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Abstract. In the interstellar medium (ISM), a broad range of turbulent plasmas can
be observed by using radio waves. However, only density fluctuations are directly
measurable with these radio astronomic tools. If one wants to deduce the underlying
features of the turbulence, it is necessary to calculate the relation between density
and magnetic fluctuations. Here a magnetohydrodynamic (MHD)-ansatz is taken
into account for the ISM turbulence to calculate the fluctuations for the three low-
frequency MHD waves.

1. Introduction
In the field of cosmic ray astrophysics it is necessary to know the power spectra
of magnetic fluctuations in the interstellar medium (ISM) to determine trans-
port parameters as there are parallel and perpendicular diffusion coefficients, mo-
mentum diffusion coefficients and the rate of adiabatic deceleration of cosmic rays.
Those fluctuations in the ISM are non-relativistic and have frequencies below the
proton gyrofrequency Ωi.
Usually the fluctuations are interpreted as a superposition of magnetohydro-

dynamic (MHD) waves, which model the turbulent electromagnetic field (i.e. the
plasma wave viewpoint). The different MHD waves (fast and slow magnetosonic,
Alfvén) have unique relations between electric and magnetic field expressed by their
dispersion relation and Maxwell’s equations.
Themain issue we will deal with in this publication is the basic problem that arises

from the observations. The main tools for the investigation of the ISM are radio
scintillations and dispersion measures, as described by Armstrong et al. (1995).
Actually, these observations are only capable of determining the fluctuations in
density and the mean parallel (to the line-of-sight) magnetic field. So we have to
figure out the relation between magnetic field and density fluctuations for the MHD
waves.
Schlickeiser and Lerche (2002) have calculated this relation in a full kinetic way

in order to find a wavenumber-dependent compressibility for Alfvén waves, which
cannot be found within the MHD framework. In contrast to that work, we will
stick to the plasma wave viewpoint and develop a theory for small perturbations
of an MHD system with a background magnetic field B0.
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We will apply our calculations to the warm intercloud medium, which is a low-β
plasma (β is the ratio of thermal and magnetic pressure) with a neutral density
nH = 0.2 cm−3 and an ion density of ni = 0.08 cm−3. Temperatures are ranging
between 6000 and 104 K. The warm intercloud medium is the prominent phase of
the ISM with its enormous filling factor and very high degree of ionization.
Observations provide some knowledge about the power spectrum of the density

fluctuations, it seems as if we can assume a Kolmogorov-like power law behaviour,
with an spectral index s = 5/3 for the density fluctuations. However, as mentioned
before, this gives no insight into the nature of the magnetic field fluctuations. In
particular, it cannot solve the problem if the magnetic spectra are anisotropic (as
proposed by Spangler 1991 and Goldreich and Sridhar 1995).

2. Basic equations
We start with the MHD equations

∂ρm
∂t

+ ∇ · (ρm · v) = 0, (2.1)

ρm
∂v
∂t

+ ρm(v · ∇)v = −∇p + j× B, (2.2)

∇p = v2
s ∇ρm, (2.3)

∇ × B = µ0j, (2.4)

E+ v× B = 0. (2.5)

Here ρm is the mass density, v is the mass fluid velocity, vs is the ion sound speed,
E and B are electric and magnetic field respectively.
We neglect the extra Hall term in (2.5)

E+ v× B+
mi

ρec
j× B = 0, (2.6)

as the scales involved in ISM turbulence are mostly above the Hall scale cvA/
(v0ωpi) = 108 cm.
We investigate the relation between the fluctuations of magnetic field and density.

The outline of the calculation is given in Koskinen (2001).
The above equations are rewritten as

∂ρm
∂t

+ ∇ · (ρmv) = 0, (2.7)

ρm
∂v
∂t

+ ρm(v · ∇)v+ v2
s ∇ρm − (∇ × B) × B

µ0
= 0, (2.8)

∇ × (v× B) =
∂B
∂t

. (2.9)

In the next step we linearize (2.7)–(2.9) by assuming that the magnetic field and
the density exhibit small perturbations of the mean field. In addition, we transform
the plasma into the rest system, so that there is no bulk velocity,

B = B0 + B1(r, t), (2.10)

ρm = ρ0 + ρ1(r, t), (2.11)

v = 0 + v1(r, t). (2.12)
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Hence from (2.7)–(2.9), we derive

∂ρ1

∂t
+ ρ0(∇ · v1) = 0 (2.13)

ρ0
∂v1
∂t

+ v2
s ∇ρ1 +

B0 × (∇ × B1)
µ0

= 0 (2.14)

∂B1

∂t
− ∇ × (v1 × B0) = 0. (2.15)

We assume the time and space variations of the perturbed quantities to be of the
form

f1 = f̂1e
i(k·r−ωt). (2.16)

Inserting this form into the MHD equations (2.13)–(2.15), the time and space
derivatives can now be written as functions of the wave frequency ω and the
wavevector k, and we obtain

ωρ1 − (k · v1)ρ0 = 0, (2.17)

ωv1ρ0 − v2
s ρ1k− 1

µ0
B0 × (k× B1) = 0, (2.18)

ωB1 + k× (v1 × B0) = 0. (2.19)

Combining (2.17)–(2.19) with each other, we can derive a vector equation linear in
the density fluctuations

[
ω2B0 − (k · B0)v2

s k
]ρ1

ρ0
=

[
ω2 − (k · B0)2

µ0ρ0

]
B1 +

(k · B0)(B0 · B1)k
µ0ρ0

. (2.20)

By introducing the Alfvén velocity vA = B0/
√

µ0ρ0 we can simplify the above equa-
tion. To solve it for the magnetic field fluctuations we will separate the equations
into their different components

(−kzB0v
2
s kx)

ρ1

ρ0
= (ω2 − k2

z v2
A)B1x + v2

AkzkxB1z (2.21)

(−kzB0v
2
s ky )

ρ1

ρ0
= (ω2 − k2

z v2
A)B1y + v2

AkzkyB1z (2.22)

(ω2B0 − k2
z B0v

2
s )

ρ1

ρ0
= (ω2 − k2

z v2
A)B1z + v2

Ak2
z B1z . (2.23)

Without further loss of generality, we restrict the k-vector to be in the x-z-plane.
So our calculation results in

1
B0


B1x

B1y

B1z


 =

ρ1

ρ0




kxkz
(v2
Ak2

z v2
s /ω2 − v2

A − v2
s )

ω2 − k2
z v2
A

kykz
(v2
Ak2

z v2
s /ω2 − v2

A − v2
s )

ω2 − k2
z v2
A

ω2 − k2
z v2
s

ω2




. (2.24)

3. Dispersion relation
From Swanson (1989) we can take the three branches of low frequency MHDwaves,
which are the fast (FM) and slow (SM) magnetosonic waves and Alfvén waves (AW).
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The latter is an incompressible wave, while the other two are compressible. Their
dispersion relations are

SM ω2 =
k2v2

A

2
(
(1 + β) −

√
(1 + β)2 − 4β cos2 θ

)
, (3.1)

FM ω2 =
k2v2

A

2
(
(1 + β) +

√
(1 + β)2 − 4β cos2 θ

)
, (3.2)

AW ω2 = k2
z v2
A, (3.3)

where β is the ratio of the gas pressure and the magnetic pressure. The dispersion
relations can be simplified for the case of β � 1, as found in the ISM. We then
expand the square root in a series around β = 0. We find for the FM waves

ω2 ≈ k2v2
A

(
1 + β − β

1 + β
cos2 θ

)
. (3.4)

For the case of SM waves we will have to do a second-order expansion in β because
the first-order expansion would cancel out the denominator of (2.24) to derive

ω2 ≈ v2
Ak2

(
β cos2 θ

1 + β
+

β2 cos4 θ

(1 + β)3

)
. (3.5)

4. Magnetic field
For each type of wave we will substitute the respective dispersion relation into
(2.24) to derive the relation of the magnetic field and density fluctuations in each
case. We consider each wave mode in turn.
Alfvén waves. These waves exhibit no density fluctuations, as can be seen from

the x-component of (2.24). The denominator ω2 − k2
z v2
A will vanish if one inserts

the dispersion relation for Alfvén waves. To fulfil this equation, ρ1 has to be zero
and also Bz will be zero. Therefore, Alfvén waves are strictly incompressible in the
MHD framework.
Slow magnetosonic waves. For the x-component of the magnetic field we find that

ρ1

ρ0
=

B1x

B0

(1 + β(1 + cos2 θ)) sin θ

β(β + sin2 θ) cos θ
, (4.1)

and analogically for the z-component

ρ1

ρ0
= −B1z

B0

1 + β(1 + cos2 θ)
β(β + sin2 θ)

. (4.2)

From this follows that there is a non-vanishing longitudinal magnetic field compon-
ent, while the transversal magnetic field vanishes for waves propagating parallel to
the magnetic field. If one calculates the polarization feature of the wave from both
aforementioned equations, they yield

B1x

B1z
= −cos θ

sin θ
. (4.3)
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Fast magnetosonic waves. Using the same technique as before, we derive from
Eq. (2.24)

ρ1

ρ0
=

[
1 +

β cos2 θ

1 + 2β sin2 θ

]
B1z

B0
, (4.4)

ρ1

ρ0
= − sin θ

cos θ
(1 − β cos2 θ)

1 + 2β
1 − 2β sin2 θ

B1x

B0
. (4.5)

The polarization can now be calculated from these density fluctuation relations,
yielding

B1x

B1z
= −cos θ

sin θ

1 − 2β sin2 θ

1 + 2β
1 + β(1 + sin2 θ)

1 + 2β sin2 θ
. (4.6)

5. Electric field
From the known polarization of the magnetic field it is straightforward to derive
the properties of the electric field starting from (2.18)

ωv1ρ0 = v2
s ρ1k+

1
µ0
B0 × (k× B1). (5.1)

To calculate the velocity v1 we use the relation

ρ1 = k · v1
ρ0

ω
, (5.2)

which was derived from the continuity equation. Inserting this relation into (5.1)
results in

v1 =
v2
s

ωρ0
k(k · v1)

ρ0

ω
+

(B0 · B1)k
ωρ0

− (B0 · k)B1

ωρ0
(5.3)

=
v2
s

ω2
k(k · v1) +

(B0 · B1)k
ωρ0

− (B0 · k)B1

ωρ0
. (5.4)

These equations can be solved componentwise, here for example, performed for the
x-component, we have

v1x − v2
s

ω2
kx(k · v1) =

(B0 · B1)k− (B0 · k)B1

µ0ωρ0
, (5.5)

with the other two components similar to the x-component. By considering a special
geometry (B0 = B0ez and k = kxex + kz ez ), we obtain

v1x =
v2
s

ω2
kx(kxv1x + kzv1z ) +

B0zB1z kx − B0z kzB1x

µ0ωρ0
, (5.6)

v1y = −B0zB1y kz

µ0ωρ0
, (5.7)

v1z =
v2
s

ω2
k2

z v1z +
v2
s

ω2
kxkz v1x . (5.8)
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Again solving the above system of equations for the components, we have

v1x =
1

µ0ρ0ω

ω2 − v2
s k

2
z

ω2 − v2
s k

2
z − v2

s k
2
x

(B0zB1z kx − B0zB1xkz ), (5.9)

v1y = −B0zB1y kz

µ0ωρ0
, (5.10)

v1z =
1

µ0ρ0ω

v2
s kxkz

ω2 − v2
s k

2
z − v2

s k
2
x

(B0zB1z kx − B0zB1xkz ). (5.11)

Using our results in (2.5) we obtain for the electrical field

E1 =


 v1yB0z

−v1xB0z

0


 (5.12)

=




−B2
0zB1y kz

ωρ0
1

µ0ρ0ω

ω2 − v2
s k

2
z

ω2 − v2
s k

2
z − v2

s k
2
x

(B0zB1z kx − B0zB1xkz )B0z

0


 . (5.13)

According to (2.24) B1y ∝ ky = 0 so that in this geometry v1y = 0 implying
E1x = E1z = 0, independent of the wave type.
We will now take a detailed look at the velocity and the electric field for the

different wave modes.
Slow magnetosonic. The detailed calculations show

v1x = −vA
√

β(1 + β)
ρ1

ρ0

cos θ

sin θ

β

1 + β(1 + cos2 θ)
, (5.14)

v1y = 0, (5.15)

v1z = vA.
√

β(1 + β)
ρ1

ρ0

1
1 + β(1 + cos2 θ)

. (5.16)

We can immediately deduce from (5.12)

E = −eyB0vA
√

β(1 + β)
ρ1

ρ0

1
1 + β(1 + cos2 θ)

. (5.17)

Fast magnetosonic. with a similar calculation as above, we obtain

v1x � vA

√
1 + β

β(1 + sin2 θ)
1 + 2β sin2 θ

1 + β sin2 θ
(5.18)

×
(

sin θ
1 + 2β sin2 θ

1 + β(1 + sin2 θ)
+

cos2 θ

sin θ

1 + 2β(1 + sin2 θ)
1 + β cos2 θ

)
,

v1z �
√

1 + β

β(1 + sin2 θ)
β sin θ cos θ

1 + β sin2 θ
(5.19)

×
(

sin θ
1 + 2β sin2 θ

1 + β(1 + sin2 θ)
+

cos2 θ

sin θ

1 + 2β(1 + sin2 θ)
1 + β cos2 θ

)
.
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So for the electrical field we have

E = eyB0vA

√
1 + β

β(1 + sin2 θ)
1 + 2β sin2 θ

1 + β sin2 θ

×
(

sin θ
1 + β sin2 θ

1 + β
− cos2 θ

sin θ

1 − 2β sin2 θ

1 + β(2 − cos2 θ)

)
. (5.20)

Alfvén waves. As we have already worked out, there are no density fluctuations
in Alfvén waves and the only non-vanishing component of the magnetic field is the
x-component. It is, therefore, straightforward to work out the electric field and the
velocities from the induction equation and Ohm’s law

k× E = −ω

c
B, (5.21)

⇒ Ey =
vA
c

B1x , (5.22)

E = −v

c
× B, (5.23)

⇒ v1x = vA
B1x

B0z
. (5.24)

6. Comparison with previous results
Sitenko (1967) has calculated the polarization of the E-vector from the dielectric
tensor. We will summarize his results as follows.

6.1. Alfvén

E
Ex

=




1
−ikz

ω

Ωi
tan−2 θ

− v2
s

v2
A

ω2

Ω2
i

1
sin θ cos θ


 (6.1)

B
Ex

=
c

ω




ikz
ω

Ωi
tan−2 θ

kz + kx
v2
s

v2
A

ω

Ω2
i

1
sin θ cos θ

ikx
ω

Ωi
tan−2 θ




. (6.2)

Considering the physical boundary conditions we encounter in the diffuse ISM
(ω � Ωi and β � 1), we may limit the calculations for the magnetic field to

By =
ckz

ω
Ex =

c

vA
Ex (6.3)

for θ < π/2. Keeping the fact in mind that the x- and y-component are interchange-
able, this resembles the result of (5.23).
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6.2. Fast magnetosonic waves

E
Ey

=




−i
ω

Ωi
sin−2 θ

1

−i
v2
s

v2
A

ω

Ωi
sin θ cos θ


 , (6.4)

B
Ey

=
c

ω




−kz

ik
ω

Ωi
(cos θ sin−2 θ + v2

s v
−2
A sin2 θ cos θ)

kx


 . (6.5)

If we consider the ratio between the x- and z-component as in (4.6), we see that

Bx

Bz
= −cos θ

sin θ
(6.6)

gives us the same result as the limit β → 0 for (4.6). The By -component can only
be calculated in a kinetic framework, as a finite Larmor-radius is included.

6.3. Slow magnetosonic waves

E
Ez

=




sin θ

−i
v2
s

v2
A

sin θ cos θ

cos θ


 (6.7)

B
Ez

=
c

ω




i
v2
s

v2
A

Ωi
ω

sin2 θkz

0

i
v2
s

v2
A

Ωi
ω

cos2 θkx


 . (6.8)

The Sitenko result shows the same Bx/Bz behaviour as our result, which is reques-
ted by the divergence-free condition for the magnetic field.
Schlickeiser and Lerche (2002) have derived the density fluctuation spectra for

the Alfvén and FM waves, but as they used a kinetic theory to show compressibility
for Alfvén waves we can compare only the results for the FM. Equation (6.9) in
their paper reads

Pzz(k) = tan2 θPxx(k) (6.9)

which is similar to (4.6) in the β → 0 limit. Their (6.8) gives the fluctuation spectrum

Pnn(k)
n2

e

=
Pzz(k)

B2
0

9
4
(1 + β sin2 θ)2. (6.10)

Contrary to this we have calculated

Pnn(k)
n2

e

=
Pzz(k)

B2
0

(
1 +

β cos2 θ

1 + 2β sin2 θ

)2

. (6.11)

Hall (1980) has also calculated the plasma density fluctuations induced by waves,
but he considered a different physical regime (high-β), so that his results are not
comparable.
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7. Discussion and conclusions
We were able to derive the relations between the density fluctuations and the
resulting magnetic and electric field fluctuations. These are important results for
the interpretation of astrophysical data in the context of analytical calculations.
The results are applicable to plasma waves with β < 1 and propagation angles

θ < π/2. Another limitation is that ω should be below Ωi so that the effects of
a finite Larmor radius may be neglected. In order to neglect the Hall effect, the
scales involved should be above the Hall scale.
Our theory proved the incompressibility of Alfvén waves in the MHD framework,

which is important as a test case for the theory. Comparing our results with those of
Sitenko (1967), who works with a theory based on the dielectric tensor, we can see
that we are able to recover most properties of the magnetic field, except for those
accounted for kinetic effects (i.e. By and Ex ). We have a different result for the
magnetic field by SM waves, that is explained by our use of a plasma with β �= 0.
Also, the electric field shows different properties that are a result of the deviations
in the magnetic field and the chosen system of coordinates.
The major advantage of our calculation is the possibility to handle plasmas with

β �= 0.
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