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Coherent propagation of vortex rings at
extremely high Reynolds numbers
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We take advantage of the extremely small kinematic viscosity of superfluid 4He to
investigate the propagation of macroscopic vortex rings at Reynolds numbers between
2 × 104 and 4 × 106. These inhomogeneous flow structures are thermally generated by
releasing short power pulses into a small volume of liquid, open to the surrounding bath
through a vertical tube 2 mm in diameter. We study specifically the ring behaviour between
1.30 and 1.80 K using the flow visualization and second sound attenuation techniques.
From the obtained data sets, containing more than 2600 realizations, we find that the rings
remain well-defined in space and time for distances up to at least 40 tube diameters, and
that their circulation depends significantly on the travelled distance, in a way similar to
that observed for turbulent vortex rings propagating in Newtonian fluids. Additionally, the
ring velocity and circulation appear to be influenced solely by a single, experimentally
accessible parameter, combining the liquid temperature with the magnitude and duration
of the power pulse. Overall, our results support the view that macroscopic vortex rings
moving in superfluid 4He closely resemble their Newtonian analogues, at least in the
absence of significant thermal effects and at sufficiently large flow scales.
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1. Introduction

Superfluid 4He, which is often called helium II or He II, is a remarkable cryogenic
liquid (Barenghi, Skrbek & Sreenivasan 2014; Mongiovì, Jou & Sciacca 2018). In some
conditions, e.g. at sufficiently large flow scales, its behaviour is very similar to that
observed in flows of classical Newtonian fluids, while in others, e.g. in the presence of
significant thermal effects, flows of He II may display distinctive non-classical features,
as discussed, for example, by Švančara & La Mantia (2019). Specifically, He II is
characterized by huge values of thermal conductivity, which can be orders of magnitude
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larger than those of Newtonian fluids and which also depends nonlinearly of the applied
heat flux, at sufficiently large fluid velocities (Van Sciver 2012; Mongiovì et al. 2018).
Additionally, the liquid kinematic viscosity can be extremely small, up to three orders of
magnitude smaller than that of air (Donnelly & Barenghi 1998; Barenghi et al. 2014), and,
on top of this, line singularities may exist within helium II. These objects, with the core
size of the order of 1 Å and of macroscopic length, are called quantized vortices (Donnelly
1991) and their dynamics plays a crucial role in describing He II flows, especially at
sufficiently small flow scales (Švančara & La Mantia 2019).

It then follows that at large enough flow scales, significantly larger than the mean
distance � between quantized vortices, superfluid 4He should behave as if it were a
classical Newtonian fluid, especially when thermal effects can be neglected, e.g. when
they are less important than the flow geometry. In other words, one could exploit the
extremely small kinematic viscosity of He II to investigate classical flows of Newtonian
fluids in relatively small experimental facilities, e.g. a wind tunnel using superfluid 4He
as medium could be in principle at least one order of magnitude smaller than a water
tunnel probing flows characterized by similar Reynolds numbers (the kinematic viscosity
of water can be up to 100 times larger than that of He II). On the other hand, the conditions
in which classical-like features of helium II flows may occur have yet to be mapped
comprehensively, and the present work can be seen as a contribution to this active and
challenging line of scientific research.

Specifically, we focus here on the propagation of large-scale vortex rings at high
Reynolds numbers, up to approximately 4 × 106, following our previous study (Švančara,
Pavelka & La Mantia 2020), performed at smaller values of Reynolds number Re. The
rings are generated thermally, by an orthogonal power pulse, released into a relatively
small volume filled with the liquid and open to the surrounding bath of helium II through
a short circular tube, which we call a nozzle in the following. One could then imagine that
these vortex rings would display some non-classical features also at large scales because,
as already noted, thermally driven flows of He II are sometimes found to be different from
analogous flows of Newtonian fluids, e.g. in the case of the famous superfluid fountain –
see again Mongiovì et al. (2018). However, Švančara et al. (2020) reported that these rings
behave as if they were turbulent vortex rings propagating in classical Newtonian fluids, at
least in the range of investigated parameters.

The seemingly puzzling outcome can be explained intuitively on the basis of the most
popular model employed to account for the peculiar behaviour of superfluid 4He, which
is named the two-fluid model (Landau 1941; Donnelly 2009). Specifically, the liquid is
described as if it were made of two components, flowing with velocities that can be
coupled to some degree; i.e. these velocities can have different magnitudes and directions.
The superfluid component, which can be related to the spontaneous quantum order that
develops in the liquid, has zero entropy and viscosity. Instead, the normal component,
which represents thermal excitations, carries the entire entropy content of He II and is
characterized by a finite dynamic viscosity μn. This quantity is tabulated as a function
of the liquid temperature T , together with other quantities, such as the densities of the
normal and superfluid components, ρn and ρs, respectively (Donnelly & Barenghi 1998).
In particular, as the temperature decreases, ρs increases and ρn decreases, in such a
way that below approximately 1 K, only the superfluid component remains. The latter
component instead disappears above the superfluid transition, occurring at approximately
2.2 K, when the liquid becomes a classical Newtonian fluid. In other words, the liquid total
density ρ = ρn + ρs ≈ 145 kg m−3 is only weakly temperature-dependent, in the range of
temperatures relevant here (the same applies to the liquid viscosity).
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Coherent propagation of turbulent vortex rings

Additionally, as already noted, one-dimensional topological defects of the quantum
order parameter, which are named quantized vortices (Donnelly 1991), may emerge within
the superfluid component, e.g. at sufficiently large flow velocities. They usually arrange
themselves in a dynamic vortex tangle, and the circulation associated with each vortex
is strictly equal to the quantum of circulation κ = h/m4 ≈ 10−7 m2 s−1, where h is the
Planck constant, and m4 indicates the mass of a 4He atom. These objects are specifically
responsible for the flow-dependent coupling between the fluid components, which is often
called the mutual friction force.

At flow scales significantly larger than the mean distance � between quantized vortices –
which is usually set to L−1/2, where L denotes the total length of quantized vortices per unit
volume – the mutual friction force can be said to be proportional to (some power of) the
relative fluid velocity, on the basis of experimental data (Van Sciver 2012); the relative
(counterflow) velocity is defined as the difference between the normal and superfluid
velocity vectors. It follows that when the fluid components are fully coupled, the relative
velocity and mutual friction force are null, because the components share the same velocity
vector, and consequently helium II should behave as if it were a classical Newtonian fluid.

This also means that the mutual friction force can be seen as an energy sink, i.e.
an energy dissipation mechanism, when the relative velocity is not null. The latter is
specifically the case of thermal counterflow, which is a very peculiar flow of superfluid
4He, generated by a heat source and characterized by the fact that, on average, at large
enough scales, the fluid components flow in opposite directions, with the superfluid
component flowing towards the heater, in order to conserve the null mass flow rate, and
the normal fluid component carrying entropy away from the heat source; see Švančara
et al. (2021) and Sakaki, Maruyama & Tsuji (2022) for recent experimental investigations
of thermal counterflow.

We now have all the information needed to provide an intuitive physical explanation
of the large-scale behaviour of turbulent vortex rings in helium II, reported recently by
Švančara et al. (2020). In short, one may say that in the proximity of the nozzle where ring
generation occurs, the quantized vortex tangle forces the superfluid component to follow
the classical-like behaviour of the normal component, driven by viscosity at the solid
boundaries of the nozzle. In other words, the two components flow together after some
time, once the ring is fully formed, i.e. counterflow may become coflow under certain
conditions, at a relatively short distance from the nozzle, when boundary effects are more
relevant than heat transport, because one may say that this is a way to minimize the mutual
friction force – coflow denotes the situation when the fluid components are locked together,
which especially occurs for isothermal, mechanically driven flows of superfluid 4He, as
discussed, for example, by Švančara & La Mantia (2017).

Such an explanation – suggesting that in He II, macroscopic vortex rings made
of the normal component are coupled to their superfluid counterpart, represented by
coherent, polarized bundles of quantized vortices – is supported by several experimental
studies, regardless of the ring generation process. Note in passing that the same
argument can be applied to account for the observed behaviour of thermal counterflow
jets (Liepmann & Laguna 1984; Nakano, Murakami & Kunisada 1994). Specifically,
Murakami, Hanada & Yamazaki (1987) used flow visualization to investigate the
propagation of macroscopic vortex rings, which were generated mechanically in He II
using the classical piston–cylinder arrangement. They found that these objects have sizes
and velocities similar to those usually associated with classical rings moving in Newtonian
fluids. Acoustic measurements using an analogous set-up were performed earlier by
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Borner, Schmeling & Schmidt (1983) and Borner & Schmidt (1985). They reported
specifically that vortex rings are most likely present in both fluid components because the
macroscopic circulation of the normal ring was found to be equal to that of the superfluid
one. Note, however, that this holds solely at large flow scales, significantly larger than �.
Indeed, the interaction between the fluid components in the proximity of a singly quantized
vortex ring has yet to be investigated experimentally, i.e. it was accessed to date only via
numerical simulations, e.g. those discussed by Kivotides, Barenghi & Samuels (2005).

Thermally generated vortex rings in He II were also investigated in the past (Stamm
et al. 1994a,b), but a systematic study of their behaviour is at present missing. As already
noted, Švančara et al. (2020) studied the large-scale behaviour of such rings at relatively
high values of the Reynolds number, up to 105. The focus was on the early stages of ring
development; i.e. the ring behaviour was observed at relatively short distances from the
nozzle, ranging from 1 to 6 nozzle diameters. The used visualization technique is based
on tracking the flow-induced motions of relatively small solid particles dispersed in the
fluid. The particle positions and velocities are then employed to calculate the Lagrangian
pseudovorticity, which is a scalar quantity linked directly to the underlying flow vorticity
(Outrata et al. 2021). In short, Švančara et al. (2020) showed that in the range of
investigated parameters, the observed ring motions are consistent with a similarity theory
developed for turbulent vortex rings propagating in Newtonian fluids (Maxworthy 1974;
Glezer & Coles 1990; Gan & Nickels 2010). It follows that non-classical (counterflow)
features, which, as already mentioned, are crucial in explaining the ring formation process
in He II, outlined above, should be apparent solely in the close proximity of the nozzle,
because coflow (classical-like) properties were already observed one diameter away from
the nozzle.

The aim of this work is to build upon the just cited studies and investigate the ring
behaviour in flow conditions yet to be explored, i.e. at higher Re values, up to 4 × 106,
and at larger distances from the nozzle, up to 40 nozzle diameters, having also in mind
to further quantify the range of experimental parameters in which Newtonian-like features
may appear in large-scale flows of superfluid 4He. Specifically, we use flow visualization
to demonstrate that the generated flow structures are coherent, i.e. well-defined in space
and time. We then employ the second sound attenuation technique (Donnelly 2009; Varga
et al. 2019) to study in detail the properties of the quantized vortex bundles embedded in
the rings. In this regard, as detailed below, we observe that these bundles remain coherent
over distances from the nozzle much larger than the ring sizes and that their circulation
depends significantly on the travelled distance, in a way similar to that observed for
turbulent vortex rings propagating in Newtonian fluids (Maxworthy 1974). Additionally,
we identify a control parameter that determines the ring velocity and its circulation, i.e.
we link quantitatively the observed ring behaviour to the experimental conditions of ring
generation.

The latter conditions are also employed to define an adequate Reynolds number,
allowing comparisons with the behaviour of vortex rings generated using the classical
piston–cylinder arrangement, where, in the simplest case, a fluid volume is displaced by
a piston moving with constant velocity vp along a defined stroke length xp. The Reynolds
number according to the slug flow model is then equal to vpxp/(2ν), where ν denotes the
fluid kinematic viscosity, and the corresponding ring circulation is Γp = vpxp/2. For the
present situation, we follow our previous work (Švančara et al. 2020) and first consider
that in order to thermally generate a vortex ring, one needs to release a certain amount of
heat Q in a defined volume of He II. The entropy of the system then increases by Q/T , and
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Coherent propagation of turbulent vortex rings

the system is driven out of equilibrium. Consequently, the excess entropy is transported to
the isothermal bath of helium II by ejecting a volume Q/(ρsT) of the normal component
through the nozzle (where s denotes the specific entropy of He II) and, at the same time,
the superfluid component enters the enclosure, ensuring that the displaced mass of He II
remains zero. One can then express the effective ejection stroke length x, associated to the
thermal generation process of the ring, as

x = Q
aρsT

, (1.1)

where a is a suitable area, taking into account the nozzle diameter and additional heat
leaks from the enclosure (discussed below, at the end of § 2.1). If we now assume that Q
is provided by an orthogonal power pulse of duration τ and power P = Q/τ , the ejection
velocity vn of the normal component is given by the time derivative of (1.1), and it follows
that

vn = P
aρsT

, (1.2)

which can be associated with the effective piston velocity, with x = vnτ (Stamm et al.
1994a). Therefore, an adequate Reynolds number can be defined as

Re = ρvnx
2μn

= ρ

2μn
v2

nτ ∝ P2τ, (1.3)

and consequently, Γ = vnx/2 ∝ Re denotes the circulation according to the slug flow
model.

At this point, before describing the specific methods chosen for the study, it is useful
to introduce briefly the second sound attenuation technique, which is employed widely
for the analysis of He II flows (Donnelly 2009; Varga et al. 2019). It is based specifically
on the emission and subsequent detection of second sound waves, which are temperature
waves, due to the spatial variation of the liquid temperature, related to the ratio between the
densities of the fluid components – the ordinary sound waves (due to the spatial variation
of the fluid density) are named in He II first sound waves. Typically, second sound occurs
between two active parts of a second sound sensor, which also acts as a resonance cavity,
where the wave emitter, e.g. a heater, is placed in front of the receiver, e.g. a thermometer.
The resonance amplitude of the wave in the cavity filled with quiescent He II, named A0,
is usually larger than the amplitude A measured when quantized vortices are present in the
cavity. These wave amplitudes can then be related to the corresponding vortex line density
L, the total length of quantized vortices per unit volume. For a homogeneous and isotropic
vortex tangle, the approximate relation (Varga et al. 2019) can be written as

L = 6πΔ0

Bκ

(
A0

A
− 1

)
, (1.4)

where Δ0 represents the full width, at the half-maximum height, of the second
sound resonance peak measured in quiescent helium II, B denotes a dedicated
temperature-dependent mutual friction coefficient, also tabulated by Donnelly & Barenghi
(1998), and κ indicates the quantum of circulation. For a polarized vortex tangle, the
attenuation of second sound waves becomes anisotropic, and the estimate based on (1.4)
is therefore biased, since the employed technique is sensitive only to the projection of
the vortex tangle into the direction of the detected second sound wave. Specifically, in
the present case, we expect the vortex tangle to be (at least partially) polarized, so that
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it can mimic a macroscopic vortex ring. Consequently, we assume here that the tangle
polarization does not differ significantly between data sets, in order to employ (1.4) to
compare multiple realizations – the choice is justified further in § 2, just above § 2.1.

It is now time to describe the specific methods chosen for our investigation, before
presenting and discussing the results, which demonstrate that even at extremely high
Reynolds numbers, the large-scale behaviour of turbulent vortex rings propagating in
superfluid 4He closely resembles what one would observe in classical Newtonian fluids,
especially when thermal effects can be neglected.

2. Methods

The main part of the set-up used for this study is the experimental cell sketched in
figure 1(a), submerged in He II at the bottom of a pumped helium cryostat, in a volume
equipped with optical ports – see Švančara (2021) for a recent and detailed description of
our cryogenic apparatus.

The heater box, i.e. the chamber filled with He II where heat is released to generate the
rings, is a custom-made, 3D-printed volume, having plastic walls and located at the bottom
of our experimental cell. It is equipped with a planar resistive heater, at the bottom, and
it is open at the top to the surrounding helium bath through a circular nozzle, machined
from brass. The inner diameter of our nozzle is d = 2 mm, and its height is 5d – the
latter also includes the thickness of the brass plate covering the top part of the heater
box. Each power pulse is monitored by two synchronized multimeters, to ensure that the
released power pulses are neatly orthogonal, as shown in figure 1(b). Shortly after the
pulse is released, we observe that the temperature inside the box temporarily increases,
as displayed in figure 1(c). This is probed directly by a sub-millimetre low-temperature
thermometer, made of germanium, located inside the heater box. Another thermometer is
mounted at the top of the cell to ensure that the helium bath temperature remains constant.

The rings then appear above the nozzle and move vertically, similarly to the observations
of our previous study (Švančara et al. 2020), performed with a different heater box and
larger nozzle. First, the rings travel across an open volume, where they can be visualized.
We employ specifically the particle tracking velocimetry technique, which is based on
following the flow-induced motions of relatively small particles – see Švančara et al.
(2021) for another recent example. Our μm-sized particles are made of solid deuterium;
they are illuminated with a 1 mm thick laser sheet crossing the symmetry axis of the set-up,
and their motion is captured by a high-speed digital camera with a narrow depth of field.
Since the thicknesses of the light sheet and the camera depth of field are comparable in
size to the nozzle diameter, the goal of capturing the in-plane motion of our particles
is achieved by removing trajectories shorter than 50 points, which might be affected
significantly by out-of-plane motion.

Typical particle trajectories are plotted in figure 1(d), in the reference frame moving
with the mean particle velocity in the vertical direction (in this case, the tracks are at
least 100 points long, and light colours are associated with earlier times within the chosen
interval). One can see clearly that particle trajectories are significantly bent near the ring
core, and that the ring moves upwards along a straight line. Note, however, that, in order
to get an even clearer picture, one would need more particles, especially to track the ring
in time, as was demonstrated, for example, by Outrata et al. (2021) in their figure 1, where
the displayed ring is larger and slower than the present ones, with Re ≈ 105 – see again
Švančara et al. (2020). Indeed, as detailed below, flow visualization data are employed
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Figure 1. (a) Sketch of the experimental cell (dimensions are in millimetres). The dashed white lines indicate
the open volume inside the heater box, at the bottom, and the second sound channel, at the top. Typical data
as functions of time: (b) released power pulse; (c) temperature modulation inside the heater box; (d) particle
trajectories visualized approximately 15 mm above the nozzle, in experimental conditions different from those
of other panels, noted below; (e) relative amplitude of the second sound signal, at the location of the two
sensors, with blue (red) indicating the upper (lower) sensor. Data in (b,c,e) were obtained by averaging 50
ring realizations, with T = 1.31 K, P = 0.24 W and τ = 0.52 s; data in (d) represent a single vortex ring, with
T = 1.66 K, P = 0.67 W and τ = 0.22 s (the mean vertical velocity of the tracked particles is removed, and the
lighter colours are associated with earlier times).

here to show that the studied flows are restricted in space and time, but unfortunately,
their detailed structure, e.g. the associated small-scale vorticity distribution, is currently
unknown and its investigation might be the focus of future studies.

The vortex ring then enters the second sound channel, which has a square cross-section
of 10 mm sides. It is equipped with two second sound sensors placed 36 mm apart and
rotated by 90◦ relative to each other. Each sensor consists of two identical transducers
mounted on the opposite sides of the channel. The central element of the transducer
is a gold-plated membrane that is permeable only to the superfluid component because
μm-sized holes on this membrane do not allow the normal component to go through – see
Varga et al. (2019) for details. Each membrane is coupled capacitively to a brass electrode.
The transducer emits second sound waves when we supply its electrode with a sine voltage
wave, which sets the membrane (and the normal fluid component) into harmonic motion.
The corresponding sound amplitude is then read by the transducer on the opposite side
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of the cavity in the form of voltage oscillations, induced on the corresponding electrode,
using a lock-in amplifier.

In particular, a standing wave of second sound occurs in the sensor cavity when the
driving signal frequency f equals the resonance frequency fk of the channel, given by

fk = kc2

2δ
, (2.1)

where k is a positive integer, c2 denotes the speed of second sound, also tabulated
by Donnelly & Barenghi (1998), and δ = (10.3 ± 0.3) mm is the effective channel
width, obtained by measuring experimentally the frequencies of several resonant modes.
Frequency sweeps across the resonant modes are found to be Lorentzian, indicating
that the flow-probing waves do not measurably affect the flow occurring between the
transducers. In quiescent He II, we measure the resonant amplitude A0, typically of the
order of 1 mV, and the half-width Δ0, of the order of 10 Hz – the exact values vary with
temperature and depend also on the sensor history. However, in order to investigate how a
propagating vortex ring attenuates the second sound signal, we have to constantly excite
a standing wave across the channel. In this case, the resonance condition is maintained
at all times by adjusting the driving frequency via a PID loop, and the time-dependent
resonance amplitude A(t) is acquired by the lock-in amplifier at the mean sampling rate
of about 14 Hz. To avoid cross-talk between the sensors, we operate them independently
using two distant resonance modes. Typical second sound responses to a vortex ring are
displayed in figure 1(e), where we plot the relative amplitude A(t)/A0 as a function of
time – the blue (red) line corresponds to the upper (lower) sensor. The passage of the ring
is detected as a sudden decrease of the signal, followed by a gradual recovery. Note also
that each ring encounters remnant quantized vortices, naturally present in He II, along its
path. Typically, these vortices originate from previous ring realizations, or they are pinned
to solid walls, and their density falls below the resolution threshold of our second sound
sensors; that is, two consecutive ring realizations are spaced in time in such a way that the
acoustic amplitude of each sensor fully recovers to its original state.

We here employ (1.4) to estimate the vortex line density L from the experimentally
obtained values of relative amplitude. As already noted, this relation is valid only for
homogeneous and isotropic tangles, and an error of the order of 10 % is typically associated
with it, at least in the range of experimentally accessible vortex line densities – see again
Varga et al. (2019). Specifically, for polarized vortex tangles, the experimentally accessible
quantity becomes the projection L⊥ of the vortex tangle into the direction of the second
sound wave. It can be shown that L⊥ ∝ 〈sin2 θ〉, where θ is the angle between a small
vortex line segment and the wave vector of the incident second sound wave – the brackets
denote the average over all such segments of the vortex tangle. For an unpolarized tangle,
〈sin2 θ〉 = 2/3, and by definition, L⊥ = L. Instead, for an array of coplanar vortex loops,
which can be used to approximate a macroscopic vortex ring, 〈sin2 θ〉 = 1/2. Relation
(1.4) then overestimates the actual vortex line density by a factor (2/3)/(1/2) = 4/3 at
most, and in the more realistic scenario of partial tangle polarization, we do not expect the
ratio L/L⊥ to be significantly larger than 1.

In addition, the second sound attenuation technique falls short when the amplitude
A0 is measured in an environment containing a significant density of remnant quantized
vortices, which are always present in any sufficiently large volume of He II, as noted above.
The results obtained from (1.4) are necessarily relative to this remnant density – which
is typically of the order of 106 m−2 (Varga et al. 2019) – and consequently, quantitative
comparisons of results obtained in different experimental facilities are not always possible.
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In this regard, it is also useful to note that the accuracy of the reported second sound
measurements at present cannot be quantified because no other means to measure the
vortex line density L was available during the experiments. More generally, for many
years the second sound attenuation technique has been the only means to estimate
experimentally the vortex line density in flows of He II (Varga et al. 2019), and only
recently have other experimental tools been proposed to measure L (Hrubcová, Švančara
& La Mantia 2018; Kubo & Tsuji 2019). However, these visualization-based methods
work only if flow scales smaller than the mean distance between quantized vortices are
accessible experimentally, and as discussed below, this is not the case for the present
experiments.

In summary, in order to compare different ring realizations, obtained in the same
experimental facility, we use here (1.4). This is justified mainly by the assumption that
the polarization of the vortex tangles associated with our rings does not vary significantly
between data sets, which might be the case, given the extremely high values of the
Reynolds number achieved here (and reported below). Additionally, we make sure that
A0 remains approximately constant during our experiments, i.e. we make sure that the
density of remnant quantized vortices does not grow significantly during our experiments.

2.1. Reproducibility
We have already reported (Švančara et al. 2020) that thermal generation of vortex
rings offers a high level of reproducibility. Particle trajectories originating from the
visualization of multiple rings obtained under similar initial conditions provide a similar
physical picture. Therefore, we can ensemble average these realizations, i.e. overlap sets
of trajectories and treat the resulting data as a single ring realization.

In addition, we observe a neat overlap of the respective second sound amplitudes. Since
our set-up offers the possibility of acquiring the second sound responses of a large number
of vortex rings in a relatively short time, we report 2643 successful ring realizations probed
by this technique. Our data are split into 53 sets characterized by the bath temperature T ,
and the mean power P and duration τ of the power pulse. Each data set contains between 39
and 60 realizations, which are ensemble averaged using 70 ms wide time windows relative
to the heat pulse start. We illustrate this process in figure 2 for two data sets collected at
1.31 K. Colour lines denote ensemble averages of 50 realizations, and pale areas represent
one standard deviation intervals. We see that the signal, i.e. the relative second sound
amplitude A(t)/A0, clearly extends from the statistical error. In figure 2(a), the signal is
only weakly attenuated and the corresponding standard deviation is about 5 × 10−3. When
the signal is considerably attenuated, as in figure 2(b), the fluctuations do not increase
appreciably and the corresponding statistical error is comparable to the line thickness.

It is now time to justify the choice of the suitable area a, needed to estimate the normal
fluid velocity, from (1.2), and the Reynolds number, from (1.3). The obvious solution
is to take the nozzle area, i.e. ap = πd2/4. The latter choice, however, results in very
high values of normal fluid velocity, much higher than the values of particle velocity that
one gets from ring visualization. This in essence means that there are heat leaks, i.e. the
supplied heat does not exit the ring generation chamber solely through the nozzle – in the
present case, it is likely that heat also leaks where the plastic heater box is joined to
the brass nozzle. Consequently, the area a should be larger than the nozzle area, and for the
present experiment, we find that setting a = 100 mm2 leads to normal fluid velocities of
the same order as the particle velocities, with a/ap ≈ 30, which is a value very close
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Figure 2. Relative second sound amplitude as a function of time for the upper (blue) and lower (red) sensors.
Lines are ensemble averages of 50 realizations; pale areas indicate one standard deviation intervals. (a) Mean
temperature T = 1.31 K, power P = 0.10 W, and pulse duration τ = 0.33 s; (b) T = 1.31 K, P = 0.24 W and
τ = 0.52 s, as in figure 1(e).

to that used in our previous study (Švančara et al. 2020). Additionally, as discussed
below, one can estimate the vortex line density L from the Reynolds number Re, using
(3.3), and L values of the same order as those measured by the second sound sensors
are found if a = 100 mm2. In summary, the choice of a depends on the ring generation
chamber, and consequently the Reynolds number values given here can be regarded only
as first-order estimates, which nevertheless allow us to perform consistent comparisons
between different experimental conditions.

3. Results and discussion

Three tunable parameters, namely the helium bath temperature T , the heating power P, and
the power pulse duration τ , define the initial conditions for ring generation. The precise
control over these parameters results in relatively small fluctuations. We found specifically
that in the range of investigated parameters, the standard deviation of T is less than 1 mK,
that of P is less than 1 mW, and that of τ is typically around 10 ms.

The rings were generated at four temperatures, equal to approximately 1.30, 1.50, 1.65
and 1.80 K. These temperatures correspond to a relatively wide range of density ratios
between normal and superfluid components, from 5 %, at the lowest T , to approximately
45 %, at the highest T . The temperature range was limited by the minimum temperature
that could be achieved stably in the cryostat, and by the fact that for temperatures higher
than 1.80 K, we did not observe clear second sound resonances. The heating power of
the pulses was between 0.1 and 0.7 W, and their duration ranged from 0.2 to 1.5 s, with
Q = Pτ not exceeding 0.75 J, because the characteristic shape of the second sound signal,
apparent from figure 2, became deformed for larger Q values in the present set-up. (This
deformation might originate from collisions of the generated flow structures with the walls
of the second sound channel.)

Figure 3 displays how the data sets sample the parameter space given by the Reynolds
number Re, (1.3), and the dissipated heat Q. As already noted, we achieved Re values
between 2 × 104 and 4 × 106 – the kinematic viscosity of He II is of the order of
10−8 m2 s−1 in the current temperature range. Therefore, we consider all rings to be
turbulent, because the onset of turbulence is expected for Re � 104 (Glezer 1988).
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Figure 3. The black points indicate the acquired data sets within the parameter space defined by the Reynolds
number Re, (1.3), and the dissipated heat Q. The coloured circles indicate the data sets discussed in § 3.1.

Additionally, as detailed below, we observe flow structures having sizes along the set-up
(vertical) axis significantly larger than those in the perpendicular (horizontal) direction.
These long structures can be associated with prominent wakes that originate from the
excess fluid discharge, and can be observed past vortex rings, as discussed e.g. by Gharib,
Rambod & Shariff (1998). In this regard, a relevant parameter is the formation number F,
defined as the ratio between the piston stroke and the nozzle diameter (Gharib et al. 1998).
The vortex ring pinch-off is usually observed for F ≈ 4, as reported e.g. by Krueger, Dabiri
& Gharib (2006) and Krieg & Mosheni (2021), while, for higher stroke-to-diameter ratios,
the ring is followed by a trailing jet, which we identify here as the wake. We calculate the
formation number as F = x/d, where the stroke length x is defined by (1.1). Following
§ 2.1, we take a = 100 mm2 for the calculation of x, and we find that our rings sample a
relatively wide range of formation numbers, from approximately 6 to 148, with median
value 25. This indicates clearly that the studied rings should be followed by prominent
wakes, and as shown below, this view is supported strongly by the experimental data.

Note in passing that in our previous study (Švančara et al. 2020), we achieved relatively
smaller Re values, between approximately 104 and 105, for power pulses of comparable
power and duration, with Q up to approximately 2.75 J, using a larger nozzle, 5 mm in
diameter. Additionally, Švančara et al. (2020) observed the behaviour of macroscopic
vortex rings in the nozzle proximity, at distances between 1 and 6 nozzle diameters, while
in the following we report results obtained at larger distances, up to 40 nozzle diameters.

3.1. Spatial and temporal confinement
The confinement of vortex rings in space and time was verified by flow visualization. We
focus specifically here on three representative data sets, named R1, R2 and R3. They were
collected at 1.80 K, with P = 0.48 W and three different τ values, equal to 0.33, 0.52 and
1.02 s, for R1, R2 and R3, respectively. Therefore, these sets are characterized by different
values of dissipated heat Q, as shown in figure 3, where we highlight R1, R2 and R3 using
coloured circles.

These rings are associated with formation numbers F equal to 5.6, 9.0 and 17.7 for
R1, R2 and R3, respectively. In the following, for the sake of comparison, we set the
non-dimensional time t̂ ≡ vnt/d, so that for t = τ , t̂ = F (Limbourg & Nedić 2021).
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Figure 4. Mean vertical velocity conditioned by the horizontal particle position in non-dimensional units.
Coloured lines indicate data sets R1–R3; grey lines denote velocity profiles restricted to the bottom, middle
and top thirds of the camera FOV, from R3; black solid lines denote Gaussian fits of the velocity profiles
(see § 3.1); the red dashed line indicates the estimated settling velocity of solid deuterium particles in He II,
corresponding to v̂ = −1. In the employed non-dimensional units, the nozzle diameter is equal to 1.

We also use the non-dimensional velocity v̂ ≡ v/v0, where v0 = 2.3 mm s−1 is the
absolute value of the settling velocity of deuterium particles. As in previous studies, e.g.
Švančara et al. (2021), for the estimate of v0 we employed the Stokes formula, assuming
spherical particles with radius equal to 5 μm (the density of solid deuterium is set to
200 kg m−3, and the fluid temperature is set to 1.80 K).

Particle motions were tracked within a planar field of view (FOV), 6.2d wide and 3.9d
high, during a t̂ ≈ 80 long time window (the reference length is here the nozzle diameter
d). The FOV bottom edge was 7.7d above the nozzle top. Qualitatively, the acquired
trajectories match those displayed in figure 1(d), although, as already mentioned, the
present visualization data do not allow us to track the rings as in our previous study
(Švančara et al. 2020), mainly because here the rings are smaller and faster. Instead,
to assess the flow quantitatively, we first calculated the particle velocity by convoluting
each particle trajectory with a suitably defined kernel – the method is discussed in
detail by Švančara (2021). For each data set, several realizations were collected and
ensemble averaged, so that at least one million particle positions (velocities), organized
in trajectories that contain at least 50 points each, are available for the analysis, which
consists in studying the resulting position–velocity pairs.

The coloured lines in figure 4 display the mean vertical velocity, i.e. the mean particle
velocity in the (vertical) direction of ring propagation, conditioned by the horizontal
position. We identify a region in the middle of the camera FOV characterized by a large
positive velocity, indicating that in that region, the particles move upwards on average.
Note in passing that since the rings are turbulent, one could say that most of the detected
particles are advected by the wake rather than by the ring itself.

The observed peaks of positive velocity can be described accurately with vertically
shifted Gaussian curves – the best fits are marked by solid black lines. The offsets yield
v̂ ≈ −1, which reflects clearly the settling of our particles (see the red dashed line in
figure 4). More importantly, the centres and widths of the Gaussian peaks share similar
values. This means that the vortex rings propagate along the same vertical trajectory, and
that their size does not significantly vary among data sets.
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Figure 5. Time dependence of the mean particle velocity when the camera FOV is confined in the horizontal
direction. Data from R3 – see the legend for the considered intervals. ‘Outside’ indicates the exclusion of the
third interval from the full FOV width. Particle velocity and time are normalized according to the main text.
(a) Horizontal velocity component; (b) vertical velocity component.

In addition, we checked that for R3, a similar velocity profile is obtained at the bottom,
middle and top thirds of the FOV – these profiles are displayed in figure 4 as grey lines
that overlap closely with the original violet curve. It therefore seems that the flow structure
does not grow appreciably in the radial direction, and most likely does not grow beyond
the size of the square second sound channel, equal to 5d.

Specifically, we find the standard deviation of each peak to be σ ≈ 0.7d, which can be
taken as the estimate of the ring radius at a distance from the nozzle equal to approximately
10d. It then follows that at distance 40d, the ring radius should be less than 1.5d, if one
assumes that for distances larger than 15d, the growth rate of turbulent rings is 0.01, as
reported by Maxworthy (1974) – note that on the basis of figure 4, we set to 0.1 the growth
rate at smaller distances. Consequently, this estimate allows us to neglect possible effects
of the channel walls on the generated flow, at least for the present set-up.

We take again R3 as a representative example, and we plot in figure 5 how the mean
particle velocity evolves in time if we restrict our FOV to a finite interval in the horizontal
direction. The selected intervals, specified in the legend, are centred at the peak position
(about 3.1d), and their widths correspond to σ , 2σ and 4σ – the light-brown curves
(labelled ‘Outside’) represent the exclusion of the latter interval from the full FOV width.

The mean horizontal velocity, plotted in figure 5(a) as a function of time, remains
unaffected by the propagating ring. However, a distinct velocity peak develops for the
vertical component, displayed in figure 5(b), shortly after the heat pulse is released at
t̂ = 0. The particle velocity then decreases until the mean particle velocity becomes nearly
zero, which confirms that the flow is indeed confined in time. Additionally, the response
to the heat pulse of the particles outside the considered intervals is negligible. Hence we
can conclude that the flow consisting of a vortex ring and its wake extends no more than
4σ = 2.8d in the horizontal direction, which we can take as an upper limit for the vortex
ring size in that direction, at least for the considered data sets.

The differences among the studied data sets are highlighted in figure 6. For all three
cases, we restrict the FOV to the interval 3.1d + [−σ, σ ] and observe only the vertical
velocity component. The figure clearly indicates that the peak velocities are different
and grow with increasing τ . In other words, power pulses of different durations produce
qualitatively different vortex rings, consistently with the definition of the Reynolds
number, (1.3). Nevertheless, we now show that the propagation of thermally generated
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Figure 6. Mean vertical velocity as a function of time, when the FOV is restricted to the horizontal interval
3.1d + [−σ, σ ], i.e. [2.4d, 3.8d].

vortex rings can also be defined by another parameter, which is the temporary temperature
increase inside the heater box.

3.2. Temperature increase
The existence of a brief temperature increase inside the heater box has been reported
already in figure 1(c) for an exemplary case. Following our reproducibility remarks in § 2.1,
we ensemble averaged our temperature data sets and calculated the maximum difference
�T between the bath and box temperatures. A first-order theoretical estimate of �T can
be based on the assumption that the supplied heat Q adiabatically warms up the content of
the heater box. We can then write

�T ≈ Q
ρVbc

, (3.1)

where Vb = 11 cm3 denotes the inner volume of the heater box, and c is the specific heat
of He II, also tabulated by Donnelly & Barenghi (1998) as a function of temperature.

Despite the model simplicity, we observe a linear relation between �T and Q/(ρc)
in the experimental data, displayed as blue points in figure 7(a). The linear fit, i.e. the
black line in the same figure, yields a practically zero intercept and a non-zero slope that
gives an estimate of the effective box volume, Veff ≈ 3Vb. The difference between Vb and
Veff is due to the heat leaks from the heater box, mentioned above, which are expected
to take place through its walls and through the nozzle, as the latter mechanism is actually
responsible for the generation of vortex rings. Note also that �T is a function of all tunable
parameters, because Q depends directly on P and τ , and c displays a strong temperature
dependence – it grows with increasing T in the investigated range, while ρ does not vary
appreciably with T , as already noted.

Beside the finite temperature increase, figure 1(c) also shows that the duration of this
temperature increase, which can be associated with the ejection of the normal component
from the heater box, is finite and larger than the duration τ of the corresponding heat pulse;
see figure 1(b). We estimate the former time period, t�T , as the interval during which the
temperature difference between the heater box and the helium bath is at least 0.1�T . We
find that, as expected, t�T increases with τ , and in figure 7(b), we plot t�T as a function of
Q/(ρc). In contrast to figure 7(a), this quantity displays a less clear scaling with Q/(ρc),
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Figure 7. (a) Maximum difference �T between the helium bath and the heater box temperatures as a function
of Q/(ρc). Blue points indicate experimental data; black line indicates the linear fit. (b) Duration of the
increased temperature period t�T inside the heater box as a function of Q/(ρc); see § 3.2 for details.

likely because the temperature sampling frequency was significantly smaller than that of
the power, but one cannot deny that the two quantities are positively correlated, i.e. t�T
also increases with Q/(ρc). Moreover, the maximum duration of this time period is less
than 5 s, which is smaller than the typical duration of our second sound response, shown
in figure 1(e) and discussed below.

Additionally, it is worth mentioning here that for thermal counterflow jets, Murakami,
Yamakazi & Nakai (1989) reported an analogous linear relation between the heater
box temperature increase and the applied heat flux q = P/a, at q values smaller than
approximately 5 kW m−2, while at larger values of heat flux, it was found that �T ∝
q3 – these scalings can be related to the above-mentioned dependence between the
mutual friction force and the relative fluid velocity, discussed, for example, by Ricci &
Vicentini-Missoni (1967) and Liepmann & Laguna (1984). Nevertheless, considering that
for the present data sets, the maximum q value is lower than 7 kW m−2, with a = 100 mm2,
we may conclude that the results presented in figure 7(a) are consistent with our current
understanding of thermally generated flows of He II, outlined in § 1; that is, no cubic
scaling is apparent from our data because our maximum value of heat flux is very close to
the critical value identified by Murakami et al. (1989) – note also that the corresponding
median value is lower than 5 kW m−2. Finally, we would like to emphasize that the
observed linear relation between �T and q does not imply that the observed flow structures
are not turbulent. The opposite is true, because, as already noted, the Reynolds numbers
associated with them are very large, and as shown below, their generation is linked to the
ejection of dense vortex tangles, detected by our second sound sensors.

3.3. Vortex line density profiles
A vortex line density (VLD) profile is defined here as the time dependence of VLD, also
named L, calculated from the acquired second sound amplitude using (1.4). Typical L
profiles are plotted in figures 8(a,b) for the upper and lower sensors, respectively – the
displayed profiles result from identical power pulses (P = 0.48 W, τ = 0.52 s), and their
differences are due solely to the different temperatures of the helium bath (see the legend).
Each profile displays negligible VLD values before the power pulse, which are followed
by a distinct peak that develops some time after. Note in passing that the small L jump in
figure 8(a) is likely due to cross-talk between the wires inside the cryostat. The dominant
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Figure 8. Ensemble-averaged vortex line density (VLD) profiles obtained by releasing a power pulse with
P = 0.48 W and τ = 0.52 s: (a) data from the upper sensor, 81 mm above the nozzle; (b) data from the lower
sensor, 45 mm above the nozzle. The coloured lines indicate the temperature of the helium bath.

feature of each profile is its long-lasting tail that gradually returns the sensor to its original
state. The characteristic shape of these profiles matches the idea outlined above that these
signals may indeed represent turbulent vortex rings; that is, the peak indicates a dense
and compact bundle of quantized vortices, while the decaying part can be associated with
the trailing jet. Note also that a similar profile shape is observed for all data sets and
for both sensors. Additionally, the peak measured by the upper sensor is systematically
less pronounced than the other, and it is observed with a small delay – the sensors must
therefore respond to the same object that travels along the second sound channel.

The VLD profiles that correspond to the same vortex ring (data set) are plotted in
figure 9, for the upper (blue) and lower (red) second sound sensors. The finite time lag
between the peaks, now clearly visible, is used in § 3.5 to estimate the ring propagation
velocity. Interestingly, we note that the late-time parts of these profiles overlap closely and
follow an exponential decay (see the inset). This result, taking place for all available data
sets, can be associated with the ring trailing jet, as already mentioned, but it might also
be explained by considering that quantized vortex loops somehow could be released from
the dense vortex tangle centred near the vortex ring. Additionally, the presence of this
flow structure is consistent with the numerical simulations reported by Kivotides (2015),
showing that quantized vortex loops tend to concentrate in the proximity of a normal fluid
vortex ring as it moves through a sample of He II with a few remnant vortices.

In summary, the VLD profiles obtained across several temperatures and power pulses
display a typical shape that reflects clearly the physical nature of the studied flow. A dense,
coherent bundle of quantized vortices is observed to propagate along the channel, followed
by a turbulent wake. Additionally, despite its notable decrease in magnitude, the flow
structure remains coherent along a path at least 40 nozzle diameters long, which is the
maximum distance that we can probe currently.

3.4. Circulation of the vortex bundle
In order for the quantized vortex tangle to mimic a macroscopic vortex ring, it must be
at least partially polarized, i.e. it must display a non-zero circulation Γ . For an array of
coplanar vortex loops, i.e. for a fully polarized tangle, such a circulation can be written as

Γ = κnAc, (3.2)
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Figure 9. Detailed view of typical VLD profiles obtained by the upper (blue) and lower (red) sensors. Here,
T = 1.31 K, P = 0.48 W and τ = 0.52 s. Inset: late-time parts of the profiles plotted in log-linear scale.

where κ indicates the quantum of circulation, n denotes the number of quantized vortices
per unit area, and Ac is a relevant cross-sectional area of the considered large-scale vortex
ring (we assume here that quantized vortices are perpendicular to this area). It then follows
that for a fully polarized tangle, the vortex ring core must contain a total vortex length
L = 2πRnAc, where R is the ring radius, which in our case is equal to around 2 mm, at
a distance from the nozzle of approximately 10d, as discussed in § 3.1 – note, once more,
that R is parallel to Ac. Additionally, these vortices were detected by our sensors within
a detection volume Vd ≈ 500 mm3 – our channel is 10 mm wide, and the diameter of a
second sound transducer is 8 mm. Therefore, the measured VLD can be written as

L = L
Vd

= 2πRnAc

Vd
= 2π

κVd
RΓ = 2πν

κVd
R Re, (3.3)

where we used (3.2) and the slug flow model relation Re = Γ/ν, reported in § 1.
From (3.3) one can then calculate that for Re ≈ 3.3 × 104 and T = 1.80 K,

corresponding to R2 in § 3.1, a fully polarized tangle yields L ≈ 7.4 × 107 m−2, which
is a value rather close to that measured by the lower sensor, shown in figure 8(b) – for this
estimate, we set R = 2 mm in (3.3). Consequently, closer agreement with the experimental
data can be obtained for larger values of the vortex ring radius, which are actually expected
to occur, as discussed in § 3.1 (e.g. L ≈ 1.1 × 108 m−2 for R = 3 mm), or considering that
for turbulent rings, the length of a quantized vortex within the ring might be larger than the
ring circumference, because waves may occur along the vortex, as discussed, for example,
by Švančara & La Mantia (2019). Similarly, a two times larger value of Re would result, for
R = 2 mm, in a VLD equal to approximately 1.5 × 108 m−2, which is a value much closer
to the experimental finding reported in figure 8(b) – such a Re value could be obtained
from (1.3) by setting in (1.2) the heater area a to approximately 70 mm2, at the given
values of P and τ .

Nevertheless, as already noted, the Reynolds numbers reported here can be considered
solely as first-order estimates, and it is actually remarkable that one can get from (3.3)
values of VLD that are of the same order of magnitude of those measured experimentally,
especially considering the many assumptions made in the derivation of (3.3). In other
words, (3.3) can be seen as an expression identifying the main parameters contributing to
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Figure 10. Maximum profile density Lm as a function of the dissipated heat Q, for the (a) upper and (b) lower
second sound sensors.

L, rather than a quantitative measure of the VLD associated with our macroscopic vortex
rings.

However, it is also useful to estimate the number nAc of vortex loops embedded in
one of our rings, using (3.3) with Γ = ν Re. Specifically, from the Re values plotted in
figure 3, we obtain that the superfluid component should contain at least 103 quantized
vortices. Additionally, considering that the mean distance � between quantized vortices
can be estimated as 1/

√
L, we find that for the data set just discussed, � ≈ 120 μm, which

is a value much smaller than the resolution of our experiment. Therefore, one can say
that we currently probe the vortex tangle in a regime where individual quantized vortices
cannot be resolved.

Now, if we assume that the tangle polarization does not change appreciably among
our data sets, which might be the case, given the extremely high Re values, then we can
estimate qualitatively the circulation of the vortex tangle by using the maximum Lm of each
VLD profile. This quantity is plotted in figure 10 as a function of the dissipated heat Q. We
observe that the Lm values detected by both sensors – see figures 10(a,b) for the upper and
lower sensors, respectively – scale (almost) linearly with Q – one can indeed note that this
linear dependence is less robust for the lower sensor, especially at the smaller temperatures,
which might be an effect of the nozzle proximity. Additionally, the maximum
VLD values display a temperature dependence similar to the VLD profiles plotted
in figure 8.

Strikingly, the helium bath temperature dependence is removed when Q is replaced by
�T , and the data collapse onto two lines (one line per sensor), as we show in figure 11(a).
We checked this further by comparing the present result with the data sets labelled G1.
These sets were obtained with the first generation of our experimental cell, at temperatures
1.51 and 1.66 K – see Švančara (2021) for details and preliminary results. Note that this
cell featured only one second sound sensor, located 68 mm away from the nozzle, and that
the heater box lacked temperature monitoring. In order to compute �T for the G1 data,
we simply employed the linear fit from figure 7(a), using the known bath temperature and
power pulse parameters.

Therefore, it is apparent from figure 11(a) that the maximum value Lm of the VLD
L is proportional to �T , at least in the range of investigated parameters. Additionally,
considering (3.3), one can write that Γ ∝ L/R ∝ �T/R, which means, on the basis of
(3.1), where �T ∝ Q = Pτ , that Γ ∝ Pτ/R. On the other hand, from (1.3), we see that
Γ ∝ P2τ , because, from the slug flow model, Γ ∝ Re. It then follows that the applied
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Figure 11. (a) Maximum VLD as a function of �T . Symbols as in figure 10, plus grey symbols labelled
G1: data obtained by the first generation of the experimental cell (see § 3.4). (b) Slopes of the collapsed
dependencies from (a) as a function of the distance between the nozzle top and the position of the corresponding
second sound sensor.

power P should be inversely proportional to the ring radius R, and that on the basis of (1.2),
the same applies to the normal fluid velocity vn. Consequently, the outcome is consistent
with the classical theory on the propagation of turbulent vortex rings in Newtonian fluids,
discussed by Maxworthy (1974), if we assume that, at a given temperature, the normal
fluid velocity is proportional to (some power of) the vortex ring velocity U, and that
R is proportional to the distance z travelled by the ring, because U is expected to be
proportional to z−(3+C), where C is a (drag) coefficient of order 1 (Maxworthy 1974). In
short, it appears that the propagation of macroscopic vortex rings in He II can be described
by theories developed for classical rings, at least to a first approximation.

The latter statement is reinforced if we look more closely at the decay of the vortex
tangle. Indeed, according to Maxworthy (1974), the ring circulation Γ is expected to scale
as the ring velocity times R, and from (3.3), we see that L ∝ RΓ . Then, considering that
R scales as the distance z travelled by the ring, and that for classical rings, Γ is expected
to scale as z−(2+C), it follows that L should be inversely proportional to some power of
z larger than 1 (Maxworthy 1974). Actually, the curves broadly collapse if Lm(z/d)2 is
plotted as a function of �T , where z/d denotes the dimensionless distance between the
nozzle and the sensor. Once more, an outcome based on a classical theory is consistent
with the results reported in figure 11(a), which were obtained in superfluid 4He – see also
figure 11(b).

Specifically, it is apparent that the slope of each linear dependence in figure 11(a) is
a function of only the distance between the nozzle and the second sound sensor. The
VLD embedded in a ring hence decreases by the same factor, if the ring travels the
same distance; for example, we observe this density to drop by approximately 3 times
between the second sound sensors in our experimental cell. To elaborate on this, we take
the slopes of the linear fits of the collapsed dependencies and plot them in figure 11(b)
as a function of the distance from the nozzle. The linear extrapolation of the first and
last point yields that zero slope, corresponding to vanishing VLD, occurs approximately
50 nozzle diameters away from the nozzle. This value can then be understood as the
maximum distance where the tangle should remain coherent. Although we did not consider
other contributing factors, e.g. that the rings do slow down in time (Švančara et al. 2020),
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Figure 12. Mean ring velocity w as a function of �T . Black line indicates a power-law fit with exponent
0.75 ± 0.03.

our experimental data confirm neatly that turbulent vortex rings propagating in He II are
indeed long-lived structures that may travel a large distance relative to their size, similarly
to their classical counterparts.

3.5. Ring velocity
The arrival time of a VLD peak, i.e. the time at which the VLD is equal to Lm, combined
with the known distance between the nozzle and a second sound sensor, provides a simple
estimate of the mean ring velocity. However, such an estimate does not consider the
mechanism of ring formation, which was not accessed in the present experiment. Indeed,
it is expected that vortex rings actually form some distance from the nozzle and some time
after the injection of momentum, as discussed, for example, by Glezer & Coles (1990).

Partially motivated by this obstacle, we devised our experimental cell with two sensors,
which allows us to estimate the ring propagation velocity w between these sensors as

w = D
tmu − tml

, (3.4)

where D = 36 mm indicates the sensor separation, and tmu (tml) denotes the arrival time
for the upper (lower) sensor. The time lag (tmu − tml) is insensitive to the ring formation
process, therefore (3.4) provides an estimate of the (mean) ring velocity that is more
reliable than that based on just one second sound sensor.

Figure 12 displays w as a function of �T . First, one may note that the range of probed
ring velocities is rather wide, because the slowest rings propagate with w ≈ 2 mm s−1,
while the velocity of the fastest ones is approximately 15 times larger. Second, we find
again that all data sets collapse onto a single curve, which supports the relevance of �T
as a control parameter. A single-component power law roughly matches this nonlinear
dependence (see the black solid line in figure 12), but unfortunately we currently have no
quantitative explanation for it (note also that for �T � 0.1 K, the reported scaling relation
appears less suitable).

Additionally, it is important to remark that, as already noted, the gradual loss of kinetic
energy results in the ring velocity decreasing. Following the similarity theory mentioned in
§ 3.4 (Maxworthy 1974), the propagation velocity U of a turbulent vortex ring is expected
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to depend on the travelled distance z as

U = U0

(
α

z
r0

+ 1
)−(3+C)

, (3.5)

where U0 is the initial ring velocity, and α ≈ 0.01 denotes the ring growth rate, also
reported by Glezer & Coles (1990) and Gan & Nickels (2010); additionally, r0 indicates the
initial ring radius, and C is a drag coefficient related to the entrainment of the surrounding
fluid, already introduced in § 3.4. Note in passing that the present data do not allow us to
verify (3.5) directly – e.g. to determine relevant values of α and C – but in our previous
work (Švančara et al. 2020), we showed that scaling relations related to (3.5) hold for the
macroscopic vortex rings studied there, which are larger and slower than the present ones.

Nevertheless, if we assume that in the range of investigated parameters, α, r0 and C are
constant, then the velocity measured at a fixed distance from the nozzle is proportional
solely to the initial velocity U0. Our data sets hence indicate that it is the initial ring
velocity that also depends systematically on �T . This outcome is in agreement with the
visualization study summarized in § 3.1. We observed specifically that at a given power,
the mean particle velocity tends to increase upon increasing the pulse duration, which is
consistent with the fact that �T ∝ Q ∝ τ , discussed in § 3.2.

3.6. Vortex line length
The typical shape of the acquired VLD profiles suggests that each power pulse produces
quantized vortices with a finite collective length. As second sound attenuation was
measured in a channel with cross-section Ach ≈ 100 mm2, we can simply calculate the
total line length L as

L = Ach

∫ ∞

−∞
L(z) dz, (3.6)

where we integrate the VLD along the channel axis z. Within this notation, we assume that
the nozzle is located at z = 0, and therefore L = 0 for z ≤ 0.

However, the experimentally accessible quantity is the area below each VLD profile, i.e.
the VLD integrated in time, LI . The integration is performed specifically in a finite time
interval, limited by tmin = −5 s and tmax ≥ 40 s – these intervals were chosen for each data
set individually, to make sure that they are long enough to accommodate the entire second
sound signal. We can hence write that

LI =
∫ tmax

tmin

L(t) dt ≈
∫ ∞

−∞
L(t) dt. (3.7)

The relation between the integrals in (3.6) and (3.7) is not straightforward. First, the
ring propagation velocity is not constant in time, as already noted, and therefore the spatial
and temporal coordinates are not linked by a simple Galilean transformation. Instead, the
relation z(t) is nonlinear and can be given, for example, by (3.5). Moreover, the employed
sensors have a finite size, and the measured density L(t) is not equal to L[z(t)]. Instead, the
measured signal is spatially averaged within the sensitive area of the sensor, a circle with
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ds = 8 mm diameter. For the simplest model of a uniform sensitivity, we can write

L(t) = 1
ds

∫ ds/2

−ds/2
L [ξ + z(t)] dξ = (L ∗ S) [z(t)] , (3.8)

where ∗ denotes the convolution of L with the sensor resolution function S, which is
modelled as an orthogonal step function with the functional value equal to 1/ds between
−ds/2 and ds/2, and zero otherwise. Since the integral of L is proportional to the vortex
line length and the integral of S is one by definition, it follows that

∫ ∞

−∞
L(t) dt =

(∫ ∞

−∞
S(ξ) dξ

)
×

(∫ ∞

−∞
L [z(t)] dt

)
=

∫ ∞

−∞
L [z(t)] dt. (3.9)

Now, in order to link the equations above, we must simplify the nonlinear transformation
between z and t. For the sake of argument, we assume that vortex rings propagate with
a constant velocity, equal to the experimentally accessible value w. In other words, we
estimate the right-hand side of (3.9) as∫ ∞

−∞
L [z(t)] dt ≈ 1

w

∫ ∞

−∞
L(z) dz, (3.10)

where the factor (1/w) originates from the transformation Jacobian, i.e. it holds that dt =
dz/w. Finally, using (3.6), (3.7), (3.9) and (3.10), we can estimate the vortex line length as

L ≈ Achw
∫ ∞

−∞
L(t) dt = AchwLI . (3.11)

Relevant estimates of the vortex line length are plotted as a function of �T in
figure 13. Despite several simplifications introduced above, the experimental data display
a power-law scaling with �T , with an exponent close to 3/2, which is marked by a
solid black line. The scaling holds for both the upper sensor (empty symbols) and the
lower sensor (filled symbols) – but it seems less adequate for �T � 0.02 K. Additionally,
systematically larger values of L are acquired by the lower sensor, in comparison with the
upper one, clearly pointing out that the vortex tangle, localized either in the ring or in the
wake, is subjected to dissipation.

In order to account qualitatively for the scaling presented in figure 13, we first note
that a similar exponent was reported by Varga, Babuin & Skrbek (2015) in turbulent
coflow of superfluid 4He, namely for steady channel flow past a grid. Specifically, it was
found that in the range of probed conditions, the VLD is approximately proportional to
u3/2, where u denotes the mean flow velocity in the channel used by Varga et al. (2015).
Additionally, the authors explained this outcome qualitatively on the basis of classical
arguments, postulating the Newtonian-like behaviour of mechanically driven flows of He II
at flow scales larger than the mean distance between quantized vortices. Similarly, Laguna
(1975) reported that for thermal counterflow jets, the second sound attenuation scales as
q3/2, where q = P/a indicates the applied heat flux. The result, which is consistent with the
scaling found by Varga et al. (2015) if one considers (1.2) and (1.4), was explained later by
Liepmann & Laguna (1984) without taking into account the peculiar nature of helium II,
i.e. using classical geometric acoustics to model the attenuation of second sound waves
through the turbulent jet. In short, the scaling L ∝ u3/2 indicates that the steady flows
studied by Liepmann & Laguna (1984) and Varga et al. (2015) behave as if they were
those of a Newtonian fluid, at least in the range of investigated parameters.
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Figure 13. Estimate of the vortex line length L, (3.11), as a function of �T . Symbols as in figure 10. Solid
black line indicates the L ∝ �T3/2 scaling. Note the log-log scale.

On the other hand, from figure 11(a), it is apparent that L should scale as �T , and on the
basis of figure 12, one can say that the estimated ring velocity w is proportional to some
power of �T smaller than 1. It then follows that for the turbulent vortex rings investigated
here, the VLD is apparently proportional to some power of the ring velocity larger than
1, which is also evident from figure 13 if one considers that L ∝ L in a given volume. In
conclusion, the present experimental data do not allow us to say that the scaling observed
in figure 13 is the same associated to coflow by Liepmann & Laguna (1984) and Varga
et al. (2015), mainly because it is not straightforward to define a characteristic (mean)
velocity in the case of unsteady flows, such as those associated with vortex rings.

At the same time, we cannot entirely rule out such a possibility, considering especially
that at larger values of heat flux q, one expects a nonlinear relation between �T and q, as
discussed in § 3.2, and that for steady thermal counterflow in channels, L was found to be
proportional to the square of the counterflow velocity (Varga et al. 2015). Note also that at
present we cannot measure the relative fluid velocity near the nozzle, where counterflow
features should be observed also for vortex rings and counterflow jets, and consequently
we cannot link this relative velocity to some characteristic velocity of our rings, in view of
relevant comparisons.

4. Conclusions

We have studied systematically the propagation of turbulent vortex rings in superfluid
4He, at extremely high values of the Reynolds number, up to 4 × 106. The thermal
generation mechanism, consisting of releasing an orthogonal power pulse into an enclosed
volume terminated by a circular nozzle, was found to create well-defined and highly
reproducible flow structures, consisting of large-scale vortex rings, in both components
of He II, followed by their trailing jets. These vortical structures are confined in space
and time, i.e. the observed vortex rings are characterized by a finite size, comparable to
the nozzle diameter, and they propagate vertically along the nozzle axis, up to distances
of at least 40 nozzle diameters. In other words, we found that the tangles of quantized
vortices embedded in our rings remain coherent for distances much larger than their sizes.
Moreover, quantized vortices are present in the ring wakes and we also observed how
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their line density decreases in time, at given locations, with features independent of liquid
temperature and power pulse parameters.

The vortex ring circulation, which can be related to the vortex line density via (3.3), and
its characteristic velocity were found to depend neatly on �T , which is the experimentally
accessible temperature difference between the helium bath and the heater box, occurring
briefly after the ring generating power pulse is released into the He II. Specifically,
we observed that vortex rings characterized by the same �T display similar behaviour,
without further dependence on temperature or other power pulse parameters. Additionally,
we found that the ring circulation is a function of the distance travelled by the ring, in a
way similar to that observed for turbulent vortex rings propagating in Newtonian fluids
(Maxworthy 1974), and that according to present estimates, the tangle should vanish at
approximately 50 nozzle diameters, at least in the range of investigated parameters – see
especially figure 11 and related discussion.

Overall, large-scale vortex rings moving in superfluid 4He apparently behave as if they
were moving in a classical fluid, like water or air. The present work therefore extends
significantly the range of experimental conditions in which Newtonian-like behaviour
of He II flows is expected to occur, i.e. when He II can be treated as if it were a
Newtonian fluid. Indeed, one should keep in mind that in such conditions, the extremely
small kinematic viscosity of helium II would in principle allow us to investigate classical
flows of Newtonian fluids in relatively small experimental facilities, much smaller than
standard air-based wind tunnels. On the other hand, the reasons why a fluid characterized
by vanishing viscosity and quantized vorticity behaves, in certain conditions, as if it were
a Newtonian fluid are at present unknown, and we believe that mapping such conditions
in detail could eventually indicate the routes that one might follow to address this open
question.

Specifically, future studies on thermally generated vortex rings propagating in superfluid
4He could focus on accessing flow regions yet to be explored, e.g. those at larger
distances from the flow source, where vortex tangle dissipation is expected to occur, or
those in the close proximity of the nozzle, up to 1 diameter away, where counterflow
should become coflow, according to our current understanding of the underlying physics.
Additionally, we believe that the present work might serve as a useful reference for
future computations, especially those based on contemporary numerical models, aiming
at probing the dynamics of superfluid 4He across scales, such as the one discussed by
Galantucci et al. (2020).
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P. Švančara and M. La Mantia
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