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An �-linear conjugation problem modelling the process of power fields forming in a hetero-

geneous infinite planar structure with an elliptical inclusion is considered. Exact analytical

solutions are derived in the class of piece-wise meromorphic functions with their principal

parts fixed. Cases with internal singularities and with singularities of the given principal parts

at the interface are investigated.
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1 Introduction

The study of heterogeneous media is of great importance in several branches of mech-

anics of continua. This is important for manufactured composite materials as well as for

investigations of natural ones (soils, aquifers, biological tissues etc.) and designed inhomo-

geneous objects. Mathematical models describing transport processes are, in general, 3D

and transient, and therefore of utmost difficulty for analytical solution. Two-dimensional

plane or axisymmetrically heterogeneous structures exposed to steady physical fields (tem-

perature, concentration, fluid pressure, electrostatic stress etc.) are easier to tackle because

the Fourier, Fick, Hook, Darcy, Ohm and other ‘linear laws’ reduce the field problem to

the Laplace’s equation in the homogeneous and isotropic components of the composite

and, therefore, the complex-analysis theory is applicable. Even for a plane structure the

possibility to get an explicit solution is problematic: success in analytical treatment de-

pends on the geometry of the composite. Among all plane structures, the most intensively

studied, since the seminal contribution of Maxwell [11] and Lord Rayleigh [21], is a

medium consisting of an infinite isotropic matrix with an elliptical, in particular circu-

lar [12], inclusion. There are numerous papers devoted to this specific topic and only

those reporting analytical or semi-analytical solutions are cited below.

Apparently, the works [2, 8] were the first where the problem of determination of the

elastic field induced by an elliptical inhomogeneity was considered. Results of the latter

paper were generalised in [4, 5, 14] for the 3D case of ellipsoidal inclusions. In particular,

Hardiman [8] and Eshelby [5] proved that a uniform stress applied at infinity induces

a constant stress state within an elliptical or ellipsoidal inhomogeneity. Eshelby [5] put

forward the following conjecture: The field inside a bounded inclusion will be uniform for
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any uniform elastic loading at infinity if and only if this inclusion is of an elliptic or an

ellipsoidal shape. It was shown in [4] and [1] that a polynomial stress applied at infinity

induces the same degree polynomial stress inside the elliptic inclusion for an isotropic

and an anisotropic matrix, respectively. The explicit form of the complex potential was

derived in [6] for an elastic field in the matrix and with an elliptical inhomogeneity under

a plane loading condition. The magnetoelastic fields induced by applied magnetic fields in

an infinite matrix containing an elliptic elastic inclusion were investigated in [9]. Shmid

and Podladchikov [22] have presented a set of closed-form solutions for an isolated and

deformable elliptical inclusion subjected to general shear, far-field flows. They have shown

how to apply these solutions to geological problems. Kang and Milton [9] have given a

new strict proof of Eshelby’s conjecture.

We do not refer here to papers on multiple elliptical inclusions, as they are out of

the scope of our present research, but readers interested in this can find a relevant

bibliography in [13].

In almost all above cited works the complex variable approach for plane isotropic

and anisotropic problems of elasticity was useful. Solutions were derived by a conformal

mapping of the physical z-plane onto an auxiliary concentric annular domain in the

ζ-plane and through the Laurent series expansion of characteristic functions. This method

allows one to get a closed-form solution for the case when the a priori given complex

potential has the only singularity at infinity. Cases of arbitrarily distributed singularities

of the given complex potential have been investigated essentially less. In [19] Pilatovskii

considered one-phase seepage with arbitrarily distributed sinks or sources modelling

abstraction or injection wells in a rock formation with a lens. He suggested an original

method of reduction of this flow problem to a linear integral equation. This approach

allows the derivation of an explicit solution for an elliptic contour ( [19], p. 102) when

a finite number of sinks are located either inside or outside the inclusion. Golubeva and

Shpilevoy [6] considered the same problem for the case of only external singularities

but these singularities were arbitrary, i.e. unconditioned multipoles. To the best of our

knowledge, the problem of an elliptical inhomogeneity has not been investigated in the

general case when the given complex potential has a finite number of arbitrary singularities

distributed arbitrarily with respect to the inclusion, i.e. inside, outside or at the interface.

The last case is special and has not been considered at all. The aim of the present paper,

in particular, is to fill this ‘analytical gap’ using the same methods as in [15, 16] and [17],

p. 16.

The paper is organised as follows. The strict formulation of the problem is provided

in Section 2; the closed-form solutions are derived in Sections 3 and 4 for singularities

located inside or outside the ellipse and singularities just on the interface, respectively;

and Section 5 discusses the results.

2 Formulation

A planar infinite homogeneous medium (matrix) is considered as a complex plane � of

variable z, and f(z) is a given complex potential. We restrict ourselves to a finite number

of singularities of f(z). Under such an assumption the derivative f′(z) as a single valued

meromorphic function is just a rational function and it can be represented as a sum of
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Figure 1. Elliptical inclusion.

common fractions and a polynomial:

f′(z) =

n∑
j=0

ajz
j +

m∑
l=1

mj∑
j=1

alj

(z − zl)j
. (2.1)

The problem is to determine the corresponding disturbed complex potential w(z) after

insertion of an elliptical inclusion into � such that the medium becomes two-phase

with arbitrary situated singularities of f(z) about the inclusion, including the case with

singularities at the interface. The usual boundary conditions are imposed on w(z), that is

the continuity of the stream function, ψ(z) = �w(z), and product potential, ϕ(z) = �w(z),

and resistivity, ρ(z), across the interface. Generally, a complex potential is a multi-valued

function, while the derivative v(z) = w′(z) is a single-valued one. Because of this reason

v(z) is more convenient for our forthcoming derivations.

Let S1 and S2 be the infinite matrix and elliptical inclusion, respectively (Figure 1).

L is the boundary of inclusion S2. A piece-wise meromorphic function v(z) = w′(z) =

vx(x, y) − i vy(x, y) is complex conjugated with the complex velocity function v(z) =

vx(x, y) + i vy(x, y) = v(z). Function v(z) = vk(z), z ∈ Sk is meromorphic in Sk and

continuous in Sk everywhere, except at singular points of its principal part coinciding

with the sum of corresponding summands of function (2.1) (k = 1, 2). Two real boundary

conditions, above imposed on w(z), are equivalent ([3], p. 53) to the following �-linear

conjugation problem,

v2(t) = Av1(t) − B[t′(s)]−2v1(t), t ∈ L, (2.2)

where s is the arc length of the contour L, the derivative t′(s) is the unit tangential vector

to the contour L at the point t ∈ L and

A =
ρ2 + ρ1

2ρ2
, B =

ρ2 − ρ1

2ρ2
, λ = B/A =

ρ2 − ρ1

ρ2 + ρ1
. (2.3)

Here ρk (σk = 1/ρk) is the resistivity (conductivity) of a medium Sk .

Thus, it is required to find a solution of the boundary-value problem (2.2) in the class

of piece-wise meromorphic functions with principal part (2.1).
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Figure 2. Image of �\[−c, c] in ζ-plane.

We start with a solution of the problem (2.2) under the assumption that there are no

singularities of f′(z) at contour L.

3 Solution of the problem (2.2) without singularities at the interface

For the sake of definiteness, let the coordinate axes of the z-plane coincide with the

symmetry axes of the elliptical inclusion, i.e. L = {z = x + iy : x2/a2 + y2/b2 = 1},
where a, b are positive parameters such that a � b > 0 and ±c are the foci of L:

c =
√
a2 − b2 � 0. (3.1)

Let a > b. We consider the conformal mapping of the z-plane with the cut along the

segment [−c, c] onto the ζ-plane with the help of the branch of the function

ζ(z) =
1

c
(z +

√
z2 − c2) (3.2)

fixed by the condition ζ(∞) = ∞.

Function (3.2) maps the domains S1 and S2\[−c, c] onto the domains S∗
1 = {ζ : |ζ| > R}

and S∗
2 = {ζ : 1 < |ζ| < R}, respectively (Figure 2), where

R = ζ(a) =
a+ b

c
=

c

a− b
=

√
a+ b

a− b
> 1. (3.3)

It has been proved in ([17], p. 36) that if t ∈ L and τ = ζ(t) ∈ L∗ then

[t′(s)]−2 = −τ− 1/τ

τ− 1/τ
, |τ| = R. (3.4)

We introduce a new unknown piece-wise meromorphic function

V (ζ) = c
2

(
ζ − 1

ζ

)
vp[z(ζ)] = Vp(ζ), ζ ∈ S∗

p , p = 1, 2, (3.5)
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where the multiplier c/2 is taken for the convenience in the forthcoming derivations and

z(ζ) =
c

2
(ζ + 1/ζ) (3.6)

is the inversion of function (3.2).

Due to (2.2) and (3.4), function (3.5) satisfies the boundary conditions

V2(τ) = AV1(τ) + BV1(τ), |τ| = R,

V2(τ) = −V2(1/τ), |τ| = 1.
(3.7)

The latter condition (3.7) follows from definition (3.5) and the continuity of function v2(z)

across segment [−c, c].
It is clear that the function

V(ζ) =

{
V (ζ), |ζ| � 1

−V (1/ζ), |ζ| < 1
, (3.8)

is defined in the whole ζ-plane. This function gives, due to the second condition (3.7), an

analytical continuation V2(ζ) of function V2(ζ) from the annulus S∗
2 = {ζ : 1 < |ζ| < R}

into the annulus Ω2 = {ζ : 1/R < |ζ| < R}. It defines the function V+
1 (ζ) in the domain

Ω+
1 = {ζ : |ζ| < 1/R}. For the sake of symmetry we designate V−

1 (ζ) = V1(ζ) for ζ ∈
Ω−

1 = S∗
1 . Then the following identities should be satisfied:

V+
1 (1/ζ) ≡ −V−

1 (ζ), ζ ∈ Ω−
1 ; V2(1/ζ) ≡ −V2(ζ), ζ ∈ Ω2. (3.9)

Thus, the problem (3.7) is reduced to the following one:

(1 + λ)V2(τ) = V+
1 (τ) + λV+

1 (τ), |τ| = 1/R,

(1 + λ)V2(τ) = V−
1 (τ) + λV−

1 (τ), |τ| = R,
(3.10)

where λ is defined in (2.3). A piece-wise meromorphic solution of the boundary-value

problem (3.10) has to satisfy the symmetry condition (3.9) and its principal part has to

coincide with

F(ζ) =
c

2

(
ζ − 1

ζ

)
f′

[
c

2

(
ζ +

1

ζ

)]
. (3.11)

It is not difficult to show that the last rational function could be represented as a

polynomial and a sum of common fractions combined in summands

F(ζ) = F+
1 (ζ) + F−

1 (ζ) + F2(ζ),

which have poles in the domains Ω±
1 and Ω2, respectively. Besides, the identities

F+
1 (1/ζ) ≡ −F−

1 (ζ), F2(1/ζ) ≡ −F2(ζ) (3.12)

are true and hence F2(±1) = 0.

Indeed, in order to get the required representation we take F+
1 (ζ) as a sum of all

common fractions, summands of F(ζ) having poles in Ω+
1 . We define F−

1 (ζ) = −F+
1 (1/ζ),

F2(ζ) = F(ζ) − (F+
1 (ζ) −F+

1 (1/ζ)). In accordance with (3.11), function F2(ζ) defined in this
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manner satisfies the second identity (3.12) and hence all its poles are in the domain Ω2.

Note that function F2(ζ) differs, generally speaking, by a constant α from the sum of all

summands of F(ζ) having poles in Ω2. Hence, F2(∞) = α, F+
1 (∞) = 0 and then F−

1 (0) = 0

due to (3.12).

Now the required solution of the problem (3.10) could be taken in the form

V±
1 (ζ) = F±

1 (ζ) + V±
01(ζ), V2(ζ) = F2(ζ) + V02(ζ), (3.13)

where V±
01(ζ) and V02(ζ) are new unknown functions holomorphic in the domains Ω±

1

and Ω2 correspondingly. Both V(ζ) and F(ζ) satisfy the identity (3.9) and therefore

the function V0(ζ) = {V±
01(ζ), ζ ∈ Ω±

1 ; V02, ζ ∈ Ω2} should satisfy the same identity.

Wherefrom, in particular, it follows that V02(±1) = 0.

Due to the Laurent theorem,

V02(ζ) = V+
02(ζ) + V−

02(ζ), (3.14)

where functions V±
02(ζ) are holomorphic in the domains �\Ω∓

1 , respectively. The sum-

mands of function (3.14) satisfy the identity

V+
02(1/ζ) ≡ −V−

02(ζ), ζ ∈ �\Ω+
1 . (3.15)

The uniqueness of the representation (3.14) is provided by the condition V+
02(0) = 0 and

hence V−
02(∞) = 0.

Using (3.13), we rewrite the second condition (3.10) in the form

(1 + λ)(V+
02(τ) + V−

02(τ) + F2(τ)) = V−
01(τ)

+F−
1 (τ) + λ

(
V−

01(R
2/τ) + F−

1 (R2/τ)
)
, |τ| = R. (3.16)

Let us now consider the function

Φ(ζ)=

{
(1 + λ)(V−

02(ζ) + F2(ζ)) − V−
01(ζ)−λF−

1 (R2/ζ), ζ ∈ Ω−
1

F−
1 (ζ) − (1 + λ)V+

02(ζ) + λV−
01(R

2/ζ), ζ ∈ �\Ω−
1

. (3.17)

It is clear that function (3.17) is holomorphic in the domains Ω−
1 and �\Ω−

1 , continues

across the interface |ζ| = R due to (3.16) and is bounded at infinity. Hence, this function

is holomorphic in � and according to the Liouville theorem Φ(ζ) ≡ C = const. From

(3.17) we get,

(1 + λ)(V−
02(ζ) + F2(ζ)) − V−

01(ζ) − λF−
1 (R2/ζ) = C, ζ ∈ Ω−

1 ,

F−
1 (ζ) − (1 + λ)V+

02(ζ) + λV−
01(R

2/ζ) = C, ζ ∈ �\Ω−
1 .

(3.18)

Exclusion of function V−
01(ζ) from system (3.18) by the help of identities (3.12) and

(3.15) leads to the following functional equation about V−
02(ζ):

V−
02(ζ) = D − λV−

02(ζR
2) + (1 − λ)F+

1 (ζ) − λF2(ζR2), ζ ∈ �\Ω+
1 , (3.19)

where D = (C + λC)/(1 + λ). The unique solution of equation (3.19) is a sum of series
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converging absolutely and uniformly in �\Ω+
1 :

V−
02(ζ) =

C

1 + λ
+ (1 − λ)

∞∑
k=0

(−1)kλkCk
�F

+
1 (Ck

�ζR
2k)

+

∞∑
k=1

(−1)kλkCk
�F2(C

k
�ζR

2k), ζ ∈ �\Ω+
1 , (3.20)

where |λ| = |B/A| < 1, C� is the operator of complex conjugation

C�z = z. (3.21)

Now from (3.14), (3.15) and (3.20) it follows that

V02(ζ) = (1 − λ)

∞∑
k=0

(−1)kλkCk
�

(
F−

1 (Ck
�ζ/R

2k)+F+
1 (Ck

�ζR
2k)

)

+

∞∑
k=1

(−1)kλkCk
�

(
F2(C

k
�ζ/R

2k) + F2(C
k
�ζR

2k)
)
, ζ ∈ Ω2. (3.22)

From the first equality (3.18) we get

V−
01(ζ) = λF+

1 (ζR−2) + (1 − λ2)

∞∑
k=0

(−1)kλkCk
�F

+
1 (Ck

�ζR
2k)

+ (1 + λ)

∞∑
k=0

(−1)kλkCk
�F2(C

k
�ζR

2k), ζ ∈ Ω−
1 . (3.23)

At last the problem of finding w with singularities as in (2.1) and satisfying (2.2) can

be determined via the formulae (3.2), (3.5) and (3.13). Thus, the following statement is

proved.

Theorem 1 If the given undisturbed complex potential f(z) has no singular points at the

elliptic interface L = {z=x+ iy : x2/a2 + y2/b2 = 1}, then the problem of finding a piece-

wise meromorphic function with principal part (2.1) subject to boundary condition (2.2) is

unconditionally solvable. Its unique solution reads

v1(z) =
F−

1 ((z +
√
z2 − c2)/c) + V−

01((z +
√
z2 − c2)/c)√

z2 − c2
, (3.24)

v2(z) =
F2((z +

√
z2 − c2)/c) + V02((z +

√
z2 − c2)/c)√

z2 − c2
, (3.25)

where V02(ζ) and V−
01(ζ) are defined in (3.22) and (3.23). In tern λ = (ρ2 − ρ1)/(ρ2 + ρ1),

R =
√

(a+ b)/(a− b),

F(ζ) = c/2(ζ − 1/ζ)f′[c/2(ζ + 1/ζ)],

https://doi.org/10.1017/S0956792512000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792512000058


476 Yu. V. Obnosov and A. V. Fadeev

F−
1 (ζ) = −F+

1 (1/ζ), F2(ζ) = F(ζ)−
(
F+

1 (ζ) − F+
1 (1/ζ)

)
, and F+

1 (ζ) is the sum of all common

fractions, summands of F(ζ), having poles in the domain Ω+
1 = {ζ : |ζ| < 1/R}.

Remark 1 By integrating the complex velocities (3.24) and (3.25) the corresponding com-

plex potentials can be found,

w1(z) =

∫ ζ(z)

R

(F−
1 (ζ) + V−

01(ζ))
dζ

ζ
, w2(z) =

∫ ζ(z)

R

(F2(ζ) + V02(ζ))
dζ

ζ
.

Remark 2 It is easy to check using identities (3.9) and (3.12) that the segment [−c, c] is

not a jump line and its end points ±c are not singular points for function v2(z) defined in

(3.25).

Remark 3 If the potential f(z) has only one dipole at infinity, i.e. f(z) = V0z, then

F(ζ) = cV0(ζ − 1/ζ)/2 = F−
1 (ζ) + F+

1 (ζ), F2(ζ) ≡ 0. Hence, formulae (3.22)–(3.25) give a

well-known solution

v1(z)=V0+
λ(R4−1)

2

[
Vx

R2+λ
+i

Vy

R2−λ

](
1− z√

z2−c2

)
,

v2(z)= (1−λ)R2

[
Vx

R2 + λ
−i

Vy

R2 − λ

]
.

Remark 4 Let f(z) = Pn(z) be an arbitrary polynomial of the degree n � 1 with a zero-free

term. Then F+
1 (ζ) = Qn(1/ζ) is a polynomial about 1/ζ in the same degree n without free

term, F−
1 (ζ) = −Qn(ζ), and F2(ζ) ≡ 0. The coefficients bk of the polynomial

Qn(ζ) =

n∑
k=1

bkζ
k

are defined as

bk =
1

(n− k)!
Dn−k{ζn+1D[Pn(c/2(ζ + 1/ζ))]}|ζ=0, k = 1, n,

where D is the differential operator d/dζ. Now the required solution could be expressed

by formulae (3.22)–(3.25). It is not difficult to see that the complex velocity v2(z) found

in this way is a polynomial of the degree n − 1. It gives a new proof of the generalised

Eshelby’s conjecture [5]. Indeed, by (3.22) we have

V02((z +
√
z2 − c2)/c) = (1 − λ)

∞∑
k=0

(−1)kλk
n∑
j=1

Ck
�bj

R2kj
(ζ(z)−j − ζ(z)j).
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From the last equality, (3.2) and (3.25) follows

v2(z) = 2(1 − λ)

n∑
j=1

λR−2jbj − bj

(1 − λ2R−4j)cj

[(j−1)/2]∑
m=0

(
j

2m+ 1

)
zj−2m−1(z2 − c2)m,

where [(j − 1)/2] is the integer part of the number (j − 1)/2. Thus, we have not only

proved that the complex velocity within an elliptic inclusion is a polynomial of the degree

n− 1 but we have also found, as well as in [20], the exact expression for this polynomial.

Remark 5 Eshelby’s conjecture was formulated and proved for a bounded inclusion.

Within a parabolic inclusion, considered in [16], a uniform flow occurs inside this un-

bounded lens. It was also proved in [18] that the generalised Eshelby’s conjecture is true

for a parallel-layered medium and for a medium with a parabolic inclusion. Based on

what was said above, we can put forward the following conjecture: If a given complex

potential is a polynomial then the field inside an inserted simply connected inclusion will be a

polynomial of the same degree if and only if this inclusion is a strip, an ellipse or a parabola.

Example 1 Let the given complex potential f(z) have logarithmic singularities at two finite

points z1, z2 outside and inside the inclusion, respectively, i.e.

f(z) = γ1 ln(z − z1) + γ2 ln(z − z2), γk =
Γk + iQk

2πi
.

Note that infinity is not a singular point of f(z) iff γ1 + γ2 = 0.

Let zk = c(ζk + 1/ζk)/2, where ζk = (zk −
√
z2
k − c2)/c, 0 < |ζ1| < 1/R, 1/R < |ζ2| < 1,

then in accordance with designation (3.11) we get

F(ζ) =

2∑
k=1

γk

(
ζk

ζ − ζk
+

ζ

ζ − 1/ζk

)
.

Thus,

F+
1 (ζ) =

γ1ζ1

ζ − ζ1
, F−

1 (ζ) =
γ1ζ

ζ − 1/ζ1
, F2(ζ) =

γ2(ζ − 1/ζ)

ζ + 1/ζ − ζ2 − 1/ζ2
.

The corresponding disturbed complex velocity, found from (3.22)–(3.25), has the fol-

lowing form:

v1(z) =
γ1

z − z1
+

cλ√
z2−c2

(
γ1ζ1R

2

z+
√
z2−c2−cζ1R

2
− λγ1ζ1

z+
√
z2−c2−cζ1

)

+
1 + λ

2πi
√
z2 − c2

[
(1 − λ)

∞∑
k=1

λk
(Γ1 + (−1)k iQ1)cC

k
�ζ1R

−2k

z +
√
z2 − c2 − cCk

�ζ1R
−2k

+

∞∑
k=0

λk
(Γ2+(−1)k iQ2)[z(R

2k−R−2k)+
√
z2−c2(R2k+R−2k)]

z(R2k+R−2k)+
√
z2−c2(R2k−R−2k) − 2Ck

�z2

]
, (3.26)
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Figure 3. The case of a single source at the ellipse’s focus and the case of vortex inside and

source outside of the ellipse.

v2(z) =
γ2

z − z2
+

1 − λ

2πi

∞∑
k=0

λk(Γ1 + (−1)k iQ1)

z − cCk
�(ζ1/R2k + R2k/ζ1)/2

+
1

πi

∞∑
k=1

λk(Γ2 + (−1)k iQ2)[z − Ck
�z2(R

2k+R−2k)/2)]

[z−cCk
�(R2kζ2+R−2k/ζ2)/2)][z−cCk

�(ζ2/R2k+R2k/ζ2)/2)]
. (3.27)

The last formulae can be significantly simplified if the given complex potential f(z) has a

single vortex-source of strength Γ+iQ at the ellipse’s focus (z2 = c, γ2 = γ = (Γ+iQ)/(2πi),

γ1 = 0). Namely,

v1(z) =
1 + λ

2πi
√
z2 − c2

∞∑
k=0

λk(Γ + (−1)k iQ)
z + c(R2k + R−2k)/2√

z2 − c2 + c(R2k − R−2k)/2
,

v2(z) =
Γ + iQ

2πi(z − c)
+

1

πi

∞∑
k=1

λk
Γ + (−1)k iQ

z − c(R2k + R−2k)/2
.

Distributions of streamlines and equipotential (dashed) lines are shown in Figure 3 for

the case a = 5, b = 3, λ = 2/3, Γ2 = Γ = 1, Q2 = Q = 1, z2 = c, Γ1 = Q1 = 0 (left panel)

and for the case λ = 2/3, Γ1 = 0, Q1 = 1, Γ2 = −1, Q2 = 0, z1 = a + 0.8 i b, z2 = c − a

(right panel).

4 Solution of the problem (2.2) with finite number of singularities at the interface

Here, as well as in [15], it is enough to investigate the case of the complex potential f0(z)

with a single singularity at a point t0 ∈ L, i.e.

f′
0(z) =

n∑
k=0

a0k(z − t0)
−k−1. (4.1)

We suppose that the principal parts, f1,2(z), of a disturbed complex potential w1,2(z) have

the same structure as f0(z), i.e.

f′
j(z) =

n∑
k=0

ajk(z − t0)
−k−1, j = 1, 2.
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Moreover, the condition

f1(z) + f2(z) = 2f0(z) (4.2)

is satisfied.

As in the previous case, using the representation (3.5), the problem (2.2) is reduced to

problem (3.7) and then to (3.10) with an additional symmetry condition (3.9).

It could be shown that function

Fj(ζ) = c/2(ζ − 1/ζ)f′
j(c/2(ζ + 1/ζ)), j = 0, 1, 2, (4.3)

satisfying the identity

Fj(ζ) ≡ −Fj(1/ζ) (4.4)

can be represented in the following form, convenient for forthcoming evaluations,

Fj(ζ)=

n∑
k=0

a+
jk

(
τ0

ζ−τ0

)k+1

−
n∑
k=0

a+
jk

(
ζ

1/τ0−ζ

)k+1

= F+
j (ζ)−F+

j (1/ζ), (4.5)

where c(τ0 + 1/τ0)/2 = t0, |τ0| = 1/R and R is given by (3.3).

Indeed, it is clear that the principal part of Fj(ζ) at the point τ0, F
+
j (ζ) can be taken as

in (4.5). Then the difference Ψ (ζ) = Fj(ζ) − (F+
j (ζ) − F+

j (1/ζ)) satisfies the identity (4.4)

and hence, as it does not have a singularity at the point τ0, there is no singularity at

the point 1/τ0 either. Thus, the function Ψ (ζ) is holomorphic and bounded in �. Due to

the Liouville theorem and according to (4.4) we have Ψ (ζ) ≡ const = 0. This proves the

representation (4.5).

Coefficients a+
0k in (4.5) are uniquely defined through coefficients a0k of the given complex

potential (4.1) in accordance with definition (4.3). After simple algebra we get

a+
0k = a0k(τ

2
0 − c2)−k/2. (4.6)

Coefficients a+
jk , j = 1, 2, have to be found through the boundary condition (3.10).

From the identity (4.2) and representations (4.3) and (4.5) follow the following

equalities:

a+
1k + a+

2k = 2a+
0k, k = 0, n. (4.7)

We take a solution of the problem (3.10) in the form (3.13) with F−
j (ζ) = −F+

j (1/ζ).

Then using (3.14) and (3.15), the second condition (3.10) could be written as

(1 + λ)(V+
02(τ) + V−

02(τ) + F+
2 (τ) − F+

2 (1/τ)) = V−
01(τ)

−F+
1 (1/τ) + λ

(
V−

01(R
2/τ) − F+

1 (τ/R2)
)
, |τ| = R. (4.8)

Let us now consider the function

Φ(ζ) =

{
(1+λ)(V−

02(ζ)+F
+
2 (ζ))−V−

01(ζ)+λF
+
1 (ζ/R2), ζ∈Ω−

1

−F+
1 (1/ζ)−(1+λ)(V+

02(ζ)−F+
2 (1/ζ))+λV−

01(R
2/ζ), ζ �Ω−

1

. (4.9)
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From the boundary equality (4.8) it is clear that function (4.9) is holomorphic everywhere

in the closed ζ-plane except at point 1/τ0, where it has a pole of the order n + 1. In

accordance with the generalised Liouville theorem we get

Φ(ζ) = C + Pn+1(1/(ζ − 1/τ0)), (4.10)

where C is a constant and Pn+1(ζ) is a polynomial of degree n + 1 without free term.

One has to choose this polynomial in a such way that functions V−
01,V−

02 defined by (4.9)

would be holomorphic at point τ0. The last condition is satisfied if the following identities

are simultaneously true:

Pn+1(1/(ζ − 1/τ0)) ≡ λF+
1 (ζ/R2) ≡ (1 + λ)F+

2 (1/ζ) − F+
1 (1/ζ) + C1, (4.11)

where

C1 = λF+
1 (0) = F+

1 (0) − (1 + λ)F+
2 (0),

as F+
1,2(∞) = 0. From (4.11) it follows that

λF+
1 (1/(R2ζ)) ≡ (1 + λ)F+

2 (ζ) − F+
1 (ζ) + C1. (4.12)

Now in accordance with definition (4.5), we successively derive

F+
1 (1/(R2ζ)) =

n∑
k=0

a+
1k

(
τ0R

2ζ

1 − τ0R2ζ

)k+1

=

n∑
k=0

a+
1k

(
ζ/τ0

1 − ζ/τ0

)k+1

=

n∑
k=0

a+
1k(−1)k+1

(
1+

τ0

ζ−τ0

)k+1

=

n∑
k=0

a+
1k(−1)k+1

k+1∑
j=0

(
k+1

j

)(
τ0

ζ−τ0

)j

.

Changing the order of summation we transform the last expression to

F+
1 (1/(R2ζ)) = F+

1 (0) +

n∑
k=0

(
τ0

ζ − τ0

)k+1 n∑
j=k

a+
1j(−1)j+1

(
j + 1

k + 1

)
.

Using the derived relation and (4.5) and (4.12) we equal the coefficients at the same

degrees of τ0/(ζ − τ0) and get the system

λ

n∑
j=k

a+
1j(−1)j+1

(
j + 1

k + 1

)
= (1 + λ)a+

2k − a+
1k, k = 0, n.

Then

λa+
1k(−1)k+1 + a+

1k − (1 + λ)a+
2k = ck, k = 0, n, (4.13)

where

ck = λ

n∑
j=k+1

a+
1j(−1)j

(
j + 1

k + 1

)
, k = 0, n− 1, cn = 0. (4.14)
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Systems (4.7) and (4.13) has a unique solution:

a+
1k =

⎧⎪⎪⎨
⎪⎪⎩
a+

0k + λ�a+
0k +

ck + λ�ck
2(1 + λ)

, k = 2m

a+
0k + iλ�a+

0k +
ck + iλ�ck
2(1 + λ)

, k = 2m+ 1

, (4.15)

a+
2k =

⎧⎪⎪⎨
⎪⎪⎩
a+

0k − λ�a+
0k − ck + λ�ck

2(1 + λ)
, k = 2m

a+
0k − iλ�a+

0k − ck + iλ�ck
2(1 + λ)

, k = 2m+ 1

. (4.16)

From (4.15), (4.16) and (4.14) we first define successively a+
1n, a

+
2n, then cn−1, a

+
1 n−1, a

+
2 n−1,

and so on up to a+
10, a

+
20.

From relations (4.9)–(4.11) we get{
(1 + λ)(V−

02(ζ) + F+
2 (ζ)) − V−

01(ζ) = C, ζ ∈ Ω−
1

−(1 + λ)V+
02(ζ) + λV−

01(R
2/ζ) − C1 = C, ζ ∈ �\Ω−

1

. (4.17)

Exclusion of V−
01(ζ) from system (4.17) results in the following equation about V−

02(ζ):

V−
02(ζ) = D − λV−

02(ζR
2) − λF+

2 (ζR2), ζ ∈ �\Ω+
1 , (4.18)

where D = (C + λC + C1)/(1 + λ).

A unique solution of equation (4.18) can be written down as

V−
02(ζ) =

D − λD

1 − λ2
+

∞∑
k=1

(−1)kλkCk
�F

+
2 (Ck

�ζR
2k),

where Ck
� is the k-th power of the conjugation operator (3.21). Using (3.14) and (3.15) we

derive

V02(ζ) =

∞∑
k=1

(−1)kλkCk
�

(
F+

2 (Ck
�ζR

2k) − F+
2 (R2k/Ck

�ζ)
)
. (4.19)

From the first equality (4.17) follows

V−
01(ζ) = F+

1 (0) − F+
2 (0)

1 − λ
+ (1 + λ)

∞∑
k=0

(−1)kλkCk
�F

+
2 (Ck

�ζR
2k). (4.20)

It completes the construction of the required solution of the problem (2.2) for the case

of boundary singularities f0(z).

Theorem 2 If the given undisturbed complex potential f0(z) has an only singular point t0 at

the elliptic interface L and corresponding complex velocity is a rational function (4.1) then

the problem of finding a piece-wise meromorphic function with principal part f′
0(z) subject

to boundary condition (2.2) is unconditionally solvable. Its unique solution is given by the

formulae (2.3), (3.3), (3.24), (3.25), (4.19) and (4.20) with functions F+
1,2 defined in (4.5),

F−
1 (ζ) = −F+

1 (1/ζ), and coefficients a+
1k , a

+
2k given by (4.14)–(4.16).
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Figure 4. The source at the border point z = a.

Example 2 Let a given complex potential f0(z) has a single vortex-source of strength

Γ+iQ at the point z = a, i.e. f′
0(z) = (Γ+iQ)/(2πi(z−a)), and consequently in accordance

with (4.3) and (4.5)

F0(ζ) =
(ζ − 1/ζ)(Γ + iQ)

2πi((ζ + 1/ζ) − (R + 1/R))
=

(Γ + iQ)

2πi

(
1/R

ζ − 1/R
− ζ

R − ζ

)
,

wherefrom, as well as from (4.6), it follows that a+
00 = (Γ + iQ)/(2πi). Using (4.14)–(4.16)

we find

a+
10 =

Γ + i(1 + λ)Q

2πi
, a+

20 =
Γ + i(1 − λ)Q

2πi
. (4.21)

Via formulae (3.24), (3.25), (4.5) and (4.19)–(4.21) the disturbed complex velocity can be

expressed in the following form:

v1(z) =
Γ + i(1 + λ)Q

2πi(z − a)
− 1√

z2 − c2

[
λa+

20

1 − λ
+

λa+
10

Rζ(z) − 1

+
1 + λ

2πi

∞∑
k=1

λk
(Γ + i (−1)k(1 − λ)Q)R−2k−1

ζ(z) − R−2k−1

]
,

v2(z) =
Γ + i (1 − λ)Q

2πi(z − a)
+

1

2πi

∞∑
k=1

λk
Γ + (−1)ki (1 − λ)Q

z − c(R2k+1 + R−2k−1)/2
.

In Figure 4, in the upper left panel, the streamlines and equipotential lines are plotted

using the last formulae for the case a = 5, b = 3, Γ = −1, Q = 3, λ = 2/3, i.e. the
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conductivity of the inclusion is five times less than matrix’s conductivity. The other three

panels give the corresponding pictures when, instead of the last formulae, the formulae

(3.26) and (3.27) were used. The upper right panel gives the flow net for the case of two

vortex-sources of half intensity located close to a, namely z1 = a+0.0001, z2 = a− 0.0001

and Γ1 = Γ2 = −0.5, Q1 = Q2 = 1.5 (λ = 2/3). The lower row represents the flow nets

for the cases of an internal vortex-source (left panel, z2 = a − 0.0001) and an external

vortex-source (right panel, z1 = a+ 0.0001) of the same intensity as in the first case. The

comparison of these four pictures shows that the flow nets are practically the same in the

upper row, but the lower row pictures slightly differ from the upper ones. This difference is

insignificant for the bottom left panel but more pronounced for the bottom right one. We

surmise that the same effect of practical coincidence of flow nets for the case of separated

(internal or external singularities) and coalesced singularity right on the interface will be

observed for arbitrary singularities.

5 Conclusion

An explicit analytical solution of the problem of refraction of two harmonic 2D fields in

a two-conductivity medium with an elliptical lens is obtained. The most general case of

arbitrarily distributed singularities of the given complex potential is considered.

A special case of a sink-source pair, placed either inside or outside the lens, is elaborated

with potential applications to subsurface mechanics (well hydraulics).

As an application of the results, presented in Theorem 1, a new proof of the generalised

Eshelby’s conjecture is provided.

A novel explicit solution is derived for a singular point of the given complex potential

located exactly at the interface.

Flow nets are plotted for several possible loci of field-inducing singularities. The

asymptotic behaviour of these nets is investigated, as the singularities placed in different

media converge to the interface and eventually coalesce.

The results of the present paper can be generalised for the case of an infinite number

of singularities of the given complex potentials as well as for the case of multiple elliptic

inclusions (in particular, periodical and double periodical lattices of inclusions).
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