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A new class of integrals involving the confluent hypergeometric function 1 Fi (a;c; 2)
and the Riemann Z-function is considered. It generalizes a class containing some
integrals of Ramanujan, Hardy and Ferrar and gives, as by-products, transformation
formulae of the form F(z,a) = F(iz, 8), where a3 = 1. As particular examples, we
derive an extended version of the general theta transformation formula and
generalizations of certain formulae of Ferrar and Hardy. A one-variable generalization
of a well-known identity of Ramanujan is also given. We conclude with a
generalization of a conjecture due to Ramanujan, Hardy and Littlewood involving
infinite series of the Mobius function.

1. Introduction

For a3 = 7w, Rea?, 32 > 0, the well-known transformation formula for the theta

function
e 2
pl@)= > ",
where |g| < 1, is given by [3, entry 27(i), p. 43]

Vap(e @) = \/Bo(e ™).

For a8 = 1, it can alternatively be written in the form

1 e 2,2 1 o 2,2
- —ma‘n _ - —nBn ) 1.1
Vg = e ) = VB( g5 - e ) (1)
In [31, p. 36], one finds the following integral evaluation:
> Z(t , = .
/ 5 ( )1 cosztdt = ~ (el/Q —27/? Z eXp(—ane_Ql)), (1.2)
0o t*+ 3 2 ot

where Z(t) is the Riemann =-function defined by

() = &(3 +1t), (1.3)
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372 A. Digit
the £(s) being the Riemann &-function
£(s) == s(s — Dr /2 (1s)C(s), (1.4)

with ((s) being the Riemann zeta function (see §2). Replacing t by 1t on the
left-hand side of (1.2), then setting x = log a and simplifying, gives, for o =1,

2 /000 E(%t) cos(%tlog a)dt = ﬁ(l - ie_ﬂ’@Z"Q) (1.5)

T + 2 203

—_

n=1

Now the invariance of the integral on the left-hand side of (1.5) under the map o —
0 proves (1.1). Such integrals involving the Riemann Z-function, which are invariant
under certain maps, can be used to prove a variety of transformation formulae.
A beautiful example illustrating this phenomenon is found in Ramanujan’s lost
notebook [28, p. 220], with the first proofs being given in [5]. This formula, which
Ramanujan describes as ‘curious’, is given below.

THEOREM 1.1. Define

Aw) = 9(@) + 5 g,

where

Y(x) = F/(:f =—7- Z (erx - ml+1) (1.6)

m=0

is the logarithmic derivative of the gamma function. Let the Riemann functions
Z(t) and £(s) be defined as in (1.3) and (1.4), respectively. If o and B are positive
numbers such that a3 = 1, then

\/a(v—bg(%a) + i /\(ka))

2c
k=1

_\[( log%ﬁ +2Akﬁ>

B 1 Rl B —1+it
-2 i~W< )

where v denotes Fuler’s constant.

cos(%tlog @)
1+1¢2

dt,

Ramanujan [27] was the first to employ the idea of using integrals involving the
Riemann =-function to prove transformation formulae. Koshlyakov made a fruitful
use of his technique in several of his papers (see, for example, [19]). Recently, this
technique was further explored and extended by Dixit in [9-12] to obtain more
general transformation formulae of the form F(z,«) = F(z,3) or their character
analogues F(z,a,x) = F(—z,8,%x) = F(—z,0,%) = F(z,08, ), where a8 = 1, in
addition to the transformation formulae of the above type, i.e. of the form F(a) =

F(B).
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Analogues of the general theta transformation formula 373

This paper focuses on formulae of the type F(z,«) = F(iz, §), where a8 = 1. This
work was motivated by the search for an integral representation, similar to (1.2),
for both sides of the following generalization of (1.1), valid for a3 =1 and z € C,

_z2

\/a< iy 2/826 matn? o fam)>

N ﬁ<e2ﬁ

which is of the form F(z,a) = F(iz, 3). In [2, entry 7, pp. 252-253], this identity
can be found in a slightly different form. Another version of (1.7), given in terms
of Ramanujan’s theta function

e 7 /SZe *n? cos(i fﬂnz)) (1.7)

f(a,b): Z an(n+1)/2bn(n—1)/27 |ab|<1,

n=—oo

and valid for a8 = m, is [3, entry 20, p. 36]
ez2/4\/af(e—a2+iza’e—oﬁ—iza) _ \/Bf'(e—ﬁz-i-zﬁ, 6—52—25)_

For more details, see [6].
Formulae of the type F(z,«a) = F(iz,[3) are generated through a one-variable
generalization of integrals of the form

/ f(3t)Z(3t) cos(3tlog o) dt,

whose special cases were studied by Ramanujan, Koshlyakov, Hardy and Ferrar
(see [9] for some examples). This one-variable generalization is of a different kind
than those studied in [11,12] in that, the variable z does not occur in the argu-
ment of the Riemann Z-function but rather in a function which generalizes the
cos(1tloga) term. This function, which we denote by V(z, z, s), involves the con-
fluent hypergeometric function 1 F1(a;¢; z) [1, p. 188], and is defined by

V(x,z,8) = p(x,z,8) + p(x,z,1 = 3), (1.8)
where . L 2
p(z,2,8) == $1/2sez2/81F1< g s = z4>
S 1.9
1Fi(a;c;2) = 7;) <(ac§2j:’ (1.9)
with (a), being the rising factorial defined by
I'la+n)

(@)p=ala+1)---(a+n—1)=

for a € C. It is easy to see that
V(a,0,3(1+it)) = a2 4 oft? = 2 cos(3tlog o).
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The general form of the integrals giving rise to transformation formulae of the type
F(z,a) = F(iz, f) is given by

Pl a) = /OOO f(;t)g(;t)v<a,z, ! ! it) dat, (1.10)

where f(t) is of the form f(t) = ¢(it)¢(—it) and ¢ is analytic in ¢ as a function of
a real variable. To see this, recall Kummer’s first transformation for the confluent
hypergeometric function [1, (4.1.11), p. 191]

1Fi(a;¢;2) = e*1Fi(c— a;¢;—2). (1.11)

Using (1.11) in the second equality below and the fact that a8 = 1, we see that

1+it 1+it 1—it
V(s ) = (s ) (0 5
. 2
_ gl/2—(+it) /227 /8 -t 1 =2
ﬁ € 1 1( 4 727 4

. 2
1/2-(1-it)/2,2° /8 [ L+it 1 =
+6 € 1 1( 4 727 4

: 2
_ oit/2e-2/s g (LI 127
« € 1 1( 4 727 4

. 2 1—it 1 22
—it/2 ,—2°/8 F L.
+ « e 1 1( 4 727 4>

B A 1+ it
=p|az, 2 Pl &, 2, 2
1+ it
= V(mz, ?) (1.12)

Then (1.10) and (1.12) imply that F(z, a) = F(iz, 8).

We explicitly evaluate the integrals in (1.10) for several choices of the function
f(t). These give rise to new analogues of the general theta transformation formula
(1.7). We begin by stating the general theta transformation formula itself, obtained
through such an integral. Its extended version is as follows.

THEOREM 1.2. Let z € C. If a and B are positive numbers such that af = 1, then

2
e~ ? /8

\/5( — e /B Z oo’ cos(ﬁanz))
n=1

Z2/8 2 i 2.2
— \/B<e —e /SZef’Tﬁ " cosh(+/T, nz)>

26 n=1
1 [ 2(3) 1+it
=— — | dt. 1.13
WA e\ %% g (1.13)
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At the end of his short note [16], Hardy obtained an identity, whose corrected
form (see, for example, [9]), is

> Z(3t) cosnt .
1 dt=3e""(2 i ! log 2
/0 1+1¢ COSh%’]Tt 107" (@n+ 37+ jlogm +log2)

+ %e”/ Y(z + 1) exp(—mr?e?™) dz, (1.14)
0
where n is real and (x) is defined in (1.6).

Later, Koshlyakov [19, (14), (20)] expressed the above identity in a compact and
symmetric form, which we rephrase in the following form, valid for a8 = 1:

\f/ Yz +1) —logz)e ™™™ dz = f/ —logz)e ™" dz

B 2/00 Z(4t) cos($tloga)
0

de. 1.15
1+t2 cosh %mﬁ ( )

This is seen at once by letting n = § log v in (1.14) and by using the formula [15,
formula 4.333, p. 572]

o ) 1
/ e*’m‘zl2 logzde = ——(v+ 108}(40427T))-
0 li%s

Koshlyakov also proved this identity in several of his other papers, namely, [20, eqn
30.5], [21, eqn 34.10],! [18, eqns 18, 19]. He also gave two different generalizations
of Hardy’s formula; one in [20, eqn 30.4] and [21, eqn 34.1], and another in [29, eqn
27). (See [7, pp. 198-199] for the genesis of the monograph [29] written under
Koshlyakov’s patronymic, N. S. Sergeev.)

Here, we obtain the following new generalization of (1.15), again of the form

F(z,a) = F(iz, §).
THEOREM 1.3. Let z € C and let ¢(z) be defined as in (1.6). If o and § are two

positive numbers such that a8 =1, then

Vae /8 / " (4 1) ~ loga)e ™% cos(v/7aaz) dr

0
= /B /8 /oo(w(x +1) —logz)e ™% cosh(yv/7Bzz) dx
0
_ /OO Z(3t) V(a, z, 5(1 +it))
0

1+ ¢2 cosh %mﬁ

dt. (1.16)

In [14], Ferrar obtained some transformation formulae of the form F(a) = F(0),
of which one is rephrased in the form given below.

IThe formula here contains a typo, as the factor % log 27 should be % log 7.
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Let Ko(z) denote the modified Bessel function of order 0. If o and 8 are positive
numbers such that a3 = 1, then

—v + log 167 + 21 = 2n? 1
\/a( v + log 167 + OgOé_2Z(eﬂ,a2n2/QKO<7TOé n )_))
o 2 no

n=1
—v + log 167 + 2log 8 = 42n? )2 7B%n? 1
_ 9 BN K, o
NG ( : > (e () - L
i /oo r 1+it r 1-—it =(11) cos(%tlog a) q (1.17)
A 4 4 )7 T e ‘ '

This also admits the following new generalization, which is the third example of
the form F(z,a) = F(iz, §).

THEOREM 1.4. Let z € C and let Ko(z) be as defined above. If a and 3 are positive
numbers such that a8 = 1, then

Jae= /8 /OC o—at/an < atz > (ZKO (nt) ) dat
0
2 o0 _ 3242 /4n ﬁtz s T
v/ Be /s/ 8212 /4 Cosh(m)<§[(o( )—2t) dt

Q\f/ <1+lt)F<1;1t>fi;)V(a,z,lzit>dt. (1.18)

For real n, Ramanujan [27] showed that

I
S
=+

\

* zexp(—mrie i)

e ™ — 4re 3" 5 dx
0 e’m™ — 1

47r\f/ ( 1+lt>F<_14_it)E(gt)cosntdt. (1.19)

As noted in [9], letting n = %loga in the above identity and noting that the
resulting integral on the left-hand side is invariant under o — (3, where a8 = 1,

gives
00 —rx?/a?
0171/2 — 47'('0673/2/0v 152”7_1 dzx
0o —
— g2 47T573/2/ xz% da
0 esm — 1

4Wf/ ( 1+lt>r(_14_it)g(;t)cos(;ﬂoga)dt. (1.20)

For more details on the first equality in (1.20), see [9]. The following new general-
ization of (1.19) is given here.
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THEOREM 1.5. Let z € C and let p(x, z,s) be defined in (1.9). Then,

e27'rz _ 1

N T A —1—it\ oy 3+it
_W/OOF< 4 >F< 1 >u(2t)p<a,z, 5 )dt. (1.21)

Obviously, the presence of 2 instead of & in p(«, z, (3 +1it)) destroys the invari-
ance property under the simultaneous application of the maps o — (8 and z — iz.
Regarding the special case of the integral on the right-hand side of (1.21) when
z =0 (i.e. the integral on the right-hand side of (1.20)), Hardy says in [16],

2,2
oo —Ta T
_ 2 2 xe cos(y/maxz
a~ 1267718 _ grot/2e% /8/ (Vv )dx
0

[tJhe integral has properties similar to those of the integral by means
of which T proved recently that {(s) has an infinity of zeros on the line
o= % and may be used for the same purpose.

It may be interesting to see what information can be extracted from the general inte-
gral. For a different generalization of (1.19), or more specifically of (1.20), see [13].

In [17, §2.5, p. 156], Hardy and Littlewood discuss the following amazing identity,
actually a conjecture, involving an infinite series of the Mobius function having its
genesis in the work of Ramanujan [4, p. 470].

CONJECTURE 1.6. Let u(n) denote the Mébius function. Let o and 3 be two positive
numbers such that a3 = 1. Assume that the series

5 (r@(}(— e

. ¢'(p)

converges, where p runs through the non-trivial zeros of {(s) and a denotes a positive
real number, and that the non-trivial zeros of ((s) are simple. Then

o S Me—ﬂoﬁ/nz _ 1 ri _p))ﬂ.pﬂap
VaL T, VR 2 OO

- :U‘(n) 77Tﬁ2/n2 1 F(%(l _p)) /2

= /5SS B, - P26, (1.22

VLT, WL 0 (122
The original formulation, slightly different in [17], can be easily seen to be equiv-

alent to (1.22). See also [26, p. 143] and [31, §9.8, p. 219] for discussions of this

identity. The above conjecture admits the following generalization, also of the form

F(z,a) = F(iz, §).

THEOREM 1.7. Let p(n) denote the Mébius function. Let z € C and let o and 3 be
two positive numbers such that a8 = 1. Assume that the series

1 _ _ _ .2
ZF(QC{/]'(p)p))lF1<12p7;74Z>ﬂ_p/2ap

p
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converges, where p runs through the non-trivial zeros of {(s) and a denotes a positive
real number, and that the non-trivial zeros of ((s) are simple. Then

\/aez2/8 Z Me*”‘}/”2 cos (\/M>
— n n
22/8 1 —
I ZF(Q(l p))1F1 l—p;l;_i P20
4y/Ta p ¢'(p) 2’2" 4

= \/567’22/8 Z @ef’rﬁz/’ﬁ cosh <ﬁﬂz>
n=1

n

2

e r /0 F(é(l—p))1F1<1—p;1;2'2>ﬂ_p/25p. (1.23)
B & () 2 24

This paper is organized as follows. In §2, we discuss preliminary results which
are subsequently used in the later sections. In §3, we obtain a line integral rep-
resentation for the integral in (1.10). Then in §§4-7, we prove theorems 1.2-1.5,
respectively. In §8, we give a proof of theorem 1.7. Finally, we conclude the paper
with some remarks on further developments that may be possible.

2. Preliminary results

The Riemann zeta function ((s) is defined for Re s > 1 by the absolutely convergent
Dirichlet series

)= - (21)

It can be analytically continued first to 0 < Res < 1 by an elementary argument
and then to the whole complex plane, except for a simple pole at s = 1, by means
of the following functional equation [31, (2.6.4), p. 22]:

ﬂ_‘g/QF(%S)C(S) _ 7_‘_—(1—8)/2]“'(1;8>C(1 _ S), (2.2)

which can also be written in the form

£(s) = €(1 —s), (2.3)

where £(s) is the Riemann ¢-function defined in (1.4). We also need some basic
properties of the gamma function I'(s). The reflection formula for the gamma func-
tion [30, p. 46] is given by

™

rs)r(-s)= 2.4
()01~ 5) = = (24)
for s ¢ Z. Further, Legendre’s duplication formula [30, p. 46] gives
VT
I(s)I'(s+ %) = 22571F(23); (2.5)
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Stirling’s formula for I'(s), s = o + it, in a vertical strip a < o < § is given by

I1(s)] = (2m)!/2|t]7=2/2e=lel/2 (1 i o(ﬁ)) (2.6)

as |t| — co. We shall also require the inverse Mellin transform representation of the
2
function e=**" cos bz [24, eqn 5.30, p. 47], valid for ¢ = Re s > 0, and given by

1 c+ioco

1—s 1 b?
e~ cosby = — 1a_s/2f(és)e_b2/4“1F1< 5. 2.

2 2 4a

2mi 2

)x_sds, (2.7)

which can easily be proved by employing the series representation of 1F; and
then interchanging the order of summation and integration. Finally, we require
the asymptotic formula, for large values of ||, for the Whittaker function M , (%)
defined by [15, formula 9.220, no. 2, p. 1024]:
My (2) = 2T 2722 Fr(p— A+ 3520+ 1; 2). (2.8)
This formula is given by [22, p. 318]
My, (2) = 7= V24N P (20 4-1) cos(2V Az — im—pm)+ O(N~*=3/%) (2.9)

as |A| = oo and |arg(\z)| < 2. Letting p = —% and replacing z by 12 in (2.9)
and using (2.8), we obtain, upon simplification,

(] = X352 ~ e/ cos(Vkz), (2.10)

as [A| = oo and |arg(Az)| < 27.

3. A line integral representation

Here we give a line integral representation for the integral in (1.10) that will allow
us to use the residue theorem and Mellin transforms for its evaluation.

THEOREM 3.1. Let
f(t) = o(it)p(—it),
where ¢ is analytic in t as a function of a real variable. Let V(x, z, s) and p(z, z, s)

be defined as in (1.8) and (1.9). Assume that the integral on the left-hand side below
converges. Then,

/00o FOE(0V (a2, 1+ it) e

1/24i00
—1 [ e Dot - 9eplazds @)

1 J1/2—ic0
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Proof. Let I(z, ) denote the left-hand side of (3.1). Then using the facts that f(¢),
Z(t) and V(a, 2, 3 + it) are all even functions of ¢, we have

I(z,a) = ;( OOO fOEW)V (o, 2, 2 +it)dt — /O_OO f(=)E(-)V(a, z, 5 —it) dt>

[ee]
1/2+ioo

=1 [ iz s g v
- % 12— ¢(s — %)QI)(% —9)&(s)(p(a, z,8) + pla, 2,1 — 5)) ds

_ %(Il(z,oz) + D(za), (3.2)

where

1/2+4i00
Biza)i= [ ols— Dok - D(s)plan ) ds

/2—ioco

1/2+ic0
Ir(z,a) = /1 o(s — 2)o(5 — s)&(s)pla, 2,1 — s) ds,

/2—ico
and in the penultimate step in (3.2), we have performed a change of variable s =

% +it. Now rewriting I(z, ) by employing (2.3), and then replacing s by 1— s, we
easily see that

1/2+4ic0
Biza)= [ oh = (1= )01 — s~ DEQ - pla 1 —s)ds

/2—ioco

1/2+4ic0
_ / o(s — 1Yo(L — 5)E(s)p(ar 2, 5) ds

/2—ioco
=IL(z, ). (3.3)
Hence, substituting (3.3) into (3.2), we obtain (3.1). O

For our purposes, we shall use the following alternative form of (3.1), which is

easily obtained by replacing t by %t on the left-hand side of (3.1):

[ ra0z6ov (e a2 T s~ 10(L — s)els)olan = 5) ds.

1 J1/2—ic0

N

4. Proof of theorem 1.2: extended version of the general theta
transformation formula

Using (1.3), (1.4), (1.8), (1.9), (2.6) and (2.10), we easily see that the integral on
the extreme right-hand side of (1.13) converges. Let ¢(s) = 1/(s + 1), so that
f(t) = ¢(it)p(—it) = 1/(t> + 1). Substituting this into (3.4) and using (1.4) and
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(1.9), we have

oo —=(1
=(5t
4/ (3 )V a,z71+lt dt
0o 1+t 2

1/24ioc0
:i/ ' n 2L (38)¢(s)p(ax, 2, 8) ds

1/2—ioo

_ia1/2622/8/1/2+ioof( s)((s)lFl(ls L ZQ)(fa) sds. (4.1)

1/2—ioco 2

D=

To evaluate the last integral, we shift the line of integration from Res = %
to Res = 144, § > 0, so that we can use ( 1). Consider a positively oriented
rectangular contour with sides [£+iT, £ —iT], [§ —iT, 1+ 6 —iT], [14+6—iT, 146 +iT]
and [1 + & + iT, 3 + 1T, where T is any positive real number. While shifting, we
encounter the pole of the integrand at s = 1. Hence, using the residue theorem, we
have

1/24iT 1—5 1 Z2
I'(3s)¢(s) 1 F <;;> o) ds
[ TR (55 T (v

14+6—iT 148+iT 1/2-HT 1—s 1 22
= rteenn (S g ) VR as
1/2—iT 14+6—iT 1+6+iT 2 24

— 2mi lim (s — 1) (Ls)¢(s) F1<1S L Zz)(fa) . (4.2)

s—1 2
Using (2.6) and (2.10), one easily sees that the integrals on the horizontal segments
[ —iT,14 6 —iT] and [1 + 6 +iT, 3 + iT] tend to zero as T' — oco. Also,

(s — DI GoconA (1555 ) R = 1 (43)

s—1 2

Therefore, letting T — oo in (4.2), using (4.3) and (2.1) in the integral over [1 +
0 —ioco, 1 4+ & + ic0], we have

/ 1/2+i°°r<;s><<s>1F1(1‘s ! ZQ)(M) “d

1/2—ico 2

14+d8+ico ©© 2 .

1—-s1 z 2mi

= F(15)1F1< ;;)( man) *ds — —

/1+6ioo nz::l ? 2 2 4 @

0 n145+ic0 2 i

1—-s1 z 2mi
= r(is) /| —=: == “ds — — 4.4
le—:l/1+5ioo (28)1 1( 2 724 >( mom) ’ a’ 44

where in the last step, we have interchanged the order of summation and integration,
which is valid because of absolute convergence.
Letting a = 1, x = \/man, b = z in (2.7), we see that

Lot 1—s 1 z2 cq—main® 422 /4
I'(3s)1 1 — i35 (Vman)™* ds = 4rie cos(v/Tanz).
1+0—ioco (4 5)
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Now (4.1), (4.4) and (4.5) imply that

e_z2/8 2 > 2 2
= \/&< 5 —e* /8 E e T cos(ﬁcmz)). (4.6)
a
n=1

Finally, replacing z by iz and « by § in (4.6), noting that the integral on the left-

hand side remains invariant in this process, and then combining the result with
(4.6), we arrive at (1.13).

5. Generalization of Hardy’s formula

Let

so that

=i (D)o ( 2 (- )5 )

Applying (2.4) twice, we easily see that

1

1
. —
1z (1 + t2) cosh gt

Using these facts along with (1.3), (1.4), (1.8), (1.9), (2.6) and (2.10), we find that
the integral on the extreme right-hand side of (1.16) converges. Similarly, one can
observe the convergence of the first two integrals in (1.16). Substituting the above
choice of f(1t) into (3.4) and using (1.4) and (1.9), we have

JRECACITE
o 1+t cosh 27t

B 1 1/2+i<x>7r78/28(s_ 1)F2(ls)
16721 e 2 2

y F<S21>F(12S>F<;)C(s)p(a,z,s)ds

__a1/2e—z2/8/1/2+ioop(ls) C(S) . 1_3,1,i
4 L W2 "2 14

2

/2100 2% sinTs

>(\/77a)_5 ds, (5.1)

where in the last step we used (2.5) as well as (2.4).

To evaluate the last integral, we shift the line of integration from Res = %
to Res = 144, 6 > 0, so that we can use (2.1). Consider a positively oriented
rectangular contour with sides [ +iT, 2 —iT], [4 —iT, 1+ 6 —iT, [14+86—iT, 146 +iT]
and [1+0+1iT, % +iT], where T is any positive real number. While shifting the line
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of integration, we encounter the pole of order 2 of the integrand (due to ((s) and
sinws) at s = 1. Hence, using the residue theorem, we have

/1/2+iTF(1S).C(S)1F1<1_S 1 z2>(fa)

1/2—iT 2 SN TS 2

14+6—iT 14+6+iT 1/24iT s
1/2—iT 1+6—iT 146+iT sinms

><1F1<1_8 L ZQ)(fa) sds — 2miL, (5.2)

|—=

2
where
pim iy (6= 020G S R (150 R ) ~ Lot I, 69
where
bt [ o S Y1525 2))
e o o ()

Using [9, (5.12)], (1.4) and (2.4), we observe that

s—1

Llhm(i(( —12r(Ls) §(5) (\/7?04)5>

= 2 him L (s — 1)20(s — 1) D (—5)(s)a~")

T s—1ds
_ —v + log(4ma?)
2o '

Now,

d 1—s 1 22\ d o= ((1—5)/2), (22/4)"
lel( X )Z_:l (1/2), nl

(2" d Ty (los
:z_:(l/Q)nn'ds[[( 2 H)

Ll (A (1-8) & 1
X G (3, S o

so that
d 1—s 1 22 1 = (22/4)" [(3—s 1= (22/4)"
lim <, F, o) = Ly RS A =1
51 st 1( 2 2 4) %ﬂzu/z)nn! 2 ) . 22(1/2)nn
Z 2F2( y 43 2a2a 41122) (55)
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Hence,
2 3 6.1,2
Ly = . 2 Fo(1,155,2; 527)
so that, by (5.3) and (5.4),
= %(—7 +log(4ma®) + 122 F5(1,1; 3, 2; 12%)). (5.6)

As before, using (2.6) and (2.10), one easily sees that the integrals on the horizontal
segments [ —iT,1+ 6 —iT] and [1 4 § +iT,  +iT] tend to zero as T — occ. Thus,
it remains to evaluate

14+5+ico
J(z,a) :—/1JrJr I'(3s) o) 1F1<1S§;;Z2>( ma)” ds

1 6—ico sinms

—~
o=

oo

4
:Z/ (28)1F1< 25;2;Z4>( wan)”*ds

146—ico SINTS

n=1

= Z J(z,a,n), (5.7)

where we have interchanged the order of summation and integration, which is valid
because of absolute convergence. Another application of the residue theorem yields,
for0<c=Res <1,

c+i<>0[1 1 1— 1 2
J(Z,OL,TL):/ <28)1}?1( 8’2724)( Tran)isds

_ico SIDTS

+ 271 lim -
s—1 sin s

It is well known that [26, (3.3.10), p. 91]

1 fetice g 1

27

: 5= :
sinms m(l+x)

Also, from [26, (3.1.13), p. 83], we have

1 c+ioco

o o F(S)G(S)w_stZ/OOO f(x)g(:y?, (5.10)

where F(s) and G(s) are Mellin transforms of f(z) and g(x), respectively. Hence,
from (4.5), (5.9) and (5.10), we have

c+ioco I 1 1— 1 2 R oo —x?
/ (28)1F1< S;;Z>(ﬁan)sds=4iez /4/ €GBTy
c 0

oo SInTS 2 24 T + /T -
(5.11)
Also,
. (s=1I(3s) 1—s 1 22 _ 1
1 F; ;= — = 12
ST simrs VT2 274 (vVman) ™o (5.12)
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Thus, (5.8), (5.11) and (5.12) imply that

J(z,n,a) = die* /4 /oo e cosaz ) e /4 (5.13)
s 0 T+ +/mna 2na )’ '

. . — 2 .
Rewriting e =% /* as an integral, we have

e 2 Ooe_””2 coszzdx (5.14)
Ty — ~

Now (5.13), along with (5.14), (5.7) and (1.6), gives

) e 1 1
J(z, ) = 4die® /42/ Ccos xz){x—i—ﬁna_ﬁna}dx

= [* 1 1
= —4ie” /4 Z / et cos(ﬁowcz){ — } dx
n=170 n

r+n

N 2,2 - 1 1
— _4je? /4/ —ma’x _ d
ie i e cos(v/razz) E i e ppey L

n=0

o0
= —4iez2/4/ ((z+1)+ y)e_’m‘z”’32 cos(y/mazz)dx
0

P z/4< / W(z + e a2w2cos(\/7?axz)dx), (5.15)

where in the second step we made the change of variable x — /max, and in the
third step we interchanged the order of summation and integration, which is valid
because of absolute convergence. Thus, from (5.1), (5.2), (5.6) and (5.15), we have

/°° Z(3t) V(a, 2, (1 +1t)/2)
0

dt
142 cosh £ st

1/2,-2%/8
— _O‘Zi{ _4ie? /4< / Pl +1)e —ma’a? cos(ﬁaxz)dx)

_;( v + log(4ma®) + 2F2( 3224)>}

= ae® /8 / (x4 1)e ™" cos(y/razz) do
0

722/8

9 22 3 22

Finally, replacing z by iz and « by § in (5.16), noting that the integral on the
left-hand side remains invariant in this process, and then combining the result with
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(5.16), we arrive at

[ETenuri,
o 1+1t2 cosh 17t

— \/aezz/s/ (x4 1)e ™" cos(yrazz) da
0
—22/8 2 3
e z z
log(4ma®) + o F( 1,1; 5,2, =
+4\/a(’}/+0g(7705)+22 2( o 4)>
= \/56722/8/ P(z+ l)e”r’@%2 cosh(y/7Bzz)dz
0
L /8

22 3 P

We can rewrite (5.17) in a more compact form by means of the integral evaluation

/ e ™7 cog(yrazz) logz dz
0

efz2/4 2 3

z 22
=0 (7 + log(4ma?) + 521«5 (1, 15,2 4) ) , (5.18)
which can be proved by expanding cos(y/maxz) into infinite series, interchanging the

order of summation and integration and then employing the following formula [15,
formula 4.352, no. 3, p. 573], valid for Re u > 0:

o - ! 1 1
n—1/2 —px (2n 1) — =
/ T e logmdx—fﬂ'% pERYD 2 1—|—3+ +2 1 v —logdu|,

0
along with the fact that

2 (=224 1 1 2 e 3 22
1 — P = —— Z F 11'727
> ! AR — ¢\ hhy sy )

n=0

which in turn can be proved by reversing the steps in (5.5) and using (1.11). Com-
bining (5.18) with (5.17), we obtain (1.16).

6. Generalization of Ferrar’s formula

Using (1.3), (1.4), (1.8), (1.9), (2.6) and (2.10), we easily see that the integral on
the extreme right-hand side of (1.18) converges. Now, from [32, eqn 6], we have, for
Rer > 0,

ZiKo(m')ﬂ{ +22(m 2:m>}+’y+log <;)10g27r. (6.1)

This implies that, as ¢t — 0T,

which shows that the first two integrals in (1.18) converge.
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Let

¢(s) =

— (3 + 39)

1
2

t it —it 8 141t 1—-1it
1(3) =G )(5) - () (5)
Substituting this into (3.4) and using (1.4) and (1.9), we have
© /141t 1—it\ =(3t) 1+it
8 r r dt
/0 ( 1 ) ( 1 >1+t2v “5Ty

1/2-+ico 1—s
o[ e gar (S el s
1/2—ico 2

1/24ic0 1—s 1—5 1 2°
—zate s [ (L e (g v
(6.2

so that

N[

~

To evaluate the last integral, we wish to shift the line of integration from Re s = %

to Res =149, 0 < § < 2, so that we can use (2 1). Consider a positively oriented
rectangular contour with sides [ +iT, § —iT], [§ —iT, 140 —iT], [14+6—iT, 146 +iT]
and [146+iT, % +iT], where T is any positive real number. While shifting the line
of integration, we encounter the pole of order 2 at s = 1 (due to I'((1 — s)) and
¢(s)). Using the residue theorem, we have

/24T 1-s 1—s 1 22
Ir?*(is)r F o ~*d
e 97 ( )<<s>1 (5 »“>< o
T

146—iT 14+0+iT 1/24i 1—s
) 2
1/2—iT 1+6+iT

« (s F s ié (Vra)~*ds — 2miL, (6.3)
)1 Fy 5357 T s — 27 .
where
_ d 921 1-s 1—s 1 2° s
L _l;rr}ds((s—l)f’(Q )F( 5 >C(8)1F1( 5 o (Vra)
=L, + Lo, (6.4)
with
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Now Ly can be easily computed, or from [9, (4.12)], we readily have

1=l 3 (- 122G (55 el ra) )

= ﬁ(log 167 + 2log v — 7).
!

(6.5)
Also, from (5.5) and the fact that I'(1/2)

2

n=—an (11325 ) iy {e - v (55 ) )
fn(irya)

Finally, from (6.4)—(6.6), we have

=/, we find that

(6.6)

L

2 2
f(—y—i—logl&r—i—ﬂogoﬁ-222F2<1’1;§,2;Z4)>' (6.7)

Using (2.6) and (2.10), one easily sees that the integrals on the horizontal segments
1 . .
2 )

[1 —iT, 146 —iT] and [1+ 6 +iT, 1 +iT] tend to zero as T' — co. Thus, it remains
to evaluate

T(zra) = ﬂffr%;sw(lgs)c( nA (1555 ZQ)(M) “d

0 1+5+ico 2
s 1—s 1—s 1 z” —sq
14+5—ioco
Z Z,x, TL

(6.8)
Here B(s,z — s) is the Euler beta function given by
oo gsL I'(s)I'(z—s)
B —5) = ———der=—""——, 0<R Re z. 6.9
(s,z—s) /0 012 x () ) <Res < Rez (6.9)

Another application of the residue theorem yields, for 0 < ¢c=Res < 1
J(z,a,n)

c+ioco s 1—s o ,
- ﬁ(/ioo B<2’2)F(%5)1F1(2;2;)
1-— 1
el o (5 ) (5
1
2

c+ico _ _
([ a5 5 o 5
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From (6.9), we have for 0 < ¢c=Res < 1,

1 ctico s 1—s 2
— Bl-,— |z %ds = —. 6.11
2mi (2’ 2 )x i V1+ 22 ( )

c—ioco

Now using (4.5), (6.11) and (5.10), we see that

efioe /51— 1—s 1 22 s
(o) —$2

=8mie” /4 [ BT qp (6.12)

0 Vx4 man?

Hence, from (6.8), (6.10) and (6.12), we deduce that
24— o= coszz e /4

— 3/2: .2°/4 _ 6.13
J(z,a) = 8m°/*ie Z ( ; o T = ) (6.13)

n=1

Substituting (5.14) into (6.13) and then employing the change of variable z =
at/(2y/m), we have

1

00 00 1
J(z,a) = 873/ 2407 /4 / e~ cos xz( — ) dz
(z,0) nZ::l 0 Va2 +ra2n?2 /Tha
o0
2 o0 2,2 tz 1 1
= 87%/2je* /4 / et /4’rcos<a )( —) dt
nz::l 0 2\/77' V2 + 472n? 2m™n

_ g-3/2:.2%/4 X o /4n atz \ ¢ 1 _1 dt
8/ “ie /0 e COS(2ﬁ Z JErioe 2m .

n=1

(6.14)

From (6.14) and (6.1), we have
e tz
J(z,a) = 87r3/2iez2/4/ e~ /AT g ( a >
1 = 1
X (27r (—'y + log 47 — logt + 2; Ko(nt)> — 2t> dt
=: 871’3/21622/4(J1(Z, a) + Jao(z,a) + J3(z, ), (6.15)

where

—y +logdn [ t
Ji(z, @) = T8 Z:g 7T/O e /A7 cog <20i/;> dt,

1 > —a?t? /ar
Ja(z, @) = o /. e cos

atz
logtdt

L% 22 atz T
:: —_ a - .
J3(z, ) - /0 e cos N E Ko(nt) % dt

n=1
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However, from [15, formula 3.896, no. 4, p. 488]

e—z2/4
Ji(z, @) = o (= + log 4m) (6.16)
and, by using (5.18), we find that
—2%/4 2 3 2
e z z
Ja(z,a) = 1o <’y+210ga10g7r+22F2<1,1,2,2, 4>> (6.17)

Thus, from (6.2), (6.3), (6.7) and (6.15)—(6.17), we deduce that

< 14it 1—it (i) 1+ it
r r 2 at
8/0 ( 1 ) ( 1 >1+t2v R

_471_3/20[1/26722/8

D) 1 3 22
x § —(—=y +logdm) + — (v +2loga — 10g7T+ 2F2 L1g,2—
- ” 2 25
4622/4 oo 2,2 atz
—a /47r E
+ - /0 e < )( KO nt t)dt

1 22 3 22
- — —7+10g1677+210ga+—2F2 1,1;—,2; —
@ 2 2 4

2 o 2,2 atz > s
-1 z°/8 —at*/4An K 1) — — ) dt
6/ e /0 e cos NG Z o(nt) 5; ) 4t

so that

2{/ <1+1t> <1;it)‘15i;:2)v<a’271;it>dt

- \/aezz/S/ om0 /4T o ( otz ) (ZKO (nt) — ) dt.  (6.18)

0

Finally, replacing z by iz and « by £ in (6.18), noting that the integral on the
left-hand side remains invariant under this replacement and then combining the
result with (6.18), we arrive at (1.18).

REMARK 6.1. The special case (1.17) of (1.18) can be derived as follows. Let z = 0
n (1.18). Then,

\F/ a2t2/4“<ZKo (nt) ) dt
(G o

n=1

1 <1+1t r —1t>: 1, cos(3tlog @)

https://doi.org/10.1017/50308210511001685 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210511001685

Analogues of the general theta transformation formula 391

From the invariance of the integral under the map a — 3, it suffices to show the
equality of the extreme left and right expressions in (1.17). To that end, observe
that, using (6.1) in the extreme left- and right-hand sides of (6.19) and using (6.16)
and (6.17), we have

_ < [1+it 1—it cos(Ltlog ar)
4 3/2/ r r Fln—/2—>"dt
A 4 4 Gh—

0 o — log 4w logt = 1 1
— 4 a“t®/4An _ dt
*/a/o ¢ ( 3 e T VETAnI?  onm

n=1
o0 2,2 s 1
— 4/al 71 (0 Jo(0,0) — [ emett/Am de
\/&< 1(0,@) + J2(0, @) /o z:: +47rn2  2nm
log 4 1
_4f(7+0g77+('y+210ga—10gﬂ')
2 4o

_ Z /OO eotyan( L 1\
= Jo V2 4+ 4n2n?  2nm

o0 2,2
v loga logl6m o0 gatt/Am gy 1
— a1 - ¢~ 1)) 620
\/a( 4o + 2 + 4o Z o Vit +4m2n2 2no ( )

Employing a change of variable x = t? in the formula [15, formula 3.388, no. 2,
p. 351]

n=1

- 20 | L (2) T upPNK, b
/0 (2bx + 2?)" e x—ﬁ<#) e I(v)Ky—1/2(bp),

valid for |argb| < 7, Rev > 0, Rep > 0 and then letting v = 3, u = o?/47 and
b = 27%n?, we observe that

oo —a’t?/ar 2,2
e MAmae 1em2nz/2K0(7ra2n ) (6.21)

o V2 +4mnZ 2

Substituting (6.21) into (6.20) and simplifying, we arrive at

fe%s) 2,,2
\/a<—7+10g167r+2loga _22 <em2nz/2KO(7ra n > . 1))
o 2 no

n=1

(1 +it 1—it 111
:47r_3/2/ F( ZI>F< 41>5(§t)ms(2°go‘)dt. (6.22)
0

1+ ¢2

Now replace a by 3 in (6.22) and note the invariance of the integral on the right-
hand side under this transformation. This gives (1.17).
Since the above steps are reversible, (6.19) is equivalent to (1.17).

7. Generalization of a formula of Ramanujan

o —1+it —1—it 3+it
K(z,«) ::/ [’( II)F( 1 1>E(§t)p<a7z,—gl>dt,
— 00

Let
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where p is defined in (1.9). Using (1.3), (1.4), (1.9), (2.6) and (2.10), we see that
K (z,a) converges. Similarly, one can see that the integral on the left-hand side
of (1.21) converges. Converting K(z,«) into a complex integral by the change of
variable s = 1(1 + it) and employing (1.9) and (1.4), we observe that

K(z,a) .
-2/ v r(s - 1)F<—;s>5<s>p<a7 25+ 1)ds

1/2—ioo

4o~ 1/26-77/8
i

1/2+ic0 2
></1 F(S;l)F(l — 351 P (—;,;;Z>F(§S)C(S)( ma) % ds

/2—ioco

1/2+ic0 T s+1 s 1 Z2
:4104_1/263_22/8/1 — F( 5 )1F1(—2,2§4>C(5)( Ta) " ds,

/2—ico SINSTS

where we used (2.4) in the last step. Let 7' > 0 be a real number. Using the residue
theorem, we have

1/2+iT - s+ 1 P12
I -, =;— -4
/1/2iT sin 7s < 2 )1 1( 2'9 4><(5)(ﬁa) s

14+6—iT 1+8+iT 1/2+iT - sl s 1 22
= + + ——1I -2 5
1/2—iT 14+6—i 1+6+iT | SIM5TS 2 272" 4

x ((s)(v/ma)~* ds — 27iL, (7.2)

where )
T s+1 s 1 z
L:=lim(s—1 r F(-2,2% =
s%(s )C(S)Sinéws ( 5 )1 1( 5% 4>( Ta)
ﬁ ]. ]. 22
=YX F|—=, == .
a U\ T2727 g (73)

As before, using (2.6) and (2.10), one easily sees that the integrals on the horizontal
segments [ —iT,1+ 6 —iT] and [1 4 § +iT, 3 +iT] tend to zero as T — occ. Thus,
it remains to evaluate

1+5+ico 2
1 1
J(Z,OL)Z:/ . 7; F<s+ )1 1( y o ) Sds
1+8—ico S §7TS 2 2

s
2
o0 1+d5+ico
T s+1
X w5 )m v>fw>s
— 1 J14+6—icc S STS

n=1

z
4
0 c+ioco
s s+1 s 1 z X
= I Fil——=,=;— —°d
Z/c_ioo sin 17rs ( 2 )1 1( 29’ 4) Vman)

n=1

=: Z J(z,a,m) (7.4)

l\z

)

m\cn
N\H e~
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for 0 < 0 < 1. Note that shifting the line of integration from Res = 1+ to Res = ¢
does not introduce any poles.

Now (4.5) is valid for 0 < § < 1. Replacing s by s + 1 in (4.5) and letting
xz = +/man, for 0 < ¢ =Res < 1, we have

c+ioco 9
1 —s 1
/c—ioo F(S; >1F1 <287 5; 1)33_3 ds = 47ria:e_””2+22/4 COS IZ. (7.5)
Also, from (5.9), we easily see that, for 0 < d =Res < 2,
1 d+ioco T 9
27 Cds =g 76
271 J4_ e Sin %st 571 + 2 (7.6)

Hence, from (5.10), (7.5) and (7.6), we see that for 0 < ¢ =Res < 1,

2
e % cosxz

— . 22/4 >
J(z,a,n) = 8rie /0 T (Fran/a)? (Vran/a)? dz.

Thus, from (7.2)—(7.4) and (7.7),
K(z,a) = diq~1/2e=7"/8

2N [ e cosaz 273/24 11 22
x | 8mie* /* / dz — Fi|—z5—
( me 7;1 o 1+ (Vman/x)? * a ! 1( 272 4))

_ 7871_3/20471/267%/8

2 e [ 2e7 T cos(/matz) 1 11 22
x 4o/t t — = R (-2, 22
(ae ,;/0 P ol 1( 2,274)>

_ _8773/20(71/267%/8

o s 1
X <4aez2/4/ 2 cos(y/Tatz) ( Z . 2) dt
1
2

0

For ¢t # 0 [8, p. 191],

oo

1 T 1 1 1
2 mrm t(e%t—l%tJrQ)' (7.9)

n=1

Substituting (7.9) into (7.8), we see that

K(z,a)= —8m3/2q1/2e=/8

a2
y (47raezz/4 /oo te™ ™t cos(y/matz) dt
0

e27rt —1

oo
— 200 /4 / et cos(v/Tatz) dt
0

o0 1 11 22
+ 27rae22/4/ te™ ™ cos(v/matz) dt — — Fy (—, S ))
0 « 22
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But, from [15, formula 3.896, no. 4, p. 488],

> 2,2 6_22/4
/ e T cos(yratz) dt = (7.11)
0 2c
Also, from [15, formula 3.952, no. 2, p. 502], we have, for a > 0,
00 o) _1\ELl 2k+1
—-p°a? dr — L a (=D)"k! a 719
/0 xe cos(az) dx 57 1P 2 Ok 1\ p . (7.12)

However, this formula holds for any a € C. Hence, letting a = /7az and p = /7«
in (7.12), simplifying the right-hand side, and then using (1.11), we have

0 —2%/4 1 1 22
—mwa’t? _ € . z
/0 te cos(y/matz)dt = 5ra? 1 Fy (—2, 3 4). (7.13)
Substituting (7.11) and (7.13) into (7.10), we have
5 5 jee} t —ra’t? t
K(z,a) = —87%/2a~1/26=%"/8 (47rozez /4/ ¢ eQ:tOS_(‘l/%O‘ ?) dt—l). (7.14)
0

Finally, substituting (7.14) into (7.1), we obtain (1.21).

8. Generalization of the Ramanujan—Hardy—Littlewood conjecture

The approach here is similar to that used by Hardy and Littlewood in [17] and so
we shall be brief. Shifting the line of integration from Res =1+ d, where § > 0, to
—1 < ¢=Res <0 in the integral on the left-hand side of (4.5) and replacing n by
1/n, we have

cico 1—s 1 22 Ta\ *
[ raan(50T) (50) «

Note that one version of the prime number theorem reads

Using these two facts in the calculation that follows, we have

\/&622/4 Z ,u(n) 6771'042/712 cos <ﬁ0[2’)
1 n n

5 () )
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c+ioco

wu(n 1 1—s 1 22\ /Vma\ "’
= (= F - .. vy d
4mz /C_ioo (39)1 1( 2 24 n s

c+ioco 1 2
fez/4 I'(5s) R 1—3 lz
4mi c—ioco C(l - S) 2

where we interchanged the order of summation and integration, which is valid
because of absolute convergence, and we replaced

Z/J‘ —(1 s)

by 1/¢(1 — s), since Rel — s > 1. Using (2.2) in (8.2), we have

2/42” —Tra n2 COS(ﬁa2>

)R as, 52

n

e [P () ()

We want to shift the line of integration from —1 < ¢ = Res < 0 to Res = A,
A € (1,2), so that we can use the series representation

> u(n)n~
n=1

for 1/¢(s). Consider a positively oriented rectangular contour formed by [c—iT, A —
iT)], [A\=iT,\+1iT], [A+iT,c+iT] and [c +iT, c —iT], where T is any positive real
number. In the shifting process, we encounter the non-trivial zeros of {(s). Hence,
upon the application of the residue theorem and assuming that the non-trivial zeros
are simple, we get

/:TT F(l(l —— (1 T %s f) <\%>Sds
[ L a5 )

e T (0520 ()

—T<p<T
(8.4)

Let T' — oo through values such that |T'—~y| > exp(— A1/ log~) for every ordinate
v of a zero of ((s), where A; is a positive constant. From [31, (9.7.3), p. 218],

log [¢(o +1it)| > Z log [t —v| + O(logt).

lt—vI<1
Hence, for ¢ < 0 = Res < A,
log [((o +iT)[ > - > A=+ O(log T) > —A,T,
[T—I<1
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where Ay < 7/4 if A; is small enough, and T > Ty. This along with (2.6) and
(2.10) implies that the integrals along the horizontal segments [¢ — iT, A — iT| and
[\ +iT,c + iT] tend to zero as T — oo through the above values. It remains to
evaluate

_ R IGO-s) L (1=s 12\ (a )T
o= San (T ) ()
Adico 1—s 1—s 1 22 an\ *
/.. F( 2 )1“( 2 w)(ﬁ) as

J(z,a,n). (8.5)

=> p(n)
n=1
oo
= > p(n)
n=1
Employing the change of variable w = 1 — s in the integral in J(z,a,n), for —1 <
XN =Rew < 0, we have

A +ico 2

s w z
J(Zaa»”)sz F(éw)lFl(Q; ;4)
w

1
an Ja_ico 2
22/4 X +ioco 1— 1 2 —w
:@/ [*(%w)lpl <;;_Z) <ﬁ> dw
an N —ico 2 27 4 an
473724
_ 478 <e—7rﬁ2/n2 cosh (\/%52) - 1)7 (8.6)
n n

where in the penultimate step we used (1.11) and in the last step we used (8.1) with
z replaced by iz and « replaced by (. Thus, letting 7' — oo in (8.4) and combining
with (8.3), (8.5) and (8.6), we obtain

\/&622/4 Z /J(TL) efﬂ'of")/n2 cos (ﬁaz)
n
n=1

n

Using the prime number theorem again, we have

\/aez2/8 i Lgln) e~/ (g (ﬁaz)
n=1

n
_ \/Befz2/8 Z [L(TL) efﬂﬁz/rﬂ cosh <\/Eﬂz)
ot n n

e—22/8 [‘(
- 2/mVB Zp:

3
C/

1(/)) p)) R <1 ; P, %; Z:)Wp/?ﬁp, (8.7)
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We have not shown the convergence of the series in the above equation in the
ordinary sense, but rather shown it only when the terms are bracketed in such a
way that two terms for which

|7 —'| < exp(—A17y/logy) + exp(—A17'/log’)

are included in the same bracket. Replacing @« — § and z — iz in (8.7), simplifying,
and using (8.7) again, we easily see that

—7) 17/).1. Zj P2 0P
szz o n ()

rG-p) . (l-p1 2
szz (T

Thus, (8.7) and (8.8) give (1.23) upon simplification.

2

)77'”/26” =0. (8.8)

9. Concluding remarks

The integrands of all the integrals that we have considered here are not only contin-
uous functions in both variables ¢t and z but also analytic as a function of z for each
fixed value of ¢. Since all of these integrals converge uniformly at both limits in any
compact subset of C, from [30, theorem 2.3, p. 31] we find that each of these inte-
grals is holomorphic in C as a function of z and that their derivatives of all orders
may be found by differentiating under the sign of integration. In this way, we can
obtain many more transformation formulae or identities. Also, it would be inter-
esting to find the analogues of the formulae given here for rational and quadratic
fields as done in [20,21].
In this paper, we have focused on the generalization of the integral

/f% t)Z(t) cos(itlog o) dt,

where we generalized cos(4tlog o) by making use of the function p(«;, z,s) consist-
ing of the confluent hypergeometric function. In [27], Ramanujan introduced the
integral

* _(n—1+it n—1-—it t+in t—in cos ut
r r = = dt
/0 ( 4 ) ( 4 2 2 J(n+1)2+12 7

where Re7 is not an integer and p is real, and expressed it in terms of another
integral in each of the regions Ren > 1, —1 < Ren < 1 and —3 < Ren < —1 (see
also [10, theorem 1.2]). In [11], we examined the following general integral:

/ Uy <t+m>~ (t_z 77) cos(5tlog ) dt. (9.1)

It seems natural to then generalize the above integral by introducing in it the
generalization of cos(¢log o) that we used in this paper. This will generate formulae
of the type F(n, z,a) = F(n,iz, ), where a8 = 1. This generalization should also
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generalize [10, theorem 1.2], found by Ramanujan. However, in both cases, the
associated inverse Mellin transforms are difficult to evaluate. Our search in this
direction did not lead to any particularly nice example. Further efforts, however,
may be fruitful and may result in beautiful and more general identities, for example,
a generalization of the extended version of the Ramanujan—-Guinand formula [11,
theorem 1.4].

Another possible way to generalize the transformation formulae resulting from
the integrals of the form

/00 f(3t)Z(5t) cos(3tlog o) dt
0

may be to replace the function p(«, z, s) used in this paper with an analogous one
which involves the hypergeometric function o F5 instead of 1 F;. This is because of
the following Kummer-type transformation that exists for a o Fy [25, eqn 4]:

oFy(a,c+ 1;b,¢x) =9 Fo(b—a— 1, f + 1;b, f; —x),

where
= c(l+a—0b)

a—c
In fact, a Kummer-type transformation also exists for the generalized hypergeo-
metric function ,Fp(x) [23, eqn 4.2].
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