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Abstract We consider the boundary-value problem

−y′′ = λf(t, y(t)), 0 < t < 1,

y(0) = H(ϕ(y)),

y(1) = 0,

where H : [0, +∞) → R and f : [0, 1] × R → R are continuous and λ > 0 is a parameter. We show that if
H satisfies a boundedness condition on a specified compact set, then this, together with an assumption
that H is either affine or superlinear at +∞, implies existence of at least one positive solution to the
problem, even in the case where we impose no growth conditions on f . Finally, since it can hold that
f(t, y) < 0 for all (t, y) ∈ [0, 1]×R, the semipositone problem is included as a special case of the existence
result.
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1. Introduction

In this paper we consider the boundary-value problem (BVP)

−y′′ = λf(t, y(t)), 0 < t < 1,

y(0) = H(ϕ(y)),

y(1) = 0,

⎫⎪⎬
⎪⎭ (1.1)

where H : [0, +∞) → R and f : [0, 1] × R → R are continuous functions and λ > 0 is
a parameter. The functional ϕ : C([0, 1]) → R is assumed to be linear and realizable as
a Stieltjes integral with (possibly) signed measure, which allows for the possibility that
ϕ(y) < 0 even if y is a non-negative function. Since f(t, 0) < 0 is allowed, our results
include as a special case the so-called semipositone problem. The principal existence
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theorem we provide for problem (1.1) essentially states (see Theorem 3.1 for the precise
statement of the result) that if

• H is either affine or superlinear at +∞ and satisfies a certain bound on a specified
closed interval and

• ϕ decomposes in a particular way,

then for each λ > 0 sufficiently small, where λ can be explicitly and easily calculated, it
follows that problem (1.1) has at least one non-trivial, positive solution; see conditions
(A0), (A1) and (A4) in what follows for a precise description of these hypotheses. In
addition to Theorem 3.1, we also provide a companion result, Theorem 3.2.

Importantly, we require no conditions on f other than that it is continuous on its
domain and that we have some lower control over its magnitude in the sense that there is
a non-negative function u ∈ L1([0, 1]) such that f(t, y) � −u(t) for each (t, y) ∈ [0, 1]×R,
which is a standard condition for this type of problem. In particular, this means that
there is no restriction on the type of growth that f has either at 0 or at +∞. Moreover,
it is possible that f is negative on the entirety of its domain. As suggested in the bullet
points above, it is also possible that H has the form H(z) = N1z + N2, with some
restriction on the choice of the constants N1 and N2. In particular, then, we can treat
affine boundary conditions in (1.1) of the form y(0) = N1ϕ(y)+N2 (see Remark 2.2 and
Example 3.6 in what follows).

In addition to the fact that no growth conditions are imposed on f , we wish to draw
attention to the fact that the function f may be strictly negative on its entire domain.
Obviously, in the local boundary condition setting (i.e. Dirichlet boundary conditions)
this would force any non-trivial solution to be non-positive. In this paper the non-local
nonlinearity provides ‘enough’ positivity to ensure the existence of a positive solution even
if f is always negative, and this works even if H is merely affine rather than in possession
of superlinear growth at +∞ (see Theorem 3.1). The recognition of this possibility is a
consequence of the decomposition of ϕ, whose use we describe next.

Indeed, the effective transfer of all growth conditions to the function H is possible
because of the decomposition hypothesis imposed on the functional ϕ. Introduced in [6],
this hypothesis requires that ϕ be able to be written in the form ϕ(y) = ϕ1(y)+ϕ2(y) for
each y ∈ C([0, 1]), where ϕ1 effectively ‘isolates’ the negativity of ϕ, whereas ϕ2 satisfies
a sort-of coercivity condition. For example, if, say,

ϕ(y) := 1
2y( 1

2 ) − 1
3y( 1

3 ), (1.2)

then ϕ(y) may be zero even if ‖y‖ is very large. This presents a problem if we wish to
use a condition that involves the behaviour of H(z)/z as z → +∞. To circumvent this
problem, we make the simple observation that (1.2) may be rewritten in the form, say,

ϕ(y) := 1
4y( 1

2 ) − 1
3y( 1

3 )︸ ︷︷ ︸
:=ϕ1(y)

+ 1
4y( 1

2 )︸ ︷︷ ︸
:=ϕ2(y)

. (1.3)
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Due to the fact that we work in a particular cone, we can then establish that there is
a constant C0 > 0 such that ϕ2(y) � C0‖y‖ for each y in the cone, and, moreover,
that ϕ1(y) � 0 for each y in the cone. These two facts then provide sufficient control
over ϕ(y) so as to use, for example, a superlinear growth condition imposed on H at
+∞. Moreover, recognition of the decomposition makes the existence proof clean and
elegant.

To conclude our introduction, we provide a brief synopsis of the current state of the
literature and the way in which our results fit into this. In addition to the intrinsic
mathematical interest, part of the interest in such problems is their potential use in
modelling physical problems such as, for example, beam deformation, steady-state heat
flow, and chemical reactor theory. For example, the boundary conditions in (1.1), in
the context of a steady-state heat flow problem, can be considered as providing some
nonlinear feedback to the temperature at the left endpoint, where this feedback depends
in a possibly nonlinear way, via the map H ◦ ϕ, on the temperature of the bar at various
points on its lateral surface (see, for example, Infante et al . [14,19,21]).

In recent years there have been many papers attending to the theory of non-local BVPs.
Some earlier results of Karakostas and Tsamatos [25,26] studied problems in cases in
which the boundary conditions were linear, i.e. H(z) := Cz for some constant C > 0.
Later, Yang [32,33] studied non-local BVPs possessing nonlinear boundary conditions.
Of note is that these authors studied the case in which the non-locality was realized in
the form of a Riemann–Stieltjes integral. Webb and Infante [28] then produced a general
approach for studying non-local BVPs with Stieltjes integral boundary conditions by
considering a new cone, which allowed for the Stieltjes measures to be signed; for exam-
ple, multipoint problems with signed coefficients were allowed. This sweeping approach
has been further developed in subsequent work by Webb and Infante [29,30] in both the
higher-order and semipositone settings. On the other hand, modifications of their gen-
eral approach have been applied to BVPs with non-local and, in some cases, nonlinear
boundary conditions in our recent papers [3–10,12] and those by Infante et al . [14–21]
and Jankowski [22]. Also of interest is a recent paper by Anderson [1] in which the exis-
tence of at least three positive solutions was demonstrated for a first-order problem with
non-local, nonlinear boundary conditions. Another recent paper by Karakostas [24] also
presents an interesting approach for studying non-local BVPs, potentially with nonlinear
boundary conditions. The classical papers by Picone [27] and Whyburn [31] are also to
be recommended for their historic value in understanding the initial development of this
area of mathematics.

Especially as concerns the intersection of the semipositone setting and non-local bound-
ary conditions, the only works of which we are aware are [11,13,23,30]. However, Webb
and Infante [30] and Jiang et al . [23] consider only the case of linear non-local boundary
conditions. On the other hand, as concerns our recent works [11,13] in the semipositone
setting, we also considered problems of the form given by (1.1). In [11] we considered the
case in which λ = 1, whereas in [13] we considered the case in which λ ∈ (0, λ0) for some
small computable number λ0 > 0. However, in each of our papers, just as in each of the
papers described in the previous paragraph, growth conditions were imposed on f ; thus,
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here we improve that aspect of those papers by eliminating such conditions and showing
that all conditions can be effectively transferred to the nonlinear non-local element. More-
over, the computation of λ in this work is rather more simple than in [11,13]. Thus, this
paper shows that by taking a different approach and requiring the previously described
condition on H, we can provide better and simpler results, and thus not only complement
the works in the previous paragraph but also complement and/or improve [11,13,23,30],
too.

With this in mind, the outline of this paper is as follows. In § 2 we describe briefly the
preliminary results we require in order to prove the existence results. In § 3 we state and
prove our existence theorems. We then conclude the paper by providing two different
numerical examples in order to demonstrate the use and scope of our results. Finally, we
note that although we elect to study this type of problem in the specific incarnation of
(1.1), it is obvious that our methods can be adapted trivially to treat other boundary
conditions, perturbed Hammerstein integral equations, or solutions of elliptic partial
differential equations with radial solution structure; we simply prefer the concreteness
that (1.1) provides.

2. Preliminaries

In this section we provide some background on the techniques and notation that are used
in § 3. Furthermore, we introduce the conditions that are assumed in the existence results.
To this end, we begin by noting that, as is standard in the semipositone setting (see,
for example, [2]), letting u ∈ L1([0, 1]; [0, +∞)), we will make use of both the auxiliary
problem

−w′′ = λu(t), 0 < t < 1,

w(0) = 0 = w(1),

}
(2.1)

and the modified problem

−y′′ = λ[f(t, (y − w)∗(t)) + u(t)], 0 < t < 1,

y(0) = H∗(ϕ(y − w)),

y(1) = 0,

⎫⎪⎬
⎪⎭ (2.2)

where we put (y−w)∗(t) := max{0, (y−w)(t)} and H∗(z) := H(max{0, z}). The purpose
of the function u is to serve as a lower bound on f (see condition (A3) in what follows).
Henceforth, we shall denote by w the unique solution of problem (2.1); observe that w

may be written in the form

w(t) = λ

∫ 1

0
G(t, s)u(s) ds. (2.3)

Note that in both (2.3) and what follows the map G : [0, 1] × [0, 1] → [0, 1] denotes the
Green function defined by

G(t, s) :=

{
t(1 − s), 0 � t � s � 1,

s(1 − t), 0 � s � t � 1.

https://doi.org/10.1017/S0013091516000146 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091516000146


On semipositone non-local BVPs with nonlinear or affine BCs 639

It is well known that for a given (a, b) � (0, 1) the constant γ∗ := mint∈[a,b]{t, 1 − t} =
min{a, 1 − b} ∈ (0, 1) satisfies the Harnack-like inequality

min
t∈[a,b]

G(t, s) � γ∗ max
t∈[0,1]

G(t, s) = γ∗G(s, s).

Now, define the completely continuous operator T : C([0, 1]) → C([0, 1]) by

(Ty)(t) := (1 − t)H∗(ϕ(y − w)) + λ

∫ 1

0
G(t, s)[f(s, (y − w)∗(s)) + u(s)] ds. (2.4)

Then a fixed point of T is a solution of problem (2.2). This is important due to the
following standard result, whose proof we omit.

Lemma 2.1. Suppose that y is a solution of problem (2.2). In addition, suppose
both that (y − w)(t) � 0 for each t ∈ [0, 1] and that ϕ(y − w) � 0. Then the function
Υ : [0, 1] → R defined by Υ (t) := (y − w)(t) is a positive solution of problem (1.1).

We next state the hypotheses we make in § 3; note that conditions (A0)–(A2) ensure
that the non-locality ϕ has the correct structure, whereas conditions (A4) and (A5)
impose the correct growth and local boundedness conditions on the nonlinearity H.
Observe that in what follows, for any finite r1, r2, r > 0, with r2 > r1, we use the
notation

H̃r1,r2 := max
z∈[r1,r2]

H(z),

f̃r := max
(t,z)∈[0,1]×[0,r]

f(t, z)

for the functions H and f appearing in (1.1).

(A0) Assume that there are two linear functionals ϕ1, ϕ2 : C([0, 1]) → R such that

ϕ(y) = ϕ1(y) + ϕ2(y).

Moreover, assume that there exists a constant C0 > 0 such that ϕ2(y) � C0‖y‖ for
each y ∈ K, where K ⊆ C([0, 1]) is a cone defined below. Furthermore, since ϕ is
linear, we let C1 denote a constant such that |ϕ(y)| � C1‖y‖ for each y ∈ C([0, 1]).

(A1) The functionals described in condition (A0) have the form

ϕ(y) :=
∫

[0,1]
y(t) dα(t), ϕ1(y) :=

∫
[0,1]

y(t) dα1(t), ϕ2(y) :=
∫

[0,1]
y(t) dα2(t),

where α, α1, α2 : [0, 1] → R satisfy α1, α2 ∈ BV([0, 1]) so that α ∈ BV([0, 1]).

(A2) It holds that ∫
[0,1]

G(t, s) dα1(t),
∫

[0,1]
(1 − t) dα1(t) > 0,

where the first inequality holds for every s ∈ [0, 1].
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(A3) The functions f : [0, 1] × [0, +∞) → R and H : R → R, satisfying H([0, +∞)) ⊆
[0, +∞), are continuous, and there exists a map u ∈ L1([0, 1]; (0, +∞)) such that
f(t, y) > −u(t) for each (t, y) ∈ [0, 1] × R.

(A4) There exists a number N ∈ (0, +∞) such that H̃C0N,C1N < N .

(A5) It holds that

lim
z→+∞

H(z)
z

> M,

where M > 0 is a real number satisfying M > 1/C0. It is also allowed that
limz→+∞ H(z)/z = +∞; in this case M can be any number such that MC0 > 1.

Remark 2.2. Condition (A4) is the precise statement of the ‘bound’ that H must
satisfy on a ‘specified closed interval’, to which we referred in § 1. Observe that this is
a condition on the graph of H, and essentially requires that there exists at least one
rectangle, with vertices (C0N, 0), (C1N, 0), (C0N, N) and (C1N, N), such that the graph
of H|[C0N,C1N ] is contained in this rectangle.

Remark 2.3. It is worth noting that condition (A5) does allow the map z �→ H(z) to
be affine at +∞. In particular, this means that the boundary condition in (1.1) at t = 0
may have the form y(0) = N1ϕ(y) + N2 for some constants N1 and N2 (see Example 3.6
for an explicit example of this case). In addition, z �→ H(z) may be linear away from
+∞.

When studying the operator T , which was defined in (2.4), we will work within the
cone K ⊆ C([0, 1]) defined by

K := {y ∈ C([0, 1]) : y(t) � q(t)‖y‖ for all t ∈ [0, 1], ϕ1(y) � 0},

where q : [0, 1] → [0, 1
4 ] is defined by q(t) := t(1 − t). It is standard to show both that

T (K) ⊆ K and that T is a completely continuous operator on K. It is clear that K is
neither empty nor trivial since 1− t ∈ K. In addition, it can be shown that w ∈ K, a fact
that is important in § 3 and whose proof is left to the reader.

Next we recall the following lemma. Its proof can be found, for example, in [11,13].

Lemma 2.4. For each (t, s) ∈ [0, 1] × [0, 1] it holds that G(t, s) � q(t).

Remark 2.5. Observe that we do not need to include the condition ϕ2(y) � 0 in the
cone K defined above since, due to the coercivity condition of (A0), it follows at once
that ϕ2 is non-negative on the cone K.

For use in the statement and proof of Theorems 3.1 and 3.2, we give the following
notation. That η0 is positive will be shown in the proof of Theorem 3.1.

Notation 2.6. Define the number ξ0 > 0 by

ξ0 := max
t∈[0,1]

∫ 1

0
G(t, s)u(s) ds.
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In addition, define the number η0 > 0 by

η0 := sup{η̃0 ∈ (0, NC0) : 0 < H̃C0N−η̃0,C1N+η̃0 + 1
2 (N − H̃C0N,C1N ) < N},

where the number N is from condition (A4).

Finally, we conclude this section by stating formally the fixed-point theorems we use
(see, for example, either [21] or [34] for additional information).

Lemma 2.7. Let B be a Banach space and let K ⊆ B be a cone. Assume that Ω1 and
Ω2 are bounded open sets contained in B such that 0 ∈ Ω1 and Ω̄1 ⊆ Ω2. Furthermore,
suppose that T : K ∩ (Ω̄2 \ Ω1) → K is a completely continuous operator. If either

(1) ‖Ty‖ � ‖y‖ for y ∈ K ∩ ∂Ω1 and ‖Ty‖ � ‖y‖ for y ∈ K ∩ ∂Ω2 or

(2) ‖Ty‖ � ‖y‖ for y ∈ K ∩ ∂Ω1 and ‖Ty‖ � ‖y‖ for y ∈ K ∩ ∂Ω2,

then T has at least one fixed point in K ∩ (Ω̄2 \ Ω1).

Lemma 2.8. Let D ⊃ {0} be a bounded open set and, with K a cone in a Banach
space X , suppose both that D ∩ K �= ∅ and that D̄ ∩ K �= K. Let D1 be open in X

with D̄1 ⊆ D ∩ K. Assume that T : D̄ ∩ K → K is a compact map such that Tx �= x

for x ∈ K ∩ ∂D. If iK(T, D ∩ K) = 1 and iK(T, D1 ∩ K) = 0, then T has a fixed
point in (D ∩ K) \ (D1 ∩ K). Moreover, the same result holds if iK(T, D ∩ K) = 0 and
iK(T, D1 ∩ K) = 1.

3. Main results and discussion

In this section we first state and prove the existence results for problem (1.1). Then we
give a couple of examples to illustrate the results and explicate their use. We remark
that in this section we use the notation

Ωρ := {y ∈ C([0, 1]) : ‖y‖ < ρ}.

Theorem 3.1. Suppose that conditions (A0)–(A5) hold. Define the real number λ0 >

0 by

λ0 := min
{

η0

C1ξ0
, N

[ ∫ 1

0
u(s) ds

]−1

, 1
2 (N − H̃C0N,C1N )

[ ∫ 1

0
G(s, s)[f̃N + u(s)] ds

]−1}
.

(3.1)
Then for each λ ∈ (0, λ0) problem (1.1) has at least one positive solution.

Proof. To begin the argument we provide some preliminary estimates, which will
be useful throughout the proof. Furthermore, we henceforth assume that λ is fixed and
selected so that λ ∈ (0, λ0), where λ0 is as in (3.1) above; we show in the next paragraph
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that λ0 > 0. So, using Lemma 2.4 we first of all notice that whenever y ∈ K\ΩN it holds
that

(y − w)(t) � q(t)‖y‖ − w(t) = q(t)‖y‖ − λ

∫ 1

0
G(t, s)u(s) ds

� q(t)
[
‖y‖ − λ

∫ 1

0
u(s) ds

]
� 0, (3.2)

where the final inequality in (3.2) follows from the fact that

λ < N

[ ∫ 1

0
u(s) ds

]−1

and ‖y‖ � N .
Next, we notice that

0 < H̃C0N,C1N + 1
2 (N − H̃C0N,C1N ) < N, (3.3)

where the inequalities in (3.3) follow from assumption (A4). Furthermore, since the map
z �→ H̃C0N−z,C1N+z is continuous, it follows that limz→0+ H̃C0N−z,C1N+z = H̃C0N,C1N .
This implies that there exists z0 > 0 such that whenever η̃0 ∈ [0, z0) it follows that

0 < H̃C0N−η̃0,C1N+η̃0 + 1
2 (N − H̃C0N,C1N ) < N. (3.4)

Consequently, defining η0 as in § 2, we see that (3.4) implies that η0 > 0, which, in
particular, implies that λ0 > 0 in (3.1).

Finally, for any y ∈ K ∩ ∂ΩN we notice that each of

ϕ(y − w) = ϕ(y) − ϕ(w) � C1‖y‖ − C0‖w‖ = C1N − C0λξ0 (3.5)

and
ϕ(y − w) � C0‖y‖ − ϕ(w) � C0N − C1‖w‖ = C0N − C1λξ0 (3.6)

holds, using in (3.5) and (3.6) both the fact that ‖y‖ = N plus assumption (A0) and the
fact that ‖w‖ = λξ0. Combining estimates (3.5) and (3.6), we deduce that

C0N − C1λξ0 � ϕ(y − w) � C1N − C0λξ0 (3.7)

for each y ∈ K ∩ ∂ΩN ; notice that the bound in (3.7) is well defined since we compute

(C1N − C0λξ0) − (C0N − C1λξ0) = (C1 − C0)︸ ︷︷ ︸
>0

N + (C1 − C0)︸ ︷︷ ︸
>0

λξ0 > 0.

In any case, (3.7) implies that

ϕ(y − w) ∈ (C0N − η0, C1N + η0) (3.8)
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provided that
λ <

η0

C1ξ0
. (3.9)

Since (3.9) holds from the choice of λ0 in (3.1), it follows that (3.8) holds for each
y ∈ K ∩ ∂ΩN . At the same time, let us also note that for any y ∈ K \ ΩN it holds that

ϕ(y − w) � C0N − η0 � 0, (3.10)

where (3.8) and the fact that η0 ∈ (0, NC0] jointly imply the final inequality in (3.10).
The significance of estimates (3.8) and (3.10) is that we can then estimate

H∗(ϕ(y − w)) = H(ϕ(y − w)) � H̃C0N−η0,C1N+η0 (3.11)

for each y ∈ K ∩ ∂ΩN , which will be used in the next part of the proof; in fact, the first
equality in (3.11) actually holds for each y ∈ K \ ΩN .

With the preceding preliminary estimates dispatched, we now show that

‖Ty‖ � ‖y‖ for all y ∈ K ∩ ∂ΩN . (3.12)

To this end, let y ∈ K ∩ ∂ΩN be fixed but otherwise arbitrary. Now, note that

0 � (y − w)∗(t) � y(t) � N. (3.13)

Then, in light of estimates (3.2), (3.4), (3.11) and (3.13) together with the definition of
λ0 in (3.1), we observe that

(Ty)(t) � H∗(ϕ(y − w)) + λ

∫ 1

0
G(t, s)[f(s, (y − w)∗(s)) + u(s)] ds

� H(ϕ(y − w)) + λ

∫ 1

0
G(s, s)[f(s, (y − w)(s)) + u(s)] ds

� H(ϕ(y − w)) + λ

∫ 1

0
G(s, s)[f̃N + u(s)] ds

< H̃C0N−η0,C1N+η0 + 1
2 (N − H̃C0N,C1N )

� N

= ‖y‖ (3.14)

for each t ∈ [0, 1]. Thus, (3.14) implies that (3.12) holds.
On the other hand, we next argue, putting τw := (ρ2 + ϕ(w))/C0, that

‖Ty‖ � ‖y‖ for all y ∈ K ∩ ∂Ωτw , (3.15)

for a suitable number ρ2 > 0 to be fixed momentarily. To this end, by assumption (A5)
we deduce that there exists a number ε0 > 0 such that whenever ε̃ ∈ [0, ε0) it holds that
M > (1/C0)(1 + ε̃). Furthermore, also by assumption (A5) there exists a number ρ2 > 0
such that H(z) > Mz whenever z ∈ [ρ2, +∞).
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Now, observe that λ has been previously fixed and, in particular, does not depend on
ρ2. Thus, we may assume without loss of generality that ρ2 is selected so large that

0 �
λ

∫ 1
0

∫ 1
0 G(t, s)u(s) dα(t) ds

ρ2
< ε0. (3.16)

And from both (3.16) and the choice of M provided in the previous paragraph it follows
that

M >
1
C0

[
1 +

λ
∫ 1
0

∫ 1
0 G(t, s)u(s) dα(t) ds

ρ2

]
. (3.17)

Moreover, we can furthermore assume by selecting ρ2 even larger if necessary that τw > N

holds. Also, observe that whenever y ∈ K ∩ ∂Ωτw we may estimate

ϕ(y − w) � C0‖y‖ − ϕ(w) = ρ2,

from which it follows that H∗(ϕ(y − w)) � Mϕ(y − w). Then, having fixed ρ2 > 0 so
large that (3.17) is true, we estimate for each y ∈ K ∩ ∂Ωτw

that

(Ty)(0) � Mϕ(y − w) � Mρ2 > ρ2

[
1
C0

(
1 +

λ
∫ 1
0

∫ 1
0 G(t, s)u(s) dα(t) ds

ρ2

)]

=
ρ2 + λ

∫ 1
0

∫ 1
0 G(t, s)u(s) dα(t) ds

C0

= τw

= ‖y‖, (3.18)

whence (Ty)(0) > ‖y‖. Consequently, (3.18) implies estimate (3.15), as desired.
Now, an application of Lemma 2.7 implies the existence of

y0 ∈ K ∩ (Ω̄τw
\ ΩN ) (3.19)

such that Ty0 = y0. The choice of ρ2 in the preceding part of the argument ensures that
the intersection in (3.19) is non-empty. Define Υ : [0, 1] → R by Υ (t) := (y0 −w)(t). Since
‖y0‖ � N , estimates (3.2) and (3.10) yield both that Υ (t) � 0 and that ϕ(y0 − w) � 0.
Consequently, applying Lemma 2.1 implies that Υ is a positive solution to the original
problem (1.1). This completes the proof. �

We now provide an alternative existence proof. To prove this theorem we shall appeal
to Lemma 2.8 instead of Lemma 2.7.

Theorem 3.2. Suppose that conditions (A0)–(A3) and (A5) hold. In addition, putting

σ := H̃NC0,NC1

∫ 1

0
(1 − t) dα(t),
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suppose that there exists N ∈ (0, +∞) such that each of the following inequalities holds:

0 � σ < NC0,∫ 1

0
dα(t) � 0,

H̃σ,NC1

∫ 1

0
(1 − t) dα(t) < NC0.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.20)

Then problem (1.1) has at least one positive solution for each λ ∈ (0, λ∗
0), where

λ∗
0 := min

{
NC0 − H̃σ,NC1

∫ 1
0 (1 − t) dα(t)

C1
∫ 1
0 G(s, s)[f̃N + u(s)] ds

,
NC0 − σ

C1
∫ 1
0 G(s, s)u(s) ds

, N

[ ∫ 1

0
u(s) ds

]−1}
.

(3.21)

Proof. We first argue that
iK(T, ΩN ) = 0. (3.22)

To prove (3.22), we shall show that for each μ � 1 it holds that μy �= Ty for each
y ∈ K ∩ ∂ΩN . So, for a contradiction suppose not. Then we find μ � 1 and y ∈ K ∩ ∂ΩN

such that μy(t) = (Ty)(t) for each t ∈ [0, 1]. By applying ϕ to each side of this equality
we thus obtain the estimate

μϕ(y) = H(ϕ(y − w))
∫ 1

0
(1 − t) dα(t) + λ

∫ 1

0

∫ 1

0
G(t, s)[f(s, (y − w)(s)) + u(s)] dα(t) ds.

(3.23)
Note that in (3.23) we use the fact that (y − w)(t) � 0 due to the choice of λ∗

0 and the
fact that ‖y‖ � N . We have also used the fact that ϕ(y − w) � 0, which will be proved
in the next paragraph.

Next we recall some of the preliminary estimates from the proof of Theorem 3.1.
Indeed, in light of estimate (3.7) an important consideration in the proof is to ensure
that the quantity C0N − C1λξ0 remains non-negative, since from (3.6) we know that
ϕ(y − w) � C0‖y‖ − C1λξ0. However, by the choice of λ∗

0 given in (3.21) we see that for
each λ ∈ (0, λ∗

0) we may estimate

C0N − C1λξ0 > C0N − C1(NC0 − σ)

C1
∫ 1
0 G(s, s)u(s) ds

(
max

t∈[0,1]

∫ 1

0
G(t, s)u(s) ds

)

� C0N − C1(NC0 − σ)

C1
∫ 1
0 G(s, s)u(s) ds

( ∫ 1

0
G(s, s)u(s) ds

)
= σ. (3.24)

Observe that due to condition (3.20) we know that NC0 − σ > 0, from which it follows
that the direction of the second inequality in (3.24) is valid. Thus, from (3.7) and (3.24)
we conclude that for each y ∈ K ∩ ∂ΩN it holds that

H(ϕ(y − w)) � H̃σ,NC1 := max
σ�z�NC1

H(z). (3.25)
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Note that (3.25) is well defined since from condition (3.20) together with the fact that
C1 > C0 > 0 we obtain that σ/(NC1) < σ/(NC0) < 1, whence σ < NC1. In fact, the
preceding calculations show that ϕ(y − w) � 0 whenever ‖y‖ � N .

So, putting (3.25) into (3.23) and observing both that μϕ(y) � μC0‖y‖ = μC0N and
that 0 < λ < λ∗

0, we obtain the estimate

μ � 1
NC0

(
H̃σ,NC1

∫ 1

0
(1 − t) dα(t) + λ

∫ 1

0

∫ 1

0
G(t, s) [f̃N + u(s)]︸ ︷︷ ︸

�0

dα(t) ds

)

� 1
NC0

(
H̃σ,NC1

∫ 1

0
(1 − t) dα(t) + λC1

∫ 1

0
G(s, s)[f̃N + u(s)] ds

)

<
1

NC0

(
H̃σ,NC1

∫ 1

0
(1 − t) dα(t) +

[
NC0 − H̃σ,NC1

∫ 1

0
(1 − t) dα(t)

])
= 1. (3.26)

All in all, since (3.26) implies that μ < 1, we obtain a contradiction, and so (3.22) holds,
as desired.

Letting τw denote the same quantity as in the proof of Theorem 3.1, we next argue
that

iK(T, Ωτw
) = 1 (3.27)

for τw > N sufficiently large, just as in the proof of Theorem 3.1. To argue that (3.27)
holds, we show that y �= Ty +μe for each μ � 0 with e(t) ≡ 1; observe that e ∈ K due to
condition (3.20). Select ρ2 > 0 sufficiently large in exactly the same way as in the second
part of the proof of Theorem 3.1, and for contradiction assume the existence of μ � 0
and y ∈ K ∩ ∂Ωτw such that y(t) = (Ty)(t) + μe(t) for each t ∈ [0, 1]. Then one can
repeat (3.18) and the entire second part of the proof of Theorem 3.1 verbatim to obtain
that y(0) � (Ty)(0) > ‖y‖, which is a contradiction. Thus, we obtain that (3.27) holds.

Finally, putting (3.22) and (3.27) together, we obtain by Lemma 2.8 the existence of

y0 ∈ K ∩ (Ωτw \ Ω̄N ) (3.28)

such that Ty0 = y0. Note that since ‖y0‖ > N and due to the choice of λ∗
0, we may

repeat verbatim inequality (3.2). But then concluding as in the proof of Theorem 3.1
we obtain that the function y0 identified in (3.28) can be used to construct a map
t �→ Υ (t) := (y0−w)(t) such that this map is a positive solution of (1.1), which completes
the proof. �

Remark 3.3. Note that due to condition (A3) and (3.20) it follows that λ∗
0 in (3.21)

is well defined and, in particular, satisfies λ∗
0 > 0.

Remark 3.4. In comparison to Theorem 3.1, one possible advantage of Theorem 3.2
is that the calculation of λ∗

0 is simpler since one need not calculate the number η0.

We conclude this paper with a couple of examples to illustrate the application of the
preceding existence theorems.
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Example 3.5. Suppose that H(z) := z2 and that ϕ, ϕ1 and ϕ2 are defined by

ϕ(y) := 7
10y( 1

2 ) − 1
10y( 1

3 ) = ( 3
5y( 1

2 ) − 1
10y( 1

3 ))︸ ︷︷ ︸
:=ϕ1(y)

+ 1
10y( 1

2 )︸ ︷︷ ︸
:=ϕ2(y)

.

Routine calculations reveal that C0 = 1/40 and C1 = 4/5 in this case. Moreover, con-
dition (A5) is trivially satisfied. Furthermore, condition (A4) holds, for example, with
N = 1 since we notice that H̃C0,C1 = H̃1/40,4/5 = 16/25 < 1 = N . Now, let us suppose
for the sake of simplicity that u(t) ≡ u0. Then additional calculations demonstrate that
in light of (3.1) we may set (to three decimal places of accuracy)

λ0 := min{1.055u−1
0 , u−1

0 , 1.080[f̃1 + u0]−1} = min{u−1
0 , 1.080[f̃1 + u0]−1} > 0. (3.29)

Consequently, Theorem 3.1 implies that for any continuous function f satisfying (A3) and
such that f̃1 + u(t) does not vanish on any non-degenerate subinterval of [0, 1], problem
(1.1) has at least one positive solution for each λ ∈ (0, λ0) with λ0 defined as in (3.29).

Example 3.6. Suppose that ϕ is defined by

ϕ(y) := 27
140y( 1

2 ) − 1
7y( 1

3 ) = ( 1
7y( 1

2 ) − 1
7y( 1

3 ))︸ ︷︷ ︸
:=ϕ1(y)

+ 1
20y( 1

2 )︸ ︷︷ ︸
:=ϕ2(y)

. (3.30)

Moreover, suppose, in contrast to Example 3.5, that

H(z) :=

{
z, 0 � z < 2,

2 + 84(z − 2), 2 � z < +∞.

From (3.30) we calculate C0 = 1
80 and C1 = 47

140 . In addition, for each N ∈ (0, 1660
177 ) it

can be shown that condition (3.20) is satisfied. Moreover, we note that condition (A5)
remains satisfied since

lim
z→+∞

H(z)
z

= 84 >
1
C0

= 80. (3.31)

In light of (3.31), we could, for instance, pick M := 81. Finally, a simple calculation
affirms that conditions (A1) and (A2) also hold.

Consequently, Theorem 3.2 implies that problem (1.1) has at least one positive solution
in this setting for any function f satisfying condition (A3) and each λ > 0 sufficiently
small. Note that (3.30) implies that the boundary condition in (1.1) at t = 0 is affine
since

y(0) =

⎧⎨
⎩

27
140y( 1

2 ) − 1
7y( 1

3 ), ϕ(y) ∈ [0, 2],

81
5 y( 1

2 ) − 12y( 1
3 ) − 166, ϕ(y) ∈ [2, +∞).

(3.32)

Finally, to estimate the admissible range of the parameter λ, as in Example 3.5 let us
suppose that u(t) ≡ u0. Then in light of (3.21) it can be shown that ‘sufficiently small’
means that λ ∈ (0, λ∗

0), where

λ∗
0 := 2846

2209 min{u−1
0 , (f̃280/47 + u0)−1} > 0,
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provided that we use N = 280
47 to generate the estimation of the number λ0 in (3.21). In

fact, as one can easily demonstrate, the coefficient of the minimum in the above estimate
for λ∗

0 is maximized precisely when N = 280
47 is chosen, as above.

Remark 3.7. Observe that the function f can be strictly negative on the entirety of its
domain in each of Examples 3.5 and 3.6. This is due to the fact that growth requirements
are imposed only on H. Consequently, so long as f(t, y) � −u(t) on [0, 1]×R, as required
by condition (A3), then f(t, y) < 0 may hold for all (t, y).

Remark 3.8. It can be shown that conditions (A4) and (A5) jointly imply that H

cannot be linear on its entire domain. However, as Example 3.6 demonstrates, an affine
map is admissible. Moreover, H can be linear away from +∞.
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