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SUMMARY
Regarding assistance to disabled people for object manip-
ulation and carrying, the paper focuses on the localisation
for mobile robot autonomy. In order to respect strong low-
cost constraints, the perception system of the mobile robot
uses sensors of low metrological quality, ultrasonic ring and
odometry. That poses new problems for localisation, in
particular. Among different localisation techniques, we
present only off-line localisation. With poor perception
means, it is necessary to introduce a priori knowledge on
sensors and environment models. To solve the localisation
problem, the ultrasonic image is segmented applying the
Hough transform, well-adapted to ultrasonic sensor charac-
teristics. The segments are then matched with the room,
modelled and assumed to be rectangular. Several positions
are found. A first sort, based on a cost function, reduces the
possibilities. The remaining ambiguities are removed by a
neural network which plays the part of a classifier detecting
the door in the environment. Improvements of the method
are proposed to take into account obstacles and non-
rectangular room. Experimental results show that the
localisation operates even with one obstacle.

1. INTRODUCTION
Recently, new robotic solutions for disabled people assis-
tance have been developed. They are realistic only under
two conditions. The first one concerns the philosophy of the
assistance. The system must not do for the person, but must
compensate for the person’s deficit of action. In fact, Man-
Machine Co-operation is essential. The human degree of
participation begins with very simple interventions of the
person in perception or decision functions and ends with a
total teleoperation of the robot. This is a semi-autonomous
system. The partial autonomy of the system completes the
possibility of actions of the person either to palliate
deficiencies due to disability or to realise tedious actions, go
to for example.

The second condition is obviously the cost of assistance.1

This strong constraint limits the degree of freedom of the
machine by decreasing its perception capacities and treat-
ment power. Co-operation aims at supplying the deficiencies
of the machine with the means of perception, decision and,
to a minor extent, action of the person.

Among the main functions of today’s life listed by WHO
(World Health Organisation), some can be done with a
robot: to carry, to grasp, to pick-up, to move. A project of a
manipulator arm attached to a mobile robot,2 in collabora-

tion with AFM (French Association against Myopathies), is
being developed to reach those objectives.

Under the two conditions seen above a localisation of the
mobile base has been developed. This function is indis-
pensable for autonomous displacement.

The problem is to localise a mobile robot in a partially
known environment (with unknown obstacles) thanks to a
system of perception restricted to an odometer and an
ultrasonic ring. Odometry is well-known for its systematic
error of increasing with the distance covered, and its non-
systematic error due to slippage on the floor.3 The use of
ultrasonic sensors is usually limited to the proximetry
because of poor metrological characteristics: mean axial
resolution, low lateral resolution, and high rate of wrong
measurements.

In that difficult context, three levels of behaviour are used
in the localisation function. They are well suited to the
different situations encountered. Each level uses specific
algorithms, little sensitive to the high rate of bad measure-
ments and to the presence of obstacles (by definition, not
modelled).

At the first level, the robot knows approximately its
position and orientation. They are updated on-line by the
odometer under the control of the ultrasonic sensors. When
the robot sees it is lost (the decision can be taken in
collaboration with the human operator), an off-line local-
isation level is activated. The third behaviour level
corresponds to the human intervention. The supervisor
analyses the situation thanks to two kinds of information:
sensor measurements displayed on a 2D plan of the
environment and an indicator of the quality of the position
given by the algorithm running on the mobile base.

In this paper, only the off-line localisation is presented.
After outlining the state of the present art, the three stages
of the method are described: the data pre-treatment which is
here a segmentation; the research of several possible
positions and then the choice of the best position. One
improvement is proposed by using the second echo of the
ultrasonic wave to decrease the effect of obstacles along the
walls. Finally, experimental results validate this approach.

2. ABSOLUTE LOCALISATION
In the literature, absolute localisation is principally based on
two techniques: construction of segments (with measure-
ments) to be compared with the environment and grid
building. Segment construction can be performed with
ultrasonic sensors, taking into account errors and
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uncertainties of the measurements.4 A segment is built with
three points. It is kept if the construction error is less than a
predefined threshold. A new point is associated to a segment
if the distance between the segment and the point is less
than another predefined threshold. Built segments are then
compared with the environment to find the position of the
robot. They can also be used to build a map of the
environment.5 McKerrow built segments from ultrasonic
data.6 A measure is represented by an arc of a circle tangent
to the target wall. The arc limits are given by the cone
aperture of the sensors. From another position the same wall
gives a second arc of a circle. It is then possible to build the
wall taking the tangent of the two arcs of a circle. In the
Blanche project, Cox uses a laser to obtain a panoramic
measurement of the environment.7 Knowing approximately
the position of the robot thanks to odometry, measures are
matched with the closest segment of the environment.
Measurement groups are then much easier to create.

The second technique for absolute localisation uses grids.
Elfes presented a three level grid representation, depending
on the objective.8 More recent works develop occupancy
grids.9 A grid cell corresponds to the probability of
occupation by an obstacle. Local maps, associated to a
sensor, are updated and merged to obtain a global map
which can easily be compared with the knowledge of the
environment. These two techniques can be combined.10 The
idea is to use the natural function of the grid: matching
measures with the environment.

Other techniques are also used. Kalman filter is used to
find the position of the robot with an approximate position
given by odometry.11 Several ultrasonic sensors (one emitter
and several receivers) can be used to obtain more informa-
tion.12 A Kalman filter is also used to find the position of the
robot. Bozma proposed to analyse the wave amplitude to
build a more precise map of the environment.13 Peyrodie
treated ultrasonic data based on the theory of possibilities to
build an environment by signature analysing the received
signal.14

According to all these papers, the main difficulties are to
extract pertinent information from the sensors and to match
it with an a priori knowledge of the environment. A specific
data pre-treatment is performed before those two funda-
mental steps.

Two absolute localisation families exist: online local-
isation (during the mission) and offline localisation (the
mission is interrupted). In the first one, from a starting point,
the odometer allows localisation of the robot with correction
given by the ultrasonic measurements matched with the
known environment.15 The matching rate measures the
coherence between the odometry and the telemetry. Never-
theless, if this coherence is too small, this kind of correction
is no longer sufficient. The robot position must be
determined offline with only ultrasonic measurements and
the a priori knowledge of the environment. Our paper deals
with this specific issue and general principles are presented.
Then experimental results are given.

3. METHOD OF THE RECTANGLE
The problem is to find the position of a robot in a room
using only ultrasonic measurements (Figure 1) and an a

priori knowledge on the environment (Figure 2). One
obstacle can be present in the environment. The aim of this
paper is to find a way to match ultrasonic scanning and an
a priori knowledge on the environment.

A three stage method is classically used in problem
resolution: The first stage consists in data pre-treatment
thanks to an a priori knowledge on the data acquisition
process and the environment. Then, a set of several possible
solutions is determined. Finally, different criteria depending
on the objectives permit the choice of the best one. Before
studying these three stages, a model of the sensors is
presented; it is useful to determine different parameters of
the algorithm.

1. Sensor model
Ultrasonic technology presents the following metrological
characteristics (Figure 3): mean longitudinal resolution Dr,
low lateral resolution Du, and a high rate of wrong
measurements due to multiple reflections, as noted by

Fig. 1. Ultrasonic measurements in a room without obstacle.

Fig. 2. Enviroment map of the robot.

Fig. 3. Ultrasonic sensor metrological characteristics.
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numerous authors. The wrong measures principally depend
on the environment complexity and the aperture cone of the
ultrasonic wave. Nevertheless, this cone is useful; it allows
correct measurements even if the sensor axis is not
perpendicular to the target surface (specular reflection). In
that case, the measure corresponds to the closest distance
between the sensor and the object. The sensors used here are
Polaroı̈d®, characterised by Du=15°, Dr=2.5cm, a 10 m
range, and a 50 kHz frequency. The perception system of
the mobile robot is a seven sensor ring, one sensor each 30°
on the front half-circle of the robot. The seven axes of the
sensors join in the rotation centre of the robot. To obtain a
panoramic measure set of the environment, the robot turns
around itself and gives about one measure per degree. The
robot is circular with two independent driving wheels
equipped with optical encoders.

Offline localisation with ultrasonic sensors is performed
using the three stages defined before. The pre-treatment
stage consists in grouping measures together in segments.
The method is taken from a segmentation technique for
vision systems. The second stage is based on the hypothesis
that the room is rectangular. This is a reasonable hypothesis
in an indoor environment. Incomplete segments are grouped
together to form partial rectangles (three or four sides). The
completeness of the segments is obtained by extending them
up to crossing points. Then the matching of these partial
segments with the environment gives a set of possible
positions of the robot. The third stage consists in choosing
the best position among the proposed ones. Firstly, a cost
function is maximised. Because of the rectangle symmetry,
two positions cannot be distinguished. A discriminant
element of the environment (the door) allows the ambiguity
to be solved. Classification capacities of neural networks is
well suited to such tasks.

2. First stage: segmentation
It corresponds to data pre-treatment in which measures are
grouped together. Non-significant points, far away from the
room model or isolated, are rejected. A well suited
transformation is applied before grouping the measures.

Hough transform. Several segmentation methods of a set
of points exist. They do not take into account specific
characteristics of the measurement system. As shown in the
model described at the begining of this section, each sensor
of the ring gives the smallest distance to the target, meaning
the perpendicular one. The Hough transform (Figure 4)

gives a well-suited representation of ultrasonic measure-
ments. Indeed, the representation of a straight line in the
(x.y) plan becomes a point in the (r, u) plan if all the
measures come from the same point of view. The axes of the
sensors of the ring cross in the rotation centre of the robot;
measurements seem to come from the same point.10

In this representation, measures coming from the same
wall are near in the sense of the Euclidean distance. If the
equation of D is ax+by+c=0, c≥0 and a2 +b2 =1 in the
(x, y) plan, it is r0 =c and u0 =sign(2b)3 arc cos(2a) in the
(r, u) plan.

Taking into account measurement system errors (Figure
3), measures coming from the same wall are not represented
by a point but a set of points contained in an ellipsis; its axes
are Dr and Du.

Measurement groupments. First, measurements longer
than the environment dimensions are filtered. The filter
threshold is called Lmax. Measurements are represented in a
(r, u) matrix. The sizes of the cells are Lr and Lu ,
respectively, in meters and radians. Lr must be superior to
Dr to be consistent with the precision of the ultrasonic
sensors. It depends on the position precision wanted and the
number of points in the scanning set. The second dimension
is defined by sensor characteristics: Lu =Du, half angle of
the aperture cone of the sensor. In this plan, the number of
impacts per cell, Nij, is calculated. It is then possible to
determine cells corresponding to isolated measurements by
fixing two thresholds. The first one, Smax , defines cells in
which there is a sufficient number of points to build a
segment. It depends on Lu and on the total number of
measures. A second threshold, Smin, defines cells in which
there is a sufficient number of points to be grouped with
another one to reach Smax impacts. Thanks to this second
threshold a group of measurements separated in two cells on
the r direction can be taken into account: Smin =Smax/2. These
two kinds of cells are kept and grouped together using the
four neighbour method. That gives the following distance
between two cells:

Dppv
4 (Cn, Cm)= |xn 2xm|+ |yn 2ym|

where xn, xm, yn and ym are the co-ordinates of cells Cn and
Cm.

3. Second stage: search of several possible positions
First, longer segments are built by aggregation of segments
which have a specific orientation and respect proximetry
criteria. Those longer segments are grouped to build partial
rectangles (with three or four sides). They are then matched
with the environment to obtain a set of possible positions.

Segment aggregation. The forward stage gives an impor-
tant number of short segments. They do not give a proper
representation of the walls of the room because several of
them belong to the same wall. So, some segments are
aggregated to longer ones. Two segments belong to the same
wall if they have nearly the same orientation (difference less
than umax) and if their extremities Es1 and Es2 are near
enough. It is interesting to favour the longer segments.
Indeed, uncertainty on their orientation is less than for the
shorter segments. A variable distance is defined asFig. 4. Hough transform representation.
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dmax =(Lsl +LS2)/10 where Ls1 and Ls2 are, respectively, the
lengths of the considered segments S1 and S2. It represents
the threshold of the distance between the two segments. umax

is fixed taking into account the cone aperture of the sensors
(2*Du) with an added uncertainty e. e allows aggregation to
be favoured and limits the number of final segments. To
summarise, two segments are aggregated if and only if: 

Hd<dmax

a<umax +e

where d and a are defined in Figure 5.

Rectangle building. Usually a room is rectangular. So it is
interesting to find, among the segments computed above,
those which are perpendicular. Two segments belong to the
same group if the difference of their orientations is a
multiple of p/2 by more or less 10% to take into account
measure uncertainty. Only groups with at least three
segments are used in the following. 

Matching with the environment. In that step, environment
is represented as a rectangle, without taking the door into
account. For each group of built segments, segments are
extended to find the corners of the room. Then, the matching
principle consists in finding a segment which has the same
length as a wall of the modelled room with a tolerance S. S
must be as S≤ (L+1)/2, where L and 1 are, respectively, the
length and the width of the rectangle of the model, to
guaranty that a computed segment cannot be matched with
both length and width of the model. If S=(L+1)/2 is
chosen, no segment is rejected. In that limiting case, the
number of possible positions is the largest which can be
obtained; it is the choice made here. Experimental results
will show that it is a good choice. If a measured segment is
matched with a modelled one (thanks to S), two symmetric
positions are possible (Figure 6).

If a group of calculated segments contains only three
segments, the first operation is to find the segment
perpendicular to the other two; it is the only one whose
length is known.

4. Third stage: choice of the best solution
Firstly, it consists in defining a cost function for the found
positions and to keep the most interesting one. It appears
that two positions have the same cost: that comes from the
rectangle symmetry. This ambiguity is solved thanks to the
only non-symmetric element of the room: the door. A neural
network is used to recognise the door and solve the position
ambiguity due to the symmetry.

Cost Function. For all positions, a satisfaction rate is
calculated from the measurements and the environment
knowledge. For each solution, measurements are matched to
the environment using the smallest distance between a
measure impact and the walls of the environment. Measure-
ments superior to Lmax, outside the environment, are
rejected.

The first idea is to use the sum of the squared distances
between measurements and the environment:

FP
1 =O

i

D2(MP
i , E)

where MP
i is the measurement number i at position P, E the

environment and D the distance function between a point
and the environment. It corresponds to the minimum
distance between the impacts and all the segments of the
environment. It is:

D=min
NS

j=1
(d(MP

i , Sj))

where Ns is the number of segments of the environment and
d the distance between a point and a segment defined as
follows:

d(M, S)=min

dist(M, Drte)

dist(M, E1)

dist(M, E2)

(d0)

(d1)

(d2)

where Drte is the straight line of the segment S, E1 and E2

are the two extremities of the segment. d0, dl and d2 are
defined on Figure 7.

Fig. 5. a and d definition

Fig. 6. Relative Position of calculated segments and environ-
ment.

Fig. 7. Calculus of the distance between a point and a segment.
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FP
1 is the more intuitive cost function but it gives an

excessive weight to the wrong measurements (far away
from the environment) which are probably due to multiple
reflections. To give a more important weight to the
measurements matched with the environment, the cost
function used is the inverse of the squared distances
between measurements and the enviroment:

FP
2 =O

i

1/D92(MP
i , E)

where D9=D if D(MP
i , E)≥dmin and D9=dmin else to avoid a

division by 0. dmin =2*Dr is chosen taking into account
imprecisions of the measurements and the position of the
robot during the rotation performed to obtain them. This
function measures the number of points near the environ-
ment. In that case, the error minimisation is given by
searching a maximum of the function.

The optimisation algorithm used to maximise FP
2 is

initialised with a position and orientation of the robot which
determine the position of the grid in relation to the
measurement. This initialisation can favour certain solu-
tions. It is then be useful to run the algorithm with different
initialisations. If the same position is found by different
runs, the different costs are added to strengthen the
associated choice.

The rectangle symmetry does not allow the positions
proposed in Figure 6 to be distinguished: a position
ambiguity subsists.

Taking off the position ambiguity. The symmetry of the
environment induces a 1ocalisation ambiguity (two
hyptheses Figure 6). A door can be used as a landmark
which breaks the symmetry of the room. Finding this door
is a typical pattern recognition task. The literature proposes
several approaches to solve the classification problem,
particularly neural networks and statistical methods. It
depends on the application constraints and on the a priori
knowledge on the input data and physical phenomena.
Neural networks are more effective and economic than
statistical methods when natural data are not describable by
low-order statistical parameters, their distribution are non-
Gaussian, their statistic are non-stationary and the
functional relations between natural data elements are
nonlinear.16

Generally, the best classifier for a given task can be found
by comparing different methods thanks to several criteria:
classification error, computational complexity and hardware
implementation efficiency.17 For example, the k-nearest-
neighbour method, whose computational cost is important,
is rejected because of the real-time constraints of our
application. Four methods have been compared: two
statistical ones, Linear Discriminant Analysis18 and Quad-
rantic Discriminant Analysis, and two neural ones, Learning
Vector Quantisation and MultiLayer Perceptrun. Table I
shows that the MLP gives the best results. It is a neural
network with 15 inputs (which corresponds to an angular
sector superior to the beam aperture of the sensor) with 19
neurones in the hidden layer. We adopt the procedure of
cross-validation to train the networks. Data sets are divided

in three equal parts to produce a learning data set, a
validation data set and a generalisation data set.19 For the
MLP and LVQ, different architectures and initialisations
have been tested and compared thanks to the generalisation
error. The bad results of QDA and LDA come from the non-
gaussian distribution of the data.

In the experimental case which aims to compare different
methods, the good classification rate of the MLP (42%)
seems to be a low level recognition rate. In this case, there
is no hypothesis on the door position. In fact, the rectangle
algorithm gives only two hypotheses. In that case, results
given later show the efficiency of that classifier. The search
of the door with the neural netwok is limited to two angular
sectors (one for each proposed position). The detection of
the door is, in fact, the detection of the two door pillars. A
criterion, C, allows the robot to distinguish which is the
better position of the two. It is defined as follows:

a1 and a2 are the angles of view of door pillars number
1 and 2. A cone of ±Da amplitude is defined around these
two directions. For all the directions inside the cone, neural
network responses are added. Hence, 

detpP{1, 2}, jP{1, 2} = Obi≤aj +Da

i,bi≥aj 2Da

detbi
p, j

where p is the calculated position of the robot, j is the
number of the door pillar, bj the angle of view and detbi

p, j is
the output of the neural network of detection of the door
pillar number j for the angle bj from the position p.

So, for each position, two values are computed. The
quality of detection of position p is defined by:

detpP{1, 2} =Oj=2

j=1

detp, j

which is the sum of the detections of door pillars 1 and 2.
The comparison between det1 and det2 is performed by the
following normalised difference:

C=
det1 2det2

det1 +det2

Its sign gives the dominant position and its value the validity
of the choice. 

5. Improvement of the method of the rectangle
The presence of obstacles masks the rectangular character-
istic of the environment which is the central point of the
algorithm. The classical phenomenon of multiple echoes of
the ultrasonic wave permits to palliate this problem. Indeed,
the first echo sees only the nearest object to the sensor. With
the second echo, it is possible to see the object behind. 

In the case of a clustered environment, few echoes come

Table I. Comparison between the four studied methods

MLP LVQ LDA QDA

Good detection 42.1% 52.0% 13.7% 10.8%
Wrong detection 4.5% 13.4% 4.5% 14.3%
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from the known environment; an obstacle is seen before the
wall (dl). But a second echo (even a third one), d2, can come
from the wall after the obstacle (Figure 8). So it is
interesting to have several echoes for each sensor. Then the
problem is that several measurements come from multiple
reflections, giving wrong values. 

The interest of the technique is that walls partially hidden
by an obstacle can be seen. Thus the rectangularity of the
room, the principal characteristic used by the algorithm, is
better detected. 

4. EXPERIMENTAL RESULTS
Three kinds of results are presented: the first ones
correspond to the method of the rectangle without neural
networks. Because a position ambiguity is still present,
neural networks are used to take it off. Finally, the case of
the modified method of the rectangle, using the second
echo, is developed.

Before the presentation of these results, an experimental
protocol is given. Then, segmentation is illustrated by an
example.

1. Experimental protocol
With the robot being at an unknown position in the
environment (Figure 2), what are the correct measurements
to find its position? About 400 measures are obtained
(Figure 1), more than one measure per degree.

Erroneous measurements appear; most of them come
from multiple reflections. Measurements out of range (size
of the room) are not used: the knowledge of environment
dimensions allows such data to be rejected.

Moreover, it is impossible to make the distinction
between a wall and a corner, a well-known result with this
type of sensors.20 In a first approximation, both are
represented by arcs of a circle. Indeed, measurements given
by the sensor are always the smallest distance to the
measured object. Measurements can come from any point of
the angular sector AS. The impact is represented on the
emission axis (Figure 9). Hence when the obstacle is visible,
the measured distance is always the same whatever the
sensor orientation changes.

2. First stage: segmentation: example
Hough transform. For the measurements shown in Figure
1, the Hough transform gives the result of Figure 10.
Uncertainties in the u direction, more than Du, can appear.
Indeed, a plane and a corner give the same image. If a

corner follows a plane, both can be combined in one arc of
a circle. A group of measurements can then be longer than
2*Du in u direction. That explains why the ellipses drawn
on Figure 10 have an axis along u longer than 2*Du.
Grouping measurements. The segmentation method
described before gives the results of Figure 11, with the
same example. Those groups of points spread largely in the
u direction. The corresponding computed segment is then
strongly biased. So, cells of the group are classified
following u. Several small groups, with maximum two cells
in u direction, are built.

In our case, parameters are fixed as follows: Firstly Lmax,

Fig. 8. Second echo giving the distance to the wall.

Fig. 9. Measurement representation.

Fig. 10. Uncertainty ellipse of a straight line in a plane.

Fig. 11. Groups of points in (p, u) plane.
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the biggest dimension of the environment, is fixed at 5m.
Then, the sizes of the cells are Lp =0.25m and Lu =p/12, by
applying rules presented in the first stage of the method.
Filtering thresholds are fixed using the number of measure-
ments (400) which corresponds to more than one
measurement per degree. If a cell contains at least 15 points
(one per degree), they come from the same wall. That gives
Smax =15. The last threshold is then: Smin =8.

In this example, the initial number of points is 406; it
drops to 242, by 40% filtering.

3. Second stage: the method of the rectangle
Results are given in two cases: in the first one, there is no
obstacle in the environment. The method of the rectangle,
before using the cost function, gives several positions
(Figure 12 and Figure 13). They are symmetrical, two by
two, with respect to rectangle centre. It is because of the
symmetry of the rectangle.

4. Third stage: choice of the best solution
The cost function. The cost function described in the third
stage of the method is represented in percentages as
follows:

F% =1003
F(i)

Oj=Np

j=1

F(j)

where NP is the total number of proposed positions (6 in this

example).
Two positions are much better than the others. They form

a pair of symmetrical positions with respect to the rectangle
centre. This ambiguity cannot be solved if only the
rectangular form of the environment is considered. A more
precise analysis of the set of points allows recognition of the
door and solution of the ambiguity (see following §).
Excluding this ambiguity, on six experiments in the room
without obstacle, the correct position is always found with
a precision better than 15cm and 5°.

In the second case, an unknown obstacle is introduced
into the environment; some part of information is then lost.
First results are worse than before. On 14 sets of points, 6
give the correct position (less than 20cm and 10° error), 3
give a mean position (less than 40cm and 20° error) and 4
give wrong positions. For one set of points, the method
gives no answer; the information is not sufficient enough.
This is a good point of the method; these results do not take
the ambiguity seen above into account.

To improve these results, the robot moves in the
environment. Different set of points for the same environ-
ment configuration are then obtained. The information
contained in these sets of points are complementary because
the obstacle does not hide the same part of the environment.
The 14 sets of points studied come from 4 different
environment configurations. They are representative of the
reality; one of them has no obstacle, three others have an
obstacle at different places along the walls of the room.
Grouping the different scannings of each configuration
gives better results. Two positions are well determined
positions (less than 20cm and 10° error), and two others are
mean (less than 40cm and 20° error).

With neural networks. With or without obstacle, with
several points of view or not, an ambiguity subsists if only
the cost function is taken into account to determine the best
position between the proposed ones. Only the door breaks
up the symmetry of the rectangle. From two symmetrical
positions given by the method, a neural network permits the
selection of the right one.

In the cases of the 18 sets of points studied with the
neural network, the robot localisation gives no results in one
case. On the 17 others, criterion C is given in Figure 14; its
sign gives the best position. C has been computed to be
positive for the good position. In only one case (number 10),
it is negative; its absolute value is less than 0.1. In all the
other cases, it is positive, and it is bigger than 0.25. A
decision threshold is fixed to 0.2 for |C|. The ambiguity is
solved in 16 cases out of 17. In the last case, |C|<0.2 and no
decision is taken. More information is required to obtain a

Fig. 12. Localisation example without obstacle.

Fig. 13. Cost function without obstacle. Fig. 14. Criterion for the position choice.
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final result. It is interesting to point out that no wrong choice
is taken.

5. Method of the rectangle modified with multiple echoes
Results of the method of the rectangle show that perform-
ances are worse if there is an obstacle in the environment.
Thanks to the second echo, even with an obstacle, there is
improvement. First results are encouraging. Figure 15
represents a set of points taken in the room with only first
echoes. The wall on the left is well seen. But, on the right,
the obstacle masks the longest part of the wall. Segment
construction gives a segment corresponding to the obstacles
and not to the wall.

If second echoes are taken into account (Figure 16), the
right wall appears more clearly.

In this case, a group of five segments appears (Figure 17).
The first echo draws the obstacle and the second echo draws
the wall. Simple geometrical reasoning permits the elimina-
tion of the perturbing segment. If two segments are parallel
on the same side of the robot the nearest is rejected. Indeed.
if the room is supposed to be rectangular, the rejected
segment represents an obstacle. Then the wall is seen and
can be used in the localisation process.

In this example (Figure 17), the computed segment due to
the obstacle is rejected and the right position is found.

5. CONCLUSION AND FURTHER WORK
The autonomy of a mobile robot depends on three functions:
planification, navigation and localisation. The strong con-
straint exposed in the introduction, i.e. the cost of the
disabled people assistance, forces us to use a perception
system of low metrological quality and limited treatment
power. In this context, localisation poses new problems. It is
particularly true when the robot is lost in a room with
unknown obstacles.

The method of the rectangle, completed by the recogni-
tion of landmarks by a neural network, gives an adapted
solution to the characteristics of the ultrasonic measures.

Results show that the method of the rectangle, with four
positions for the obstacle in the environment, gives two
good positions (less than 20cm and 10° of error) and two
mean positions (less than 40cm and 20° of error) on four
cases. The door detection using a neural network and the
knowledge of the proposed solutions by the method of the
rectangle gives good results: 16 good detections on 17 and
1 no-detection. As far as we know, it is the first time that
absolute localisation with ultrasonic sensors in a partially
known environment has been done.

Two improvements are proposed: The first one is to take
into account several echoes (2 for beginning) to palliate the
masking of the walls by obstacles. The method of the
rectangle can be generalised to rooms with more complex
patterns. Not only rectangles must be searched but all kinds
of sets of perpendicular segments. These two points are
presently being considered.
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