we restrict the further investigation to
Assumption 3.3.

Note that Assumption 3.3 also implies that (3.3) is finite. Suppose we had
a sequence of Ã0 that goes to −∞ and satisfies the infimum condition in (3.3).
Applying limit theorems we obtain that P(−B0 · K1 ≥ 0) ≥ 0.995 for some
B0 ∈ [0, ∞)m \ {0} with B0 · K0 = 1, which is a contradiction to the fact that
B0 · K1 is always positive.

Theorem 3.5. Under Assumption 3.3 we have

SCRh
0 = VaR0.995

(
N0 − vh(0, 1)N1

)
. (3.4)

Furthermore, there exists a linear management strategy hin f0 and a correspond-
ing discount factor vin f (0, 1) such that SCRin f

0 defined according to (3.3) has the
representation

SCRin f
0 = inf

Ã0

{
N0 + Ã0 : P(N1 + hin f0 (Ã0) · K1 ≥ 0) ≥ 0.995

}
= VaR0.995

(
N0 − vin f (0, 1)N1

)
.

(3.5)
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Proof. From (3.1) we get Ãs+1 = vh(s, s + 1)−1 Ãs , which leads to

Ñs+1 = Ns+1 + vh(s, s + 1)−1 Ãs = Ns+1 + vh(s, s + 1)−1 (Ñs − Ns),

and since vh(s, s + 1) is always positive, we obtain

{Ñs+1 ≥ 0} = {vh(s, s + 1) Ñs+1 ≥ 0} = {Ns − vh(s, s + 1) Ns+1 ≤ Ñs} (3.6)

for all s ∈ N0. As N0 is deterministic, the left-hand side of (3.4) is well defined
and equals the right-hand side of (3.4) because

P
(
Ñ1 ≥ 0

) = P
(
N0 − vh(0, 1) N1 ≤ Ñ0

)
.

By the definition ofSCRin f
0 given in (3.3), there exists a series (ak, bk)k∈N, ak ∈ R,

bk ∈ [0, ∞)m\{0}, with bk·K0 = 1, P(N1+ak bk· K1 ≥ 0) ≥ 0.995, and N0+ak →
SCRin f

0 . As {b ∈ [0, ∞)m : b · K0 = 1} is a compact subset ofRm, wemay assume
that bk converges to some b∞ ∈ [0, ∞)m with b∞ · K0 = 1. Furthermore, N1 +
ak bk·K1 converges stochastically to the random variable N1+(SCRin f

0 −N0)b∞·
K1. For any sequence (Xk)k of random variables that stochastically converges
to a limit X, the distribution functions satisfy FX(t−) ≤ lim infk FXk(t−) for
all t ∈ R (compare Milbrodt, 2010, pages 270–271). Therefore we can conclude
that

P(N1 + (SCRin f
0 − N0)b∞ · K1 ≥ 0) ≥ lim sup

k
P(N1 + ak bk · K1 ≥ 0) ≥ 0.995.

Hence, by defining hinf0 (x) = xb∞, in the first line in (3.5) the right hand side is
not greater than the left hand side. On the other hand, the right hand side can-
not be truly smaller than the left hand side since b∞ is one of the management
strategies in the first infimum in (3.3). The second equality in (3.5) follows from
(3.4).

The theorem allows us to substitute definition (2.7) with (3.4). This is especially
useful when Monte-Carlo simulations are used. For calculating (2.7) a starting
level N0+ Ã0 is needed before N1+h0(Ã0) ·K1 can be simulated, and the simula-
tion only approximates the ruin probability for this starting level. Consequently,
we need methods such as nested intervals, and the simulation has to be run over
and over again until the desired ruin probability is reached. In contrast, (3.4)
can be calculated with one run of simulations. One might think that similarly
the value at risk representation on the right hand side of (3.5) can serve as a
substitute for definition (2.8). However, Theorem 3.5 yields only an existence
result but not a construction principle for vin f .

Corollary 3.6. Under Assumption 3.3 SCRin f
0 has the representation

SCRin f
0 = inf

b0∈[0,∞)m\{0}
VaR0.995(N0 − vb(0, 1) N1) , (3.7)

where vb(0, 1) := b0· K0
b0· K1

.
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Proof. Using (3.3) and (3.4), SCRin f
0 has the representation

SCRin f
0 = inf

B0∈[0,∞)m\{0},B0·K0=1
VaR0.995(N0 − vh(0, 1) N1)

= inf
b0∈[0,∞)m\{0}

VaR0.995(N0 − vb(0, 1) N1) ,

where the second equality follows from the fact that for all b0 ∈ [0, ∞)m \ {0}
we can define a corresponding B0 = b0

b0·K0
that satisfies Assumption 3.3 and for

which vh(0, 1) = B0· K0
B0· K1

= b0· K0
b0· K1

.

4. THE SCR FOR AN ARBITRARY POINT IN TIME

We now generalize all our SCR definitions to future points in time with the help
of a dynamic value at risk definition. The following proposition helps to define
such a dynamic value at risk. The proof can be found in the appendix.A dynamic
value at risk definition is also given in Kriele and Wolf (2012) that is based on a
sophisticated construction of the probability space. Our construction includes
the model of Kriele and Wolf (2012), but requires less effort.

Proposition 4.1. Let (�,F,P) be a probability space with random variables
X[0,s] : (�,F) → (�′,F ′

s) and Y : (�,F) → (R,B(R)), Y ∈ Y , where (�′,F ′
s)

is some measurable space and Y is some countable set of real-valued random vari-
ables. Then the function qY,α : �′ → R defined by

qY,α(x) := inf{y ∈ R : P(Y ≤ y|X[0,s] = x) ≥ α}

and the function qin fY,α(x) : �′ → R defined by

qin fY,α(x) := inf{Y ∈ Y : qY,α(x)}
are F ′

s -B(R)-measurable.

Definition 4.2 (dynamic value at risk). Suppose that the assumptions of Propo-
sition 4.1 hold, and let X[0,s] be a generator of the filtration from Definition 2.1;
i.e. Fs = σ(X[0,s]). For α ∈ (0, 1) and a random variable Y we define

VaRα

(
Y

∣∣Fs
)
:= qY,α(X[0,s]) ,

and for a countable set Y of random variables we define

infY∈Y VaRα

(
Y

∣∣Fs
)
:= qin fY,α(X[0,s]) .

With the help of Definition 4.2, we can generalize SCR definitions (2.2), (2.3),
(2.5), (2.6), (3.4), and (3.7) to future points in time by replacing the values at
risk by dynamic values at risk.
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Definition 4.3 (present and future SCR). Given that Assumption 3.3 holds, the
SCR at time s ∈ N0 is defined as

(a) SCRx
s := VaR0.995(Ns − vx(s, s + 1) Ns+1|Fs), x ∈ {num, real, h},

(b) SCRQ
s := VaR0.995(EQ(vnum(s, s+1) Ns+1|Fs)−vnum(s, s+1) Ns+1)|Fs),

(c) SCRin f
s := infbs∈[0,∞)m\{0} VaR0.995(Ns − vb(s, s + 1) Ns+1|Fs),

where Q is a martingale measure and vb(s, s + 1) := bs ·Ks
bs ·Ks+1

.

The definition of SCRin f
s is motivated by (3.7). The following proposition shows

that the uncountable set [0, ∞)m \ {0} may be reduced to the countable set
[0, ∞)m ∩ Qm \ {0} such that SCRin f

s is a well-defined Fs-measurable random
variable according to Definition 4.2. Measurability ensures that SCRin f

s has a
probability distribution and will be crucial in Definition 8.4.

Proposition 4.4. Under Assumption 3.3, we have

SCRin f
s = inf

bs∈[0,∞)m∩Qm\{0}
VaR0.995(Ns − vb(s, s + 1) Ns+1|Fs). (4.1)

Proof. Given that X[0,s] = x, Ks almost surely equals a deterministic vector
Kx
s ∈ (0, ∞)m and Ns almost surely equals a real variable Nx

s ∈ R. Using (3.6)
and the fact that vb(s, s + 1) is invariant with respect to any positive scaling of
bs , we get

SCRin f
s (x) = inf

bs∈[0,∞)m\{0}
VaR0.995(Ns − vb(s, s + 1) Ns+1|X[0,s] = x)

= inf
bs∈[0,∞)m\{0}

inf{Nx
s + a ∈ R :

P(Nx
s − vb(s, s + 1) Ns+1 ≤ Nx

s + a|X[0,s] = x) ≥ 0.995}

= inf
bs∈[0,∞)m\{0}

inf
{
Nx
s + a ∈ R :

P
(
Ns+1 + a

bs · Ks+1

bs · Kx
s

≥ 0

∣∣∣∣X[0,s] = x
)

≥ 0.995
}

= inf{Nx
s + b′

s · Kx
s : b′

s ∈ [0, ∞)m ∪ (−∞, 0]m,

P(Ns+1 + b′
s · Ks+1 ≥ 0|X[0,s] = x) ≥ 0.995}.

The last inequality is true since the vector

b′
s :=

a
bs · Kx

s
bs (4.2)

meets the quantile condition in the last line and satisfies b′
s · Kx

s = a whenever
the pair (a, bs) satisfies the quantile condition in the second to last line, and
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since the pair

a := b′
s · Kx

s ,

bs :=
⎧⎨⎩ b′

s : a > 0
−b′

s : a < 0
(1, ..., 1) : a = 0

(4.3)

meets the quantile condition in the second to last line whenever b′
s satisfies the

quantile condition in the last line. Since c · Ks+1 ≥ 0 for all c ∈ [0, ∞)m, the
inequality

P(Ns+1 + (b′
s + c) · Ks+1 ≥ 0|X[0,s] = x) ≥ 0.995 (4.4)

is true for all nonnegative vectors c. Thus, the infimum set of the latter infimum
contains a sequence of rationale vectors that converges to b′

s . Hence, the above
infimum does not change if we replace the infimum set b′

s ∈ [0, ∞)m ∪ (−∞, 0]m

by the dense subset b′
s ∈ ([0, ∞)m∪ (−∞, 0]m)∩Qm. We now use (4.2) and (4.3)

again in order to get back to the double infimum representation. The trans-
formations (4.2) and (4.3) do not necessarily lead to rationale quantities, but,
analogously to the arguments in (4.4), we always find rationale sequences that
meet the corresponding quantile conditions and converge to the transforma-
tions (4.2) and (4.3). Hence, we obtain

SCRin f
s (x)

= inf{Nx
s + b′

s · Kx
s : b′

s ∈ ([0, ∞)m ∪ (−∞, 0]m) ∩ Qm,

P(Ns+1 + b′
s · Ks+1 ≥ 0|X[0,s] = x) ≥ 0.995}

= inf
b′
s∈[0,∞)m∩Qm\{0}

inf{Nx
s + a : a ∈ Q,

P(Nx
s − vb

′
(s, s + 1) Ns+1 ≤ Nx

s + a|X[0,s] = x) ≥ 0.995}
= inf

b′
s∈[0,∞)m∩Qm\{0}

VaR0.995(Ns − vb
′
(s, s + 1) Ns+1|X[0,s] = x).

Interestingly, in Example 2.3 SCRnum
t and SCRQ

t are equal. The following
remark clarifies their relation.

Remark 4.5 (relation between SCRnum
t and SCRQ

t ). Suppose that vnum(0, t) Kt
is a Q-martingale. We have Nt = EQ(vnum(t, t + 1) Nt+1|Ft) for all times t if
and only if

Lt = EQ

(∑
s>t

−vnum(t, s)Zs
∣∣∣Ft

)
(4.5)
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for all times t. This can be proven by using the martingale property of
vnum(0, t)Kt to show that EQ

(
vnum(t, t + 1)(vreal(t, t + 1))−1|Ft

) = 1 for all
t ∈ N0. Because of equation (2.4), Nt = EQ(vnum(t, t+ 1) Nt+1|Ft) is equivalent
to Lt = EQ(vnum(t, t+1) (Lt+1−Zt+1)|Ft). Using the latter equation iteratively,
we arrive at (4.5) and vice versa.
So if Q is a martingale measure that allows for a risk-neutral valuation of assets
and liabilities, then (4.5) is satisfied and, in turn, SCRnum

s and SCRQ
s are equal.

Therefore, in the following we do not consider SCRQ
s anymore.

5. COMPARISON OF THE DIFFERENT SCR DEFINITIONS

In a next step we want to learn if and when the different SCR definitions are
equivalent.

Proposition 5.1. Under Assumption 3.3 we almost surely have

SCRin f
s ≤ SCRh

s , s ∈ N0.

Let Hnum
s be a portfolio that replicates the numeraire between times s and s + 1

and Hs the actual portfolio of the company according to Definition 2.1. If the Fs -
measurable random vectors Hs and Hnum

s almost surely assume values in [0, ∞)m∪
(−∞, 0]m and are non-zero, then we also have

SCRin f
s ≤ SCRreal

s , SCRin f
s ≤ SCRnum

s , s ∈ N0,

almost surely.

Proof. By setting hs(x) := x
Hs ·Ks

Hs and hs(x) := x
Hnum
s ·Ks

Hnum
s , we get

SCRh
s = SCRreal

s and SCRh
s = SCRnum

s , respectively. The condition that Hs and
Hnum
s almost surely assume values in [0, ∞)m ∪ (−∞, 0]m ensures that hs(x) ful-

fills Assumption 3.3. Hence, we just have to prove that SCRin f
s ≤ SCRh

s almost
surely. The latter inequality follows directly from the definition of SCRin f

s , be-
cause under the condition X[0,s] = x the management strategy vector Bs equals
almost surely a deterministic vector bs ∈ [0, ∞)m \ {0}.
The proposition shows that under the proposed conditions SCRin f

s is a lower
bound of the other definitions. This explains the superscript in the notation
SCRin f

s , which stands for infimum.

Theorem 5.2. Let Hs be an arbitrary but fixed non-zero asset portfolio with values
in [0, ∞)m∪(−∞, 0]m and with corresponding discount factor v(s, s+1) according
to definition (2.1).

(i) UnderAssumption 3.3 we haveVaR0.995(Ns−v(s, s+1) Ns+1
∣∣Fs) = SCRh

s
for all insurance companies (Ht)t, (Lt)t, (Zt)t, and all probability measures
equivalent to P if and only if v(s, s + 1) = vh(s, s + 1) almost surely.
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(ii) Given that the asset strategy of the insurer θs from Definition 2.1 and
the asset strategy of a possible shift θ̃s from Definition 2.2 exist, we have
vreal(s, s + 1) = vh(s, s + 1) for all financial markets (Kt)t if and only if
θs = θ̃s almost surely.

(iii) Given that the asset strategy that correspond to a numeraire θnums de-
fined before (2.3) and the asset strategy of a possible shift θ̃s exist, we have
vnum(s, s + 1) = vh(s, s + 1) for all financial markets (Kt)t if and only if
θnums = θ̃s almost surely.

Proof. (i) If v(s, s + 1) = vh(s, s + 1) almost surely, then VaR0.995(Ns −
v(s, s+1) Ns+1

∣∣Fs) is almost surely equal to the definition of SCRh
s . Suppose

now that v(s, s+1) �= vh(s, s+1).Without loss of generality let {v(s, s+1) <

vh(s, s + 1)} be a non-zero set (a set of positive measure). Then there must
be an ε > 0 such that {v(s, s+1)/vh(s, s+1) < 1− ε} is also a non-zero set,
otherwise we could write {v(s, s + 1) < vh(s, s + 1)} as a countable union
of zero sets. Thus we can find a probability measure P∗ equivalent to P for
which P∗(v(s, s+1)/vh(s, s+1) < 1−ε|Fs) > 0.995 almost surely for some
ε > 0. We further define (Ht)t, (Lt)t, and (Zt)t in such a way that Ns = 0
and

Ns+1 = − 1
vh(s, s + 1)

1v(s,s+1)/vh(s,s+1)<1−ε.

Then we obtain SCRh
s ≥ 1 (calculated on the basis of P∗), since P∗(Ns −

vh(s, s+1) Ns+1 ≥ 1|Fs) > 0.995 > 0.005, and SCRs < 1−ε (calculated on
the basis of P∗) since P∗(Ns − v(s, s + 1) Ns+1 < 1 − ε|Fs) > 0.995. Hence,
VaR0.995(Ns − v(s, s + 1) Ns+1|Fs) �= SCRh

s (calculated on the basis of P∗).
(ii) If θs = θ̃s almost surely, thenwe also have by (2.1) vreal(s, s+1) = vh(s, s+
1) almost surely. On the other hand, suppose now that there exists an i0 ∈
{1, ...,m} for which P(θ i0s �= θ̃ i0s ) > 0. By defining Ki0

t (ω) := 1 + 1[s+0.5,∞)(t)
and K j

t (ω) := 1 for all j �= i0 and t ∈ R+, from (2.1) we get

vreal(s, s + 1) = 1

1 + θ
i0
s

, vh(s, s + 1) = 1

1 + θ̃
i0
s

,

since the sum of the θ it equals 1 by definition. Thus, we obtain P(vreal(s, s +
1) = vh(s, s + 1)) = P(θ i0s = θ̃ i0s ) < 1.

(iii) The proof is analogous to the proof of part (ii). From θnums = θ̃s almost
surely we can conclude that vnum(s, s + 1) = vh(s, s + 1) almost surely. On
the other hand, if there exists a component i0 ∈ {1, ...,m} where the vectors
θnums and θ̃s differ with positive probability, then we can construct a financial
market (Kt)t with P(vnum(s, s + 1) = vh(s, s + 1)) < 1.

In particular, Theorem 5.2 shows that the SCR definitions SCRreal
s , SCRnum

s ,
and SCRh

s are equivalent for all insurance companies and market situations if
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≥ SCRinf

SCRQ

SCRnum

SCRh

SCRreal SCRinf

vh := vrealvh := vnum

special Lt

special Lt

vh := vnum

vh := vinf

FIGURE 3: Relationship between the SCR definitions under Assumption 3.3.

and only if the corresponding investment strategies for the excess capital are
equal.

Remark 5.3. SCRh
s can change considerably depending on the choice of

vh(s, s + 1). While in all other definitions the discount factor is largely deter-
mined by pre-existing circumstances, the discount factor vh(s, s+1) is mainly a
management decision that the insurer has tomake by appointing amanagement
strategy function hs . A more detailed discussion of management strategies can
be found in Wüthrich and Merz (2013). In case H̃s is nearly proportional to Hs
then vh(s, s + 1) is well approximated by vreal(s, s + 1).

The relationship among the different SCRdefinitions is summarized in Figure 3.

6. CONVERGENCE OF SCR DEFINITIONS

For the next result we need the following setting: An insurer has a net value of
y(0) := Ns and calculates the SCR

y(1) := SCRs = VaR0.995(Ns − v(s, s + 1) Ns+1|Fs) ,

where v(s, s + 1) is any arbitrary discount factor. In contrast to the previous
sections, the discount factor v(s, s + 1) is not necessarily of the form (2.1) but
just some positive random variable. In a next step, the company reduces the
asset portfolio with the linear management function hs as in Assumption 3.3 by
Ãs := y(1) − Ns such that the new net value is Ñs = Ns + Ãs = y(1). According
to (3.1), we have Ãs+1 = vh(s, s+1)−1 Ãs , and thus we get Ñs+1 = Ns+1+(y(1) −
Ns)v

h(s, s + 1)−1. With y(2) we denote the SCR that corresponds to the altered
net value. As y(2) is not necessarily equal to y(1), the asset portfolio is again
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re-organized such that Ñs = Ns + Ãs = y(2). By repeating this procedure n-
times, we obtain

y(n) =VaR0.995(y(n−1) −v(s, s + 1) (Ns+1 + (y(n−1) − Ns)v
h(s, s+1)−1)|Fs).

(6.1)

Theorem 6.1. Let hs be as in Assumption 3.3.

(i) If there exists an ε > 0 such that

ε <
v(s, s + 1)
vh(s, s + 1)

<
1
ε
almost surely, (6.2)

then the random variable SCRh
s is the (almost surely) unique fix-point of

iteration (6.1).
(ii) If there exists an ε ∈ (0, 1) such that

ε <
v(s, s + 1)
vh(s, s + 1)

< 2 − ε almost surely, (6.3)

then limn→∞ y(n) = SCRh
s almost surely, where y

(n) is defined as in (6.1).

Proof. (i) If y is a fix-point of (6.1), then almost surely

y = VaR0.995(y− v(s, s + 1)(Ns+1 + (y− Ns)v
h(s, s + 1)−1)|Fs)

⇔ 0 = VaR0.995

(
v(s, s + 1)
vh(s, s + 1)

(
Ns − vh(s, s + 1)Ns+1 − y

) ∣∣∣∣Fs

)
⇔ 0 = VaR0.995(Ns − vh(s, s + 1)Ns+1 − y|Fs)

⇔ y = VaR0.995(Ns − vh(s, s + 1)Ns+1|Fs) = SCRh
s .

In the third line, we use that v(s,s+1)
vh(s,s+1) can be omitted by PropositionA.1 in the

appendix. The requirements for the proposition are fulfilled because of (6.2).
The equivalences yield that SCRh

s is always a fix-point and that all fix-points
equal SCRh

s .
(ii) The following calculations are all true almost surely. From (6.1) we get

y(n+1) = VaR0.995

(
SCRh

s +
(
1 − v(s, s + 1)

vh(s, s + 1)

)(
y(n) − SCRh

s

)
+ v(s, s + 1)

vh(s, s + 1)
(Ns − vh(s, s + 1)Ns+1 − SCRh

s )

∣∣∣∣Fs

)
.

(6.4)
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By multiplying equation (6.3) with −1, adding 1, and multiplying the result
with y(n) −SCRh

s separately for y
(n) −SCRh

s ≥ 0 or y(n) −SCRh
s < 0, we get

−(1 − ε)
∣∣y(n) − SCRh

s

∣∣ ≤ (y(n) −SCRh
s )

(
1 − v(s, s + 1)

vh(s, s + 1)

)
≤ (1 − ε)

∣∣y(n) − SCRh
s

∣∣ .
Since the dynamic values at risk satisfy the monotonicity and the translation
invariance property as the standard values at risk do, and by applying the
inequalities, we obtain from (6.4) that

y(n+1) ≤SCRh
s + (1 − ε)

∣∣y(n) − SCRh
s

∣∣
+ VaR0.995

(
v(s, s + 1)
vh(s, s + 1)

(Ns − vh(s, s + 1)Ns+1 − SCRh
s )

∣∣∣∣Fs

)
.

Since hs is a nonnegative linear function, we get with Theorem 3.5
VaR0.995(Ns − vh(s, s + 1)Ns+1 − SCRh

s ) = 0 and by Proposition A.1 we
can multiply the inner of the value at risk with v(s,s+1)

vh(s,s+1) , since the fraction
satisfies (6.3). Consequently, the last summand is equal to zero. In total we
obtain that y(n+1) has the upper bound SCRh

s + (1 − ε)
∣∣y(n) − SCRh

s

∣∣ and,
analogously, the lower bound SCRh

s − (1 − ε)
∣∣y(n) − SCRh

s

∣∣. By induction
we can show that∣∣y(n+1) − SCRh

s

∣∣ ≤ (1 − ε)n+1
∣∣y(0) − SCRh

s

∣∣ → 0 (n → ∞)

pointwise. Hence, limn→∞ y(n) = SCRh
s .

Setting v(s, s+1) = vnum(s, s+1) and v(s, s+1) = vreal(s, s+1) and assuming
that they fulfill (6.3) accordingly, we get that iterative calculations of SCRnum

s
and SCRreal

s converge to SCRh
s . If the probability space � is finite, condition

(6.3) can be relaxed to 0 < v(s,s+1)
vh(s,s+1) < 2. We have v(s,s+1)

vh(s,s+1) < 2 if and only if the
return φh of the additional assets is smaller than 1+2φ, or φh < 1+2φ, where φ

is the return corresponding to the discount factor v(s, s + 1). This restriction is
usuallymet in practice. The proof also shows that, for a discount ratio v(s,s+1)

vh(s,s+1) ≥
2, the sequence y(n) never converges. This fact is illustrated in Example 6.2. If
the discount ratio is random and takes values both less and greater than 2, a
general convergence result is out of reach.

Example 6.2 (speed of convergence). We modify the payoff of the stock from
Example 2.3, such that its payoff is deterministic. We use this variable to an-
alyze different discount ratios ρ := v(s,s+1)

vh(s,s+1) . With a starting point of N0 = 100,
we calculate the iteration (6.1) with h(x) = (x θ̃1

0 /K
1
0 , x (1 − θ̃1

0 )/K
2
0 )

T and
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FIGURE 4: Iteration (6.1) for different discount ratios.

θ̃ it = θ it , such that vh(s, s + 1) = vreal(s, s + 1) and SCRh
s = SCRreal

s . The
results for the first 15 steps are shown in Figure 4. For ρ = 0.93 the conver-
gence is rapid. This is still the case for ρ = 1.07, even though the iteration is
not monotonous anymore. If the discount ratio is equal to ρ = 2.00, the it-
eration has two accumulation points, and the iteration jumps between them.
For values larger than 2, we see divergent behavior. It should be mentioned
that these examples are quite extreme. For example, in the case that ρ = 2.00,
the stock performance has to be at least 215%, given that the riskless interest
rate is 5% and the stock ratio is 50%. In practice, condition (6.3) is hardly a
restriction.

7. INVARIANCE PROPERTY WITH APPLICATION TO INSURANCE GROUPS

In this section, we consider the question of how additional assets (excess capital)
change the SCR. It sounds reasonable to require an invariance property so that
the SCR is independent of the amount of excess capital that the insurer holds.
However, Example 7.5 will show that such a property is not always advanta-
geous.

Let SCRh
s be the SCR calculated with market-consistent values of liabilities

(Lt)t, payments (Zt)t, and present asset portfolio Hs . By altering the present
asset portfolio to Hs , we get a different SCR, which we denote by SCR

h
s .
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Proposition 7.1 (invariance of SCRh). For each management strategy function hs
as in Assumption 3.3, we have

SCRh
s = SCR

h
s a.s.

for all Hs ∈ {Hs + hs(Ãs)|Ãs is a Fs -measurable random variable}.
Proof. The difference of Hs and Hs has a representation of the form Hs −

Hs = hs(Ãs) for some Fs-measurable random variable Ãs . The difference of the
corresponding asset values is As − As = Ãs . Since (3.2) implies that vh(s, s +
1) Ãs+1 = Ãs , we have

Ns − vh(s, s + 1)Ns+1 = Ns + Ãs − vh(s, s + 1)(Ns+1 + Ãs+1)

= Ns − vh(s, s + 1)Ns+1 .

Consequently,

SCRh
s = VaR0.995(Ns − vh(s, s + 1)Ns+1|Fs)

= VaR0.995(Ns − vh(s, s + 1)Ns+1|Fs) = SCR
h
s . (7.1)

The set {Hs + hs(Ãs)|Ãs is a Fs-measurable random variable} is a subset in the
set of all (theoretically possible) asset portfolios at time s. The invariance of
SCRh

s is only true on this subset.

Remark 7.2 (invariance of SCRnum
s and SCRreal

s ). Proposition 7.1 gives us an
invariance property for SCRh

s . Analogously to the proof of Proposition 7.1 we
get that SCRnum

s and SCRreal
s are invariant with respect to the initial net value if

additional capital is invested in the numeraire and proportionally to the existing
asset portfolio, respectively. In other words, the SCR is invariant with respect to
excess capital if the discount factor vx in Definition 4.3(a) describes the return
that the insurer really earns on its excess capital. Such an invariance property for
SCRnum

s is also mentioned in Artzner and Eisele (2010). With Theorem 5.2 we
get that, for having invariance with respect to all financial markets and market-
consistent values of liabilities, it is not only sufficient but also necessary that
excess capital is invested according to the discount factor in Definition 4.3(a).
For SCRnum

s and SCRreal
s this means that we necessarily have to invest the excess

capital in the numeraire and proportional to the existing portfolio, respectively.

Let SCRin f
0 be the minimal SCR of an insurer according to (2.8) with market-

consistent values of liabilities (Lt)t, payments (Zt)t, and present asset portfolio
H0, and let SCR

in f
0 be the minimal SCR of the same insurer but with present

asset portfolio H0. The following corollary is a direct consequence from defini-
tion (2.8), which is only valid at time 0.
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Corollary 7.3 (invariance of SCRin f at time 0). We have

SCRin f
0 = SCR

in f
0 .

The corollary is not true anymore if we restrict possible asset shifts as in
Assumption 3.3, so we cannot generalize this result to Definition 4.3(c).

Since insurance groups have the possibility to shift money between their sub-
sidiary undertakings up to a certain extent, an invariance property is particu-
larly useful for insurance groups, because in that situation, a shifting of money
between subsidiary undertakings does not change the SCR.

Suppose we have an insurance group that consists of n insurance compa-
nies with asset portfolios (i Ht)t and market-consistent values of liabilities (i Lt)t
(1 ≤ i ≤ n). Let (i θ̃t)t be the asset strategy of company i for additional as-
sets within a linear management strategy i hs . We assume that the total assets of
the n insurance companies are reallocated at time s and that i Ĥs are the units
of assets that insurer i delivers or receives (depending on the sign) at time s.
Let i θ̂ j

s = i Ĥ j
s K

j
s

i Ĥs ·Ks
be the corresponding proportions of transferred assets, and let

i SCRs and i ŜCRs be the SCRs for company i before and after the asset transfer.

Corollary 7.4. Under the above framework, we have the following properties:

(i) i SCRin f
0 = i ŜCR

in f

0 , where the SCR is defined according to (2.8).

(ii) Given that Assumption 3.3 holds, iSCRh
s = i ŜCR

h

s for all s ∈ N0, 1 ≤ i ≤
n and all (Kt)t, (Lt)t, (Zt)t, and probability measures equivalent to P if and
only if i θ̂s = i θ̃s for all 1 ≤ i ≤ n.

The corollary is a direct consequence of the previous results and Theorem 5.2.
As stated in the directive (European Parliament and the Council, 2009, Chapter
II, Section 1), the SCR of a group should be calculated on the basis of the con-
solidated accounts (default method) or by aggregating the stand-alone SCRs
(alternative method). The default method is similar to the calculation of a sin-
gle SCR. In the technical specifications to QIS 5 (CEIOPS, 2010, Section 6), the
alternative method is basically described as

SCRgroup =
∑

i SCRsolo-adjusted ,

where i SCRsolo-adjusted is the SCR of company i adjusted according to some
group effects. Consequently, in case the assumptions of Corollary 7.4 hold, shift-
ing money between subsidiary undertakings does not change the group SCR.

Example 7.5 (invariance property for insurance group). We consider Exam-
ple 2.3 but add one more asset, which has price K3

0 := 100 at time zero and
payoff K3

1 := 210 − K2
1 after one year. We consider two insurance companies

that belong to an insurance group, and both have liabilities of L0 = 100 and
L1 = 105. The asset structure of the companies assumed for this example, their
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TABLE 1

SCRS BEFORE AND AFTER THE TRANSFER TOOK PLACE.

H0 N0 N1 SCRnum
0 SCRreal

0 SCRh
0 SCRin f

0

Before Transfer Company 1 (1, 1, 0)T 100 K2
1

100
7

100
13 25 0

Company 2 (1, 0, 1)T 100 K3
1

100
7

100
13 0 0

After Transfer Company 1 (1, 1, 1)T 200 210 0 0 25 0
Company 2 (1, 0, 0)T 0 0 0 0 0 0

net values and the resulting SCRs are shown in the first two rows of Table 1.
Suppose that company 2 transfers one unit of investment 3 at time zero to
company 1, 1Ĥ0 = 1 H̃0 = (0, 0, 1) and 2Ĥ0 = 2H̃0 = (0, 0, −1). These strategies
are used for the calculation of SCRh . The resulting SCRs are shown in last two
rows of Table 1.

Since the requirements of Corollary 7.4 are fulfilled, SCRh and SCRin f are
invariant with respect to the exchange of assets, while SCRnum and SCRreal are
not invariant, not only individually for each company but also in total. The
transfer of investment K3 from company 2 to company 1 is reasonable, since K3

is a perfect hedge for investment K2. After the asset transfer, both companies
have no longer any risk, and SCRs of zero seem to be appropriate. Then why is
1 ŜCR

h

0 > 0? As 1H̃0 = (0, 0, 1), and the definition of SCRh implicitly assumes
that redundant assets are paid out (cf. definition (2.7) and Remark 7.2), shares
of K3 are paid out, and the perfect hedge is disrupted.

The example illustrates that an invariance property is not always desirable.

8. RISK MARGIN

This section deals with the RMaccording to Solvency II and its interaction with
the SCR. Since there is no universally valid definition of theRM in the academic
literature, we resolve some of the unsolved problems to find a RM that is con-
sistent with the directive. The key is that we defined the SCR in Definition 4.3
also for future points in time and that we have with SCRin f a minimizing SCR
definition, which is a key property for the definition of the SCR of a reference
undertaking.

The purpose of the RM is to decompose the calculation of the market-
consistent value of liabilities into Ls = BEs + RMs , where BEs denotes the
best estimate of the liabilities. Article 77 paragraph 5 of the Solvency II direc-
tive requires that the “risk margin shall be calculated by determining the cost
of providing an amount of eligible own funds equal to the Solvency Capital Re-
quirement necessary to support the insurance and reinsurance obligations over
the lifetime thereof”; i.e. the directive suggests a cost-of-capital approach with
respect to the SCR. A possible implementation of these requirements is given
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in the technical specifications to the fifth Quantitative Impact Study (CEIOPS,
2010). We interpret the RM given there as

RM= c
∑
k≥0

SCRRU
0,k

(1 + rk+1)
k+1 , (8.1)

where SCRRU
t,k is the SCRof a reference undertaking for the time period [k, k+1)

conditional on the information available at time t, c is the cost-of-capital rate,
and rt is the risk-free rate for maturity t. In CEIOPS (2010) the numerator in
(8.1) is given just as SCRRU

k , but from our point of view the notation SCRRU
0,k

is more appropriate. The calculation of the RM is based on a transfer scenario,
where the liabilities are taken over by an artificial insurance company that is
capitalized exactly toSCRRU . Furthermore, it is assumed that “the assets should
be considered to be selected in such away that theyminimize the SCR formarket
risk that the reference undertaking is exposed to” (compare CEIOPS, 2010).
CEIOPS (2009) requires that the RM contains the non-hedgeable risks. If there
are two reference undertakings with the same liabilities, but one company has
a different asset portfolio such that it also has a lower SCR, then an investor
prefers the one with the smaller SCR. Hence, we conclude that the SCR of a
reference undertaking should have an asset portfolio such that the resulting SCR
is minimal. Formula (8.1) has the following three deficiencies, which cannot be
clarified from the official documents, since a mathematically rigorous definition
is missing.

• The risk margin RM and the quantities SCRRU
0,k shall be F0-measurable, but

it is not specified how the Fk-measurable random variable SCRk that gives
the SCR for time period [k, k+ 1) is transferred to a F0-measurable random
variable.

• Formula (8.1) defines the RM only for time s = 0.
• A precise mathematical definition of the SCR of a reference undertaking is

missing.

In the following we want to deduce a mathematically sound definition for the
SCR of a reference undertaking which chooses an optimal asset portfolio such
that the SCR is minimized. However, in SCRin f according to Definition 4.3 the
SCR is minimized with respect to all asset portfolios that can be built from the
originally portfolio with a positive or a negative shift. More precisely, let Hs
be again the current asset portfolio of the insurer, then SCRin f considers all
portfolios in the set {Hs + H̃s : H̃s ∈ [0, ∞)m ∪ (−∞, 0]m}. Since this excludes
a lot a reasonable asset portfolios we introduce a minimum asset portfolio Hs
which has in all components very negative values such that all reasonable asset
portfolios can be reached with a positive shift. This is specified in the following
assumption.

Assumption 8.1. We assume that for all s ∈ N0 there is a deterministic mini-
mal portfolio Hs ∈ Rm such that Hs ≤ Hs + H̃s a.s., where Hs is the asset
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portfolio of the insurer (compare Definition 2.1), H̃s is a possible shift of the
portfolio (compare Definition 2.2) that fulfills Assumption 3.3 and can be arbi-
trary within these restrictions, and for vectorsw, w̃ ∈ Rm we specify thatw ≤ w̃

if and only if wi ≤ w̃i for all 1 ≤ i ≤ m.

This assumptionmeans that there is aminimal asset portfolio such that all possi-
ble asset portfolios thatwe consider are in all components larger. Such aminimal
portfolio exists if we restrict possible short sales of each asset. For example, if
we completely rule out short sales, we set Hs = 0 ∈ Rm. Assumption 8.1 can be
seen as a restriction from two different point of views: First, given that we know
all relevant portfolios Hs + H̃s we assume that there is a minimal portfolio Hs .
Second, given that we have a minimal portfolio it restricts the admissible port-
folios Hs + H̃s . Consequently, Assumption 8.1 restricts the possible asset port-
folios with respect to which SCRh

s and SCR
in f
s are minimizing. Let SCRh

s be the
SCR of an insurance company with market-consistent values of liabilities (Lt)t,
payments (Zt)t, present asset portfolio Hs , and management strategy vector Bs
according to Definition 2.2, Assumption 3.3, and Assumption 8.1. Under these
requirements SCRh

s can be specified with Proposition 4.1 and Definition 4.3,
given that X[0,s] = x, as

SCRh
s = inf{Nx

s + Ãxs ∈ R : Hx
s + Ãxs B

x
s ≥ Hs,

(8.2)
P(Ns+1 + Ãxs B

x
s · Ks+1 ≥ 0|X[0,s] = x) ≥ 0.995},

since H̃x
s = Ãxs B

x
s . For the remainder of this sectionwe use (8.2) as the definition

of SCRh
s . Let SCR

in f
s be the SCR of the same insurance company, but with

asset portfolio Hs from Assumption 8.1, such that Ns = Hs · Ks − Ls . Under
Assumption 8.1 we define SCRin f

s , given that X[0,s] = x, analogously to the
notation used in the proof of Proposition 4.4 as

SCRin f
s = inf

bs∈[0,∞)m\{0}
inf{Nx

s + ybs · Kx
s ∈ R : Hs + ybs ≥ Hs,

(8.3)
P(Ns+1 + ybs · Ks+1 ≥ 0|X[0,s] = x) ≥ 0.995}.

Proposition 8.2. Under Assumptions 3.3 and 8.1, we have for all portfolios Hs that
are admissible in the sense of Assumption 8.1

SCRin f
s ≤ SCRh

s almost surely, (8.4)

where SCRh
s and SCR

in f
s are defined as in (8.2) and (8.3), respectively.

Proof. Given that X[0,s] = x and under the restrictions of Assumption 8.1
SCRh

s and SCR
in f
s are given by (8.2) and (8.3), respectively. For all Ãxs ∈ R that

satisfy the inequalities in (8.2), we set

y = Ãxs + Nx
s − Nx

s and bs =
{
y−1(Hx

s + Ãxs B
x
s − Hs) for y �= 0

(1, 0, ..., 0)T for y = 0
.
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With Assumption 8.1 , H̃x
s = Ãxs B

x
s , and Ns+1 = Hs · Ks+1 + Zs+1 − Ls+1,

we get that

• y = H̃x
s · Kx

s + Hx
s · Kx

s − Hs · Kx
s ≥ 0,

• bs ∈ [0, ∞)m \ {0}, since Hx
s + Ãxs B

x
s − Hs = Hx

s + H̃x
s − Hs ≥ 0,

• for y �= 0: Nx
s + ybs · Kx

s = Nx
s + (Hs − Hx

s + ybs) · Kx
s = Nx

s + Ãxs , since
Bx
s ·Kx

s = 1, and for y = 0 this a direct consequence from the definition of y,
• Hs + ybs ≥ Hs , since ybs = Hx

s + H̃x
s − Hs ≥ 0 for y �= 0,

• Ns+1 + ybs · Ks+1 = Ns+1 + Hs · Ks+1 − Hx
s · Ks+1 + ybs · Ks+1 = Ns+1 +

Ãxs B
x
s · Ks+1, where the last step follows from Hs − Hx

s + ybs = Ãxs B
x
s for

y �= 0 and for y = 0 we get 0 = Ãxs + Nx
s − Nx

s = (H̃x
s + Hx

s − Hx
s ) · Kx

s

which implies that 0 = H̃x
s +Hx

s −Hx
s = Ãxs B

x
s +Hx

s −Hx
s , since K

x
s is always

strictly positive in all components by definition and H̃x
s + Hx

s − Hx
s ≥ 0 by

Assumption 8.1.

Consequently, the infimum set of SCRh
s is a subset of the infimum set of SCRin f

s
and so we get SCRin f

s ≤ SCRh
s almost surely.

With Proposition 8.2 we see that SCRin f chooses implicitly the optimal port-
folio to minimize the SCR and is smaller than SCRh independent of the choice
of hs . For this reason, we define the SCR of a reference undertaking on the basis
of SCRin f .

Definition 8.3 (SCR of a reference undertaking). Under the assumptions of
Proposition 8.2, we define the SCR for time period [s, s + 1) and conditional
on Fs of a reference undertaking with market-consistent values of liabilities
(Lt)t and payments (Zt)t by

SCRRU
s,s := SCRin f

s .

As the RM is intended for the calculation of the market-consistent value
of current liabilities, we exclude the new business in Lt. This is required in
Assumption 5 inCEIOPS (2009). The choice ofHs according toAssumption 8.1
can have a significant impact onSCRRU

s,s , especially when short selling is a crucial
part of the optimal strategy. However, if Hs is way below optimal short selling
strategies, then SCRRU

s,s is rather insensitive with respect to Hs .
CEIOPS (2009) mention in the context of the SCR of a reference undertak-

ing that the projected SCR should be considered. This allows us to conclude that
we need some measure that makes a transfer from time k (k ≥ s) to time s. One
possible choice is to take the expected value of the future SCRs which we will
do in the following. A natural choice is the expected value under a martingale
measure Q, given such ameasure exists. However, one could also argue for other
measures, e.g. the real-world measure. For a general valid definition, we allow
for a random and time-dependent cost of capital rate. Since the SCR, the cost-
of-capital rate, and the discount factor might be dependent, we have to take the
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expected value of all three factors together. In conclusion, we generalize (8.1)
by the following definition.

Definition 8.4 (RM cost-of-capital version). The RM at time s is defined as

RMs :=
∑
k≥s

EQ
(
c(k) vnum(s, k+ 1)SCRRU

k,k

∣∣Fs
)
,

where c(k) is the cost-of-capital rate at time k, SCRRU
k,k only includes new busi-

ness up to time s, and vnum is the discount factor corresponding to a bank-
account, such thatEQ(vnum(s, t)|Fs) is the price of a zero-coupon bond at time s
with maturity t.

In practice, usually there does not exist a unique martingale measure Q that
comprises all risk modules of Solvency II. For those risks where market prices
are available (e.g. interest rate risk, equity risk), Q should be defined as the cor-
responding market measure. For those risks that are not traded on a deep and
liquid market (e.g. longevity risk, lapse risk), we suggest defining Q on a first-
order valuation basis. For example, for the valuation of longevity risk, let Q
correspond to a first-order mortality table (that means that we interpret the dif-
ference between first-order and second-order mortality table as the market price
for longevity risk). A discussion of calculating the risk-adjusted expected value
for the risk margin can also be found in Wüthrich et al. (2011).
For the practical purpose of calculating the RM, this definition is usually too
complex, so that simplifications are needed. Suppose that the cost-of-capital rate
is constant, that is, c(t) ≡ c, and that vnum(s, k+1) andSCRin f

k are conditionally
independent given Fs . Note that these two requirements are often not fulfilled.
Then we obtain the following, simplified version of the RM,

RMs = c
∑
k≥s

EQ
(
vnum(s, k+ 1)

∣∣Fs
)
EQ

(
SCRRU

k,k

∣∣Fs
)
,

which is inter alia similar to a definition of the RM in Möhr (2011). Implicitly
we have here

SCRRU
s,k = EQ

(
SCRRU

k,k

∣∣Fs
)
.

In practice, further simplifications are used, which cannot be theoretically
established.

9. CONCLUSION

We started the paper with a comparison of Article 101 and Recital 64 of the Sol-
vency II directive and discussed in particular three interpretations of Article 101
and two interpretations of Recital 64 which are based on an asset minimization
concept. Our main findings are as follows:
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• For nonnegative linear management strategies, Recital 64 can be repre-
sented as a value at risk and, thus, the mathematical structure is similar to
Article 101.

• Article 101 and Recital 64 are consistent (in the sense that they are equal
for all financial markets and liability market-consistent values) if and only if
the discount factor in Article 101 corresponds to the investment strategy for
excess capital in Recital 64.

• Interpreting Recital 64 as the infimum with respect to all linear, nonnegative
management strategies, the resulting SCR is indeed smaller or equal than all
other definitions.

• When assets are minimized iteratively by applying a linear management strat-
egy, the SCR from Recital 64 is the unique fix point of this iteration, and un-
der weak requirements the resulting SCRs even converge towards the SCR
from Recital 64.

• Invariance of the SCR with respect to additional capital corresponds to in-
vesting this capital according to the discount factor v in (2.2). The minimal
SCR interpretation of Recital 64 is at time 0 always invariant. However, in-
variance is not necessarily a desirable property.

In practice, management strategies for the excess assets may be non-linear.
Our focus on linear management strategies can be seen as a first-order ap-
proximation, allowing us to write all SCR definitions in form of a value at
risk and making the different definitions more comparable. The SCR def-
initions that we found in the literature all implicitly imply linear manage-
ment strategies. Future research should also examine non-linear management
strategies.

For the calculation of the market-consistent value of liabilities, Solvency II
suggests using a cost of capital method and calculating a RM. However, the
definition of the RM depends not only on a present SCR but also on future
SCRs, which are in fact random.

• We showed how to define future SCRs based on a generalization of the value
at risk to a dynamic value at risk.

• We give a general RM definition that takes into account the randomness of
the future SCRs.

• We defined the SCR of a reference undertaking with the help of SCRin f .

The definition of SCRin f calculated with a minimal asset portfolio implicitly
assumes that the market risk is minimized by buying corresponding securities.
However, insurance companies might not invest their money using this optimal
strategy, so that their market risk is much higher than the definition implicitly
assumes. Article 101 of the directive of the European Parliament and the Coun-
cil (2009) is often interpreted in such away that the realmarket risk of the insurer
shall be considered, and thus the minimal SCR interpretation of Recital 64 is
not necessarily in line with Article 101. A clarification of that question by the
regulator would be helpful.
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FILIPOVIĆ, D. (2009) Multi-level risk aggregation. Astin Bulletin, 39(2), 565–575.
FLOREANI, A. (2011) Risk margin estimation through the cost of capital approach: Some concep-

tual issues. The Geneva Papers on Risk and Insurance - Issues and Practice, 36(2), 226–253.
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len aus der Versicherungs- und Finanzmathematik. Karlsruhe: Verlag Versicherungswirtschaft.

https://doi.org/10.1017/asb.2014.10 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2014.10


532 M. C. CHRISTIANSEN AND A. NIEMEYER
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APPENDIX

Proof of Proposition 4.1. As R is a Polish space (see Kechris, 1995), ac-
cording to Bauer (1981, Chapter 10) there exists a Markov kernel Q such that
x �→ Q(x, A) is a version of

P(Y ∈ A|X[0,s] = x), A ∈ B(R).

Setting A= (−∞, y], we get that the function x �→ Fx(y) := Q(x, (−∞, y]) =
P(Y ≤ y|X[0,s] = x) is F ′

s-B(R)-measurable for each y ∈ R. For any fixed x,
Fx(y) is a cumulative distribution function, and we define the quantile function
or generalized inverse as

F−1
x (α) = inf{y ∈ R|Fx(y) ≥ α}.

Since x �→ Fx(y) is F ′
s-B(R)-measurable, it holds that

{x ∈ � : Fx(r) ≥ α} ∈ F ′
s , ∀ r ∈ R.
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From Milbrodt (2010, page 229) we know that F(r) ≥ α ⇔ F−1(α) ≤ r for all
r ∈ R and α ∈ (0, 1] such that we obtain

{x ∈ � : F−1
x (α) ≤ r} = {x ∈ � : Fx(r) ≥ α} ∈ F , ∀ r ∈ R.

Hence, the function

x �→ F−1
x (α) = inf{y ∈ R : P(Y ≤ y|X[0,s] = x) ≥ α} = qY,α(x)

is F ′
s-B(R)-measurable. The pointwise infimum of countably many real-valued

measurable functions is measurable as well.

Proposition A.1. Let (�,F,P) be a probability space with random variables W
and Z, where Zis bounded and satisfies Z> ε > 0 almost surely. For all α ∈ (0, 1)
Varα(W|Fs) = 0 if and only if Varα(WZ|Fs) = 0.

Proof. Let Fs = σ(X[0,s]) ⊂ F . Since P(W ≤ 0|X[0,s] = x) = P(WZ ≤
0|X[0,s] = x) almost surely, we have

inf{w ∈ R : P(W ≤ w|X[0,s] = x) ≥ α} = 0

=⇒ inf{w ∈ R : P(WZ≤ w|X[0,s] = x) ≥ α} ≤ 0

and

inf{w ∈ R : P(WZ≤ w|X[0,s] = x) ≥ α} = 0

=⇒ inf{w ∈ R : P(W ≤ w|X[0,s] = x) ≥ α} ≤ 0.

Now we show that the infima on the right hand side cannot be smaller than 0.
We start with the first line. If Varα(W|Fs) = 0, we necessarily have P(−δ < W ≤
0|X[0,s] = x) > 0 for all δ > 0. Since by assumption Z < c almost surely for
some c > 0, we obtain that also

P(−δc < WZ≤ 0|X[0,s] = x) ≥ P(−δ < W ≤ 0 ≤ w|X[0,s] = x) > 0, δ > 0.

This implies that Varα(WZ|Fs) is not smaller than zero. Analogously, using
Z> ε, we can show that Varα(W|Fs) cannot be negative if Varα(WZ|Fs) = 0.
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