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Abstract

A fixed set of components with a fixed set of properties is often regarded as a defining characteristic of configuration
design problems. In configuration design for larger and more complex systems~e.g., street cars!, however, this often is
not really true. The reason is that sometimes the component library offers no component that meets the actual require-
ments, so that a new component has to be added to the library. In general, configuration design for larger products must
be interactive: interactive in the sense that the user controls the configuration process and in the sense that the phases
of knowledge acquisition and configuration are partly mixed. This paper describes a method and a corresponding
software tool~SyDeR, System Design for Reusability! that support the interactive configuration design of complex
products, especially in the tendering phase. It combines three different technologies:

• structural modeling of technical systems;

• a library for technical solutions, which is based upon taxonomies and allows the reuse of the technical solutions;

• constraint techniques to propagate design decisions and check designs for consistency to support interactive con-
figuration design.

This paper gives an overview of the functionality of the SyDeR tool and describes the main ideas behind the mod-
eling language, which is especially oriented towards the requirements of system design problems. It also explains
how we integrated structural modeling, taxonomies, and advanced constraint reasoning techniques into real-world
applications.
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1. REQUIREMENTS FOR A CONFIGURATION
DESIGN TOOL

SyDeR is intended to support engineers with design tasks
in bidding and order processing. These tasks share the fol-
lowing typical characteristics: Contrary to the widespread
definition of configuration design problems~Coyne et al.,
1990!, we do not assume a fixed set of components. In many
application areas~e.g., street cars!, technical progress and
advanced customer desires make it necessary to extend the
set of components available with each project the engineer
works on. As a consequence, a configuration design tool
should include a graphical editor that allows entering new
components—and also the configuration knowledge that

comes with them—while working on a design project. This
in turn requires that the modeling language is not too so-
phisticated, so that the engineers can handle it.

Components are not the only thing that can be reused be-
tween different projects. Often, parts of the system struc-
ture are used again and again; e.g., the overall structure of a
car engine water pump is quite the same for every engine
~see below, application case study!. The configuration de-
sign modeling language should allow specifying structures
which are suited to be reused. Moreover, the structure in-
formation should be stored in a way similar to the way the
components are stored in the tool, and the tool must allow
specifying new structures. Besides that, it should make struc-
ture knowledge explicit by displaying it to the user, e.g., in
a graph-like form, and not leave it implicit.

Besides that, the tool must support interactive configura-
tion design. A completely automatized, batch-like approach
works only for small configuration design problems. On
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large-scale problems, users want to have more influence on
and control over the configuration design process, for sev-
eral reasons:

• The user wants to see how the design tool created the
solution, replay the solution process, and take a closer
look at certain steps~explanations for the configura-
tion design!.

• The user wants to control the design process by retract-
ing the design decision made by the tool. If he or she
does so, the configuration design tool can be expected
to automatically retract all decisions by the tool that
depend on the one which the user retracted~and only
the dependent ones!!.

• The tool should never retract user decisions.

• In case of a deadlock in the configuration process, the
user should get some hints on which decision to retract
in order to resolve the conflict.

• In general, it is often desirable to have the possibility
to explore the dependencies between different config-
uration steps.

Another important aspect concerning the configuration
design process is that large configuration design problems
are usually tackled by the strategy of structural decompo-
sition. The engineer breaks the system which has to be
configured down into subsystems, which are again sub-
divided, etc. This way, he or she reduces the complexity of
the configuration problem so as not to deal with the details
hidden in the subsystems.The modeling language as well as
the configuration design tool should take this strategy into
account.

There is still another strategy to handle the complexity
and uncertainty that is inherent in larger design problems: a
least-commitment approach to the definition of parameter
values. Usually, in an early configuration phase, it is not
desirable to commit to precise values for certain parameters
because it is still not clear what the optimal value is. But
normally an idea is obtained in which range the value should
be, so an interval range can be specified, by which the pa-
rameter value is covered. The configuration design tool
should accept intervals as parameter values and also be able
to handle intervals.

2. INTRODUCTION TO SyDeR

To meet these requirements, the SyDeR tool combines three
different approaches:

1. A design library for configuration design cases, com-
ponents, structures, etc., organized in a taxonomy.

2. Structural modeling of technical systems.

3. Constraint techniques to propagate design decisions
and check designs for consistency to support inter-
active configuration design.

SyDeR allows the search for complete and partial solu-
tions in a design library and their modification to meet given
requirements. While modifying the design, the engineer can
use the SyDeR tool to perform calculations and check the
design for consistency. The design library also serves as a
knowledge base containing design descriptions as well as
reasons for design decisions~ justifications for propagated
parameter values and free-text design rationales! made in
earlier design projects and background information about
the design domain, e.g., definitions for design parameters
or explanations concerning best practices. By making this
information available, SyDeR can play the role of a corpo-
rate memory for engineering knowledge.

The rest of this paper is organized as follows: It first
explains the SyDeR perspective on configuration design,
then deals with the three basic technologies employed in
SyDeR ~structure modeling, taxonomy-based design li-
brary, and constraint techniques! and finally describes how
SyDeR and its underlying design method benefits system
design.

3. CONFIGURATION DESIGN
ACCORDING TO SyDeR

The ideal configuration design process consists of two steps:
enter the design specification and obtain the design fulfill-
ing the specification. As mentioned earlier, this is possible
for small-scale configuration problems~Heinrich & Jüngst,
1991!, but larger problems require more interactivity and
more choices for the user.

3.1. Interactive Configuration Design

In a more interactive approach, configuration is an inter-
play between specifying and selecting component types,
guided by a structural decomposition strategy which intro-
duces decomposition steps in between. The engineer starts
the configuration process by selecting a component type on
the top level of the system~the kind of system configura-
tion desired!. After this selection step, the parameter values
are specified for the top level component. The tool applies
configuration design knowledge to derive consequences from
the specification, i.e., new parameter values. Now, the en-
gineer performs a decomposition step to descend one level
in the structure hierarchy.

Here, the cycle starts again. For each of the subcompo-
nents, the engineer selects a type, specifies the component,
lets the tool parametrize the component, and further decom-
poses the system to be configured.

In the selection step, the tool can—on the engineer’s
wish—search through its library and come up with some
predefined solutions that meet the specified requirements,
or the engineer can select a type on his or her own.

This configuration design loop assumes that
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• there never arises a conflict between specified values,

• that we only need the specification parameters to pa-
rametrize the components, and

• that the library of components has every component in
store we might ever need.

These premises cannot be taken for granted, especially
if you are not dealing with larger systems like street cars,
subway trains, or trucks. We will examine in the next para-
graphs how a design cycle without these premises might
look like.

3.2. Realistic configuration design
for larger systems

A realistic configuration design process supported by
SyDeR is given in Figure 1. The engineer starts with the
design specification as explained above. The constraints in
the model allow the derivation of further system param-
eters from the specification and detect inconsistencies, so
that the engineer can deal with them.

In the next step, the design library is used to search for
the optimal system and interface types. The type assign-
ment brings new information and design knowledge into play.
New parameter value domains are inherited as well as ad-

ditional constraints. The new value domains are intersected
with those previously defined, and thus narrow the value
domains. The additional constraints are employed to derive
new values and perform additional checks on consistency.
Again, the constraints should be so complete that the sub-
system applications are completely parametrized.

If performed in this way, configuration design is still very
efficient, even under the new premises. The engineer can
concentrate on specifying the system and resolving incon-
sistencies. Moreover, design quality is enhanced by the use
of predefined and proven solutions. The precondition for
such an efficient design process is, of course, a “good”
library, based on a clean and thorough modularization and
comprehensively modeled constraints.

4. TAXONOMIES, CASES, AND DESIGN
KNOWLEDGE IN SyDeR

There are three taxonomies in SyDeR: organizing system
types, interface types, and parameter types~see structure
modeling for details on systems and interfaces!. As we will
explain below, we think it is crucial for efficient knowledge
base maintenance to model types for interfaces between

Fig. 1. The system design cycle.
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systems in a separate taxonomy as a backbone for the knowl-
edge base. It can also be helpful to keep parameter types in
a taxonomy, although this is not as important as the inter-
face type taxonomy.

The taxonomies are implemented as single inheritance
hierarchies. This allows for flexible modeling of knowl-
edge about component types and interface types. Knowl-
edge modeled with the help of SyDeR is basically expressed
in terms of parameters and constraints on the one hand and
structure description on the other hand. SyDeR uses inter-
faces and ports to describe the product structure~see below,
structure modeling!.

Parameters and constraints that are valid for a whole group
of objects are defined at that level in the taxonomy which
corresponds to this group of objects. Therefore, redundancy
in the model is avoided because facts common to a group of
objects are modeled once for the group as a generic super-
type and not for each object independently. Structure knowl-
edge about a component can be inherited on demand by the
user. We did not implement automatic inheritance because
structure tends to vary stronger than parameters and con-
straints between types and subtypes. It would be annoying
to automatically inherit a structure that does not fit.

This flexible modeling is not only essential for economy
in modeling, but also to adequately support the design pro-
cess. Usually, it becomes only gradually clear during the
design process which kind of part is used to implement a
certain function. For example, the designer starts with de-
fining that a certain part is a pump and later on decides that
a certain subtype of pump is adequate for this project and
even later selects a specific kind of pump. If knowledge about
pumps were only modeled at the leaf types of the taxonomy,
there would be no chance for the design tool to support the
engineer during the earlier stages of design. It could just start
to draw inferences about the design when the specific pump
is chosen. This can be avoided by modeling generic types as
supertypes of real types, including parameters and constraints,
as far as is known on that level of abstraction.

The taxonomies also serve as libraries from which the
engineer selects complete or partial solutions for the cur-
rent design problem. It is important to note that the library
offers cases for each level in the system structure, so that
the taxonomy reflects the structure model.

When the engineer has to find a solution for a system or
interface, the taxonomy tree can be scanned to look for a
system or interface type that can be employed in the design,
or the SyDeR tool can be instructed to search the taxonomy
for a certain needed part. The search is specified by select-
ing a start node in the taxonomy~defining the kind of part
being sought, e.g., a water pump! and a set of restrictions
on system parameters typically formulated as intervals, e.g.,
specified performance parameters. SyDeR then presents a
set of proposals from the library. The application engineer
takes a closer look at some of them by examining their
attributes and reading comments attached to the proposals
by the engineers who designed the case in the first place.

If one of the proposals seems to be a good candidate for
fulfilling the requirements, it can be checked out in the cur-
rent design by evaluating the consequences using the con-
straint machine~see below! which propagates parameter
values~and thus performs design calculations! and checks
parameter values for consistency with design rules and other
parameter values.

The SyDeR knowledge base is not restricted to knowl-
edge which can be processed by the constraint machine. It
also provides the engineer with background information
about the application domain~e.g., parameter definitions or
details concerning design standards or recommended best
practices for design!. The engineer can also extend this
knowledge by explaining the reasons for the design deci-
sions~in plain text!. This is not only helpful to understand
later on the design but also to document design rationales
for other engineers.

5. STRUCTURE MODELING IN SyDeR

The SyDeR structure model allows the description of the
vertical as well as the horizontal structure of a product to be
configured. The vertical structure describes how the prod-
uct is broken down into subsystems0subcomponents on sev-
eral levels, resulting in a product tree. The horizontal
structure describes how the components inside another com-
ponent are connected to each other and what their logical
relationships are.

A major contribution of the SyDeR tool is how it models
the horizontal structure. The basic idea is that formally
defined interfaces connect components. This approach has
two advantages:

• A strict modular approach to configuration design is
supported.

• Interfaces serve as a stable backbone to the configura-
tion design knowledge base.

Modularity is the very key idea behind configuration
design. The product that has to be configured must be bro-
ken down into modules with clearly defined properties and
interfaces, so that there are no relationships between com-
ponents other than those described by interfaces. A weak
modularization causes unnecessary costs in production,
stockkeeping, product support, and product redesign. So,
the configurability of a product or product family is a good
indicator for design quality in terms of modularization and
for the profitability of the product family. This gives an idea
how the formal techniques embodied in SyDeR not only help
to configure a product but can also help to improve product
design.

In our opinion, interface typing is an important point in
structure modeling for another reason. Interface definitions
are much more stable than system definitions. An example:
the definition of the RS232 interface has been unchanged
for decades in which the systems using this interface~e.g.,
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computers! have been completely redesigned for several
times. So, it makes sense to use the interface definitions as
a backbone for the design knowledge base which undergoes
only slight changes over time. If the interfaces are defined
carefully, system definitions can be exchanged without af-
fecting other system definitions in the knowledge base,
resulting in less knowledge maintenance expense. This idea
is already used by the “resource-based configuring para-
digm” ~Heinrich & Jüngst, 1991!.

Before we discuss the SyDeR structure model in detail,
we introduce some SyDeR terminology. Components, mod-
ules, systems, and similar entities are subsumed under the
term system. The connections between systems are called
interfaces. Interfaces are plugged into systemsvia portsat-
tached to systems. Systems are classified assystem types
which are organized in an inheritance hierarchy, calledsys-
tem taxonomy. Correspondingly,interface typesare orga-
nized in aninterface taxonomy.

Ports are characterized by the interface type that may be
plugged into the port and identified by a name. Ports do not
form a taxonomy of their own. Port descriptions are part of
the system pattern and apply for system applications as well
as for system refinements, so they are modeled in the sys-
tem taxonomy.

The information about port-interface compatibility is just
one example for a broad range of syntactic consistency
checks that SyDeR can perform on design models. Syntac-
tic checks save a lot of time because simple mistakes can be
identified immediately. Moreover, they raise the design qual-
ity. Further checks examine the number and direction of
interfaces connected to a port. Of course, SyDeR also per-
forms semantical checks on the design description~see
section on constraint techniques!.

6. HOW TAXONOMIES AND
STRUCTURE MODELS MIX

Systems belonging to a system type appear in two roles in
the configuration design knowledge base. The first role is
that of a part in the structure definition of another system
~e.g., the traction0brake system is part of the system light
rail vehicle!, and the second role is as a system that is de-
scribed in terms of its inner structure~e.g., the traction0
brake system is broken down into its subsystems!. These
two roles correspond to two different views on the system
type. One is from the outside~when the system is part of
another system!, the other is from inside~when the system
is broken down into its subsystems!.

To model these two roles of a system type, two new terms
are introduced in the SyDeR modeling language:system ap-
plicationsandsystem refinements. System applications ap-
pear in the structure definition of another system, and system
refinements define the inner structure of the system itself.
How are the system type, the system application and the
system refinement related to each other? The system type
defines parameters and constraints that are also valid for

both the system type and the system refinement. This shared
set of knowledge is called thesystem pattern. The system
application can extend this pattern by adding parameters or
constraints that are valid only in the context of a certain
system refinement, but not in other contexts. Anyway, this
should be a last resort in modeling a product. Extending the
system pattern makes sense when the engineer is not really
sure which kind of new system type he or she will define
and temporarily wants to keep a modified system applica-
tion as a prototype for the new system type.

The system refinement describes the internal system struc-
ture by listing the subsystems and by showing how the sub-
systems are connected to each other~see Figure 2!. Here we
also see that system applications appear in the refinements
of other systems.

Ports attached to a system application are mapped to cor-
responding so-calledexternal portsin the system refine-
ment~see Figure 3!.

Interfaces are allowed to have an internal structure, too.
For example, a bus interface can be broken down into sev-
eral wires, which are again treated as interfaces. External
ports handle the interface refinement. Viewed from outside
the system refinement or interface refinement, the external
port is connected to one interface. Inside the refinement the
port may be split up into several ports, each corresponding
to one of the subinterfaces.~Think of a connector of a elec-
tronic system which is internally connected to different
wires.!

SyDeR also takes into account that usually there are many
different views on a configuration design, often based on
different disciplines like mechanical design, functional de-
sign, electrical design, or cost estimation. The engineer can
define different views on the system and attach subsystems,
interfaces, parameters, and constraints to one or several of
these views. It is possible to define a separate system re-
finement for each view the corresponding system type is
attached to, so that the different structures that belong to the
different views can be modeled separately. If the engineer
concentrates on one view, SyDeR only presents data attached
to this particular view.

7. CONSTRAINT TECHNIQUES IN SyDeR

Constraints in SyDeR describe technical, financial or other
relationships between system parameters, port parameters,
and interfaces parameters. Relationships can be laws of phys-
ics, rules to estimate cost, or design standards that apply.
What makes constraints useful for interactive configuration
design purposes is that they can be used in either direction
depending on the current demand to compute unknown pa-
rameter values~more precisely, value domains!, and to check
whether the relationship is satisfied if all parameter values
are given. As a consequence, the engineer is not forced to
make a distinction between input parameters and output
parameters, which would define a more or less fixed con-
figuration design process.
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Relationships in design mainly fall into two categories:
algebraic relationships~e.g., laws of physics! and relation-
ships over finite domains~e.g., different materials!. As a
consequence, both algebraic constraints and constraints over
finite domains have to be handled by a constraint-based
design support system.

The SyDeR inference engine consists of two main
modules: a constraint machine~based on the DeltaBlue
constraint machine! and a JTMS~ justification-based truth
maintenance system! ~Doyle, 1979!. The inference engine
delivers the following tasks in configuration design:

• propagate specified or defined parameter values,

• check parameter values for consistency,

• handle parameter value intervals,

• handle sets0finite domains as parameter values, and

• provide interactivity in the configuration design
process.

The former two tasks are what constraint systems are usu-
ally used for. They compute new parameter values from
known parameter values exploiting the constraints which
model the relationships between parameters. They also al-
low the design states to be checked for consistency by per-
forming consistency checks on the constraint network. These
two constraint applications are common, basic automatiza-
tion steps in configuration design.

Less common is that a constraint machine handles inter-
vals to permit a least commitment approach to configura-
tion design.

During the design process, the engineer gradually nar-
rows the possible value domain for the design parameters.
A few parameters may have crisp values from the begin-
ning but most are specified in a certain range or only re-
stricted by coarse default ranges. When more information is
added to the design description, the propagation of restric-
tions across the constraint network causes the value do-
mains to become narrower and narrower. This corresponds
to our design philosophy which regards design as a process
that step by step narrows the design space until the space of
acceptable design solutions is reached.

Constraint systems that only handle exact values cannot
support this aspect of system design. Therefore, we decided
to implement a constraint system that reasons over value
domains~with monotone functions! instead of exact values.
So, design decisions concerning parameter values in SyDeR
are always decisions over value domains rather than over
crisp values and are represented as constraints that re-
strict the value domain for a parameter. Another important
extension is that SyDeR can handle constraints defined
over parameters which are vectors, often used to model
parameters that depend on the mode of operation. Note that
a system design must be valid for each possible mode of
operation.

SyDeR does not parametrize the whole system after press-
ing a button~although it could do so!, but it segments the
system and computes only those parameters the user wants
it to compute. The strategy implemented in SyDeR offers
the user a propagation control which uses the structure of
the hierarchical model itself.

Fig. 2. System refinement: internal structure.

378 F. Feldkamp, M. Heinrich, and K.D. Meyer-Gramann

https://doi.org/10.1017/S0890060498124095 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498124095


Essential for interactive configuration design is the JTMS
coupled to the constraint machine. It keeps track of the prop-
agations executed by the constraint machine and thus pro-
vides a service basic to several important aspects of
interactivity.

• explainparametervaluesderivedby theconfigurationde-
sign tool by showing which parameter values had which
effect on other parameter valuesvia which constraints;

• allow the user to retract decisions and automatically
retract dependent value propagations;

• in case of an inconsistency, compute the minimal set
of possible culprits~imposed constraints! for the
inconsistency; and

• give the engineer the chance to continue his or her work
even if the design state is inconsistent.

The last two points deserve further explanation. Incon-
sistencies are conflicts in terms of the constraint network
and can be easily detected by the constraint machine, when
the consistent parameter value domains turn into empty in-
tervals or sets. However, the question on how to resolve the
conflict is much more difficult to answer. A lot of different
constraints may have played a role in the process that has
led to the inconsistency. Fortunately, the JTMS can com-
pute the minimal set of user decisions~represented as con-
straints! that lies at the core of the inconsistency. It can be
guaranteed that no other constraints than those in the min-
imal conflict set have to be revised in order to resolve the
conflict.

This offers the opportunity to resolve conflicts in a flex-
ible way. The engineer is not forced to retract the last deci-

sion he or she made, but can retract one of the decisions
which caused the inconsistency and have the consequences
of this retraction computed by the constraint machine and
the JTMS.

Sometimes, it is not possible to resolve the inconsistency
immediately. Maybe the inconsistency touches the work of
another colleague, so that you may want to discuss the topic
with him or her first. It may also be that the fastest track
through the “configuration design landscape” from the spec-
ification to the final solution is through “forbidden territo-
ry,” and it would mean a serious waste of time to find a
“legal” ~read completely consistent! path. In this case, the
user retracts the constraint~s! that restrain him or her and
carries on with his or her work. SyDeR keeps the retracted
constraints in the model, but ignores them in the update of
the constraint network. Later on, the user can enable the
constraints again and have them check the design.

The implementation is based on the DeltaBlue algorithm
~Freeman-Benson et al., 1990!. It was extended to handle
value domains and a justification-based truth maintenance
system~JTMS! ~Doyle, 1979! was included.

8. AN APPLICATION CASE STUDY:
CAR ENGINE WATER PUMPS

We verified the SyDeR way of engineering with different
examples stemming from the Daimler-Benz group: street
cars, total rail systems, and car engine water pumps. In this
paper, we explain the ideas behind SyDeR using one of these
applications—the car engine water pump.

We will discuss the earliest phase of pump design, where
the engineers sketch a rough pump configuration and esti-

Fig. 3. System refinements and system applications.

System design for reusability 379

https://doi.org/10.1017/S0890060498124095 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498124095


mate development and production costs for the pump. While
a water pump is not as complex as a light rail vehicle or a
truck, it is still complex enough to pose an interesting con-
figuration design problem and is better suited for a short
paper.

A water pump delivers cooling water through a car en-
gine. It consists of several main components: impeller0
spiral, pulley, axis0bearing, and housing. The central part
of the pump is the impeller which—together with the spiral
housing around it—creates the pressure needed to pump the
water through the engine. The impeller is driven by an axis
which is in turn driven by the enginevia the pulley. The
axis is held by the bearing.

The SyDeR model for a water pump has three layers: The
top level describes the pump as a whole, the second layer
models four function blocks~each centered around one of
the main components described above!, and the third layer
describes the components belonging to these function blocks.

The pump configuration process starts with the defini-
tion of the pump type~e.g., truck pump, car pump, single
pump, compound pump, etc.!. This is the first selection step
in the SyDeR configuration design cycle. The next step~spec-
ification!! is to specify the performance parameters for the
water pump: water pressure, rotations per minute, volume
per second, Additionally, the engineer can enter the space
the water pump has to fit into.

Now, the engineer starts to configure the first function
block of the pump, the impeller block~a decomposition step!,
and lets SyDeR search the taxonomy for an impeller that
satisfies the specified performance criteria. SyDeR pro-
poses several alternatives, from which the engineer picks
one as a start~selection step!. The choice of impeller brings
new parameters into play, like the size of the impeller, etc.
As the impeller performance strongly depends on the geo-
metrical form of the spiral housing around it, selecting an
impeller always means selecting a spiral housing too. The
engineer can now define further parameters for the impel-
ler, have SyDeR compute other parameters, and check
whether the overall configuration is still consistent.

The engineer can now configure other parts of the pump.
Taken together with some data about the engine, the impel-
ler data facilitates parametrizing the axis and specifying the
axis bearing in the bearing function block. To find a suiting
bearing, the engineer again lets SyDeR look for a bearing
that meets the specification and picks one of the proposed
parts.

Let us have a closer look on how the bearing is specified
because it demonstrates some of the ideas embodied in
SyDeR. The specification parameters for the bearing~i.e.,
the forces in axial and radial direction it has to bear! are
derived from forces at the pulley and from the dimensions
of the axisvia some leverage equations. This calculation is
not modeled with one single constraint, attached to the bear-
ing and referencing the pulley and the axis. This would make
it impossible to reuse the bearing without the other compo-
nents around. Instead, the input parameter values needed

for the calculation are “moved”via “transportation con-
straints” at the interfaces between the three systems and the
force calculation is done where it belongs according to the
laws of physics: at the axis, which serves as a leverage be-
tween the pulley and the bearing. After the resulting forces
at the “bearing end” of the axis are computed, these values
are passed over from the axis to the bearingviasimilar “trans-
portation constraints.” This way, all three systems and the
interfaces in between can be reused in other environments.

During the configuration process, geometrical data about
the selected parts is matched with the spatial specification
for the space allowed for the water pump. In parallel,
SyDeR estimates development and production cost based
on cost data about components that also lies in the compo-
nent library.

In a short time, the engineer has a reliable conceptual con-
figuration of the pump, together with cost estimates he or
she can trust. Using the flexible SyDeR approach reaps sev-
eral benefits in this application.

New components can be easily added to the library with-
out affecting other components. The engineer can easily de-
fine, e.g., a new type of drive~e.g., a toothed wheel drive
instead of a pulley drive! and plug it to the pump because of
the neat and clean interface definitions. This would be much
more difficult if a configuration design tool is used which
models dependencies between components directly~with-
out interfaces!. Probably, it would have been necessary to
call in a knowledge engineer who is familiar with the knowl-
edge base.

The configuration design tool for water pumps can also
easily be extended to cover a broader range of applications,
e.g., oil pumps or complete cooling systems. Much of the
configuration design knowledge that is common to both oil
and water pumps can be reused in the oil pump knowledge
base. It is also no problem to extend the scope of configu-
ration from a subsystem~water pump! to the whole system
~cooling system! because the complete knowledge base can
be reused. Thanks to the clean modularizationvia clearly
defined interface types, flexible migration paths for config-
uration design tools become possible that make it much eas-
ier to introduce knowledge-based configuration design tools
into the business world and adapt them to changing busi-
ness needs.

Figure 4 shows a snapshot of the water pump in the
SyDeR modeling environment.

9. RELATED WORK

A lot of research has been done in each of the technologies
mentioned above. Our work does not aim at improving these
basic technologies. Instead, we combine these technologies
to create applications that can tackle complex, business-
relevant application problems. Our field of research is the
interaction between basic technologies working together. As
far as we know, there is not much research done with a sim-
ilar intent, with the exception of de Vries et al., 1997.
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Taxonomies are well known from object-oriented pro-
gramming languages like C11 or Smalltalk~Goldberg &
Robson, 1989! and from “description logic”~Baader et al.,
1990; Brachman & Levesque, 1985!.

Typically, block diagrams are used for describing the in-
ternal structure of a system. Most simulation systems offer
hierarchical structure modeling, often based on DEVS~Zeig-
ler, 1990!. In the domain of software engineering, dedi-
cated object-oriented engineering methods are presented in
Booch, 1994.

Constraint techniques are still an expanding field of re-
search. An overview for finite domain constraints tech-
niques is given in van Hentenryck, 1989, and a description
for arithmetic constraints is presented in Jaffar and Lassez,
1987. A constraint logic programming language over
intervals is defined in Benhamou et al., 1994. Jaffar and
Maher ~1994! gives an overview over constraint logic
programming.

de Vries et al.~1997! describes a first approach of com-
bining these basic techniques, used for simulation models
to determine a consistent set of initial state variables. There

are some differences between this work and ours, however.
We understood from de Vries et al.,~1997! that their ap-
proach does not use typed interfaces organized in a taxon-
omy, although they model connections between components.
Other differences concern the inference engine: their work
is based on the SkyBlue algorithm, the non-incremental ver-
sion of DeltaBlue; they do not use an equation solver but
have to enter all functions belonging to a constraint explic-
itly; there is no mention of handling sets and value inter-
vals. They also do not tackle problems of modularity.

10. SUMMARY

We described the three techniques used in SyDeR~taxono-
mies and cases, structure modeling, and constraints!, ex-
plained how these three techniques work together in the
system design process, and gave an example for a SyDeR
application. In this paper, the benefits of the SyDeR method
and the interactions between the three techniques are
summarized.

Fig. 4. Snapshot from the SyDeR modeling environment.
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One contribution of the SyDeR approach is that it models
both the vertical part of the structure and the horizontal con-
nection with the structure, the latter using typed interfaces.
This approach has two important benefits:

1. The knowledge base and the modeled product are
clearly modularized, as components are described with-
out reference to other components.

2. Interface definitions are much more stable over time
than system definitions, which makes them a reliable
backbone of the knowledge base.

Also important is that SyDeR makes the product struc-
ture explicit and thus gives the user a more intuitive ap-
proach to configuration design. The interaction between
taxonomy and structure has led to a system type definition
that might seem a bit complicated at a first glance~intro-
ducing an inside view and an outside view! but which is
really helpful in modeling systems for configuration design
purposes.

Constraints make the knowledge stored in the taxonomy
much more powerful.Associating constraints to objects~e.g.,
system types, interface types! for which they are valid makes
the knowledge base well structured and easy to maintain. A
special feature of the constraint techniques used in SyDeR
is that it supports the stepwise narrowing of value domains
which is a typical feature of the system design process. More-
over, the combination of the constraint machine and a JTMS
allows to design a system in an interactive way.

10.1. Modular design

SyDeR stresses the principles of modular system design. This
requires a thorough and consistent segmentation of the sys-
tem on all levels. Moreover, a well-chosen set of interfaces
between the modules has to be defined. It is clear that be-
cause of the strong interdependency of the two tasks of mod-
ularization and interface definition, it is wise to execute them
together and at once.

The modularization is a key process that decides over
much of the profitability of a product family. It is also the
precondition for an efficient product configuration process.
If the modularization was carried through carefully, there is
an exhaustive range of subsystems~modules! available on
each system level, so that the engineer who is configuring a
specific product does not need to design a completely new
~sub!system but can pick a suitable module from the library
and in a short time adapt and parametrize it to meet cus-
tomer demands. SyDeR supports both the process of prod-
uct range definition and product configuration.
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