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Summary

In vitro culture of the embryo is a useful method to treat infertility that shows embryo potential
for selecting the best one to transfer and successfully implantation. However, embryo develop-
ment in vitro is affected by oxidative stresses such as reactive oxygen species that may damage
embryo development. Antioxidants are molecules found in fruits, vegetables, and fish that play
an important role in reducing oxidative processes. In the natural environment, there is a physio-
logical antioxidant system that protects embryos against oxidative damage. This antioxidant
system does not exist in vitro. Antioxidants act as free radical scavengers and protect cells
or repair damage done by free radicals. Various studies have shown that adding antioxidants
into embryo culture medium improves embryo development in vitro. This review article
emphasizes different aspects of various antioxidants, including types, functions and mecha-
nisms, on the growth improvement of different species of embryos in vitro.

Introduction

Infertility is a prevalent problem in today’s society that has different causes and therapies. One
of the commonways to treat infertility is assisted reproductive technology (ART) (deWaal et al.,
2014). ART was launched in the late 1970s and, at this time, about 4% of all births are the result
of this technique. One of the most common ARTmethods is embryo culture that shows embryo
potential for selection as the best to transfer and successfully implant (Schwarzer et al., 2012;
Kirby, 2018). The birth success rate with ART is approximately 30% (Sunderam et al., 2019; De
Geyter et al., 2018).

Antioxidants are natural or synthesized molecules. Natural antioxidants are present in fruits,
vegetables and fish and play an important role in reducing oxidative processes in the body
(Bazinet and Doyen, 2017). Synthetic antioxidants are made based on natural compounds or
are fully synthetic compounds (Augustyniak et al., 2010). Antioxidants are chemical com-
pounds or substances that inhibit or retard the oxidation of other molecules (Rozoy et al.,
2012). Antioxidants act as free radical scavengers and protect cells or repair the damage done
by free radicals (Tebboub and Kechrid, 2019). Free radicals are defined as molecules containing
one unpaired electron within an outer orbit that can be produced from two oxidant sources:
endogenous oxidants and exogenous oxidants. Endogenous oxidant production occurs when
cells use oxygen and naturally generate free radicals that could damage cells. Exogenous oxidants
are commonly known as free radicals that are produced from environmental factors such as
sunlight and pollution (Kumar et al., 2017; Haida and Hakiman, 2019). Antioxidants decrease
the effect of oxidants by binding together with these harmful molecules. However, antioxidants
are effective at low concentrations and may act as oxidants and become adverse by increasing
concentration (Iwayama et al., 2017).

Embryo development in vitro is affected by some factors. One of the most important factors
is reactive oxygen species (ROS) (Li et al., 2014). It seems the mechanism that causes increasing
oxygen levels and damage to development of the embryo is ROS, which are produced in vitro
and lead to DNA damage, delay in embryo development, and ultimately embryo death
(Bontekoe et al., 2012). This event occurs especially during the collection, manipulation and
culture of embryos (Truong andGardner, 2017). However, low ROS levels produced by embryos
are necessary for regulation of development (Sunderam et al., 2014). In the natural environment
of the uterus, embryo development occurs at low oxygen concentrations of about 2–8% (Truong
et al., 2016). For this reason, embryo culture is often carried out at 5% oxygen, a concentration
that more resembles the natural environment of various mammalian species (Wale and
Gardner, 2010, 2016). Ma et al. (2017) showed that low oxygen tension improved embryo viabil-
ity by increasing the expression of antioxidant enzymes and glucose transporter activities. In the
natural environment, there is a physiological antioxidant system that protects embryos from
oxidative damage (Agarwal et al., 2012). This endogenous antioxidant system is not available
or is insufficient in vitro. Therefore, to obtain blastocysts with high potential for implantation,
optimization of the embryo culture medium is perhaps necessary by adding exogenous
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antioxidants (Abdelrazik et al., 2009). Although it has been
reported that adding the correct dose of antioxidants to the culture
medium can protect embryos from oxidative stress (Truong and
Gardner, 2017; Truong et al., 2016; Yu et al., 2014), not all reports
have confirmed this finding. Maside et al. (2019) reported that
adding coenzyme Q10 (a potent antioxidant with a critical protec-
tive role against oxidative stress) at different doses had no effect on
improving porcine embryo development in vitro. In another study,
Rincon et al. (2019) showed that high-density lipoprotein (HDL),
which acts as an antioxidant, did not have a positive effect on
bovine embryo development in vitro. These issues showed that
the use antioxidants for human embryo development in vitro is
promising, but more research is needed. Alternatively, human
serum albumin (HSA) as a protein supplement with antioxidant
effects is currently used to improve human embryo culture
medium (Bungum et al., 2002; Labied et al., 2019; Lan et al.,
2019). Several antioxidants that have been used from 2009 onwards
in embryo culture medium are listed in Table 1.

Although there are many articles on the use of antioxidants in
embryo culture medium, there is summary of these studies or
review of articles in this field. The current review article empha-
sizes the different aspects of various antioxidants including type,
function and mechanisms for growth improvement of different
species of embryos in vitro.

Reactive oxygen species

All living aerobic multicellular organisms require molecular oxy-
gen to survive. Oxygen has two unpaired electrons in separate
orbits in its outer shell. This electron structure makes it susceptible
to forming radicals. The sequential reduction of oxygen through
the addition of electrons leads to the formation of ROS (Valko
et al., 2007; Liu et al., 2018). The term ‘ROS’ is a phrase used to
describe a number of reactive molecules and free radicals derived
frommolecular oxygen. ROS are formed as by-products of normal
oxygen metabolism during mitochondrial electronic transport and
play an important role in cellular signalling, homeostasis, physio-
logical processes, cell proliferation, hypoxia adaptation and cell fate
determination. ROS concentration is important and determines
their physiological effects (Van Blerkom, 2009; Scialo et al.,
2017; Zhao et al., 2019). ROS generated by mitochondria, such
as superoxides, are involved in multiple cell signalling pathways
that control the rates of cell proliferation and other cellular activ-
ities such as molecular responses to hypoxia (Bell et al., 2005; Bell
and Chandel, 2007; Van Blerkom, 2008). Regarding the role of
hypoxia-inducible factor-1 (HIF-1) in cell survival under hypoxic
conditions, ROS can regulate HIF-1 during low oxygen conditions.
ROS regulates HIF-1 directly or indirectly through the ERK and
PI3K/AKT signalling pathways. ROS increase the signalling activ-
ity of ERK and PI3K/AKT, and cause HIF-1 transcription and
translation. These processes lead to cell proliferation (Movafagh
et al., 2015; Zhao et al., 2019). ROS produced by electron leak dur-
ing electron transfer chain in the mitochondria play an important
role in cellular signal transduction and the physiology of cells
(Zhao et al., 2019). Moreover, ROS are important second messen-
gers that mediate different intracellular pathways. ROS act through
the oxidative modification of many types of proteins, receptors,
phosphatases, caspases, kinases, ion channels, and transcription
factors (De Giusti et al., 2013; Zhao et al., 2019), therefore small
amounts of ROS are needed for the natural function of cells
(Scialo et al., 2017). However, during times of environmental stress
such as through UV radiation, heat exposure, and ionizing

radiation, ROS levels can increase. At high concentrations, ROS
react readily with lipids, proteins, carbohydrates and nucleic acids
andmay result in significant damage to cell structures (Valko et al.,
2007; Liu et al., 2018). In the process of embryo development, ROS
can cause lipid peroxidation, which affects cell division, metabolite
transport and mitochondrial dysfunction. In addition, it causes a
break in the nuclear DNA strand that is involved in inhibiting
embryo development. Typically, the production of lipid peroxide
formation is usually considered as an indirect indicator of free
radical markers (Li et al., 2015).

Under normal conditions, ROS and antioxidants keep a stable
ratio. Excess ROS can create a negative environment, affecting fer-
tilization, impairing embryo development, inducing apoptosis and
resulting in embryo death (Paszkowski and Clarke, 1996).
Optimizing the composition of embryo culture medium is neces-
sary for increasing embryo quality in vitro. There are metallic ions
such as Fe2þ and Cu2þ in culture medium that have the potential to
accelerate ROS production within the cell. In addition, some sera
that are commonly added to culture medium, contain amine oxi-
dase, which leads to enhancedH2O2 production. Moreover, ROS in
the culture medium may be created from embryo metabolism,
therefore it seems that ROS can play an essential role in IVF success
(Agarwal et al., 2006). Concentrations of ROS in embryo culture
medium correlate with the degree of embryo fragmentation or
blastocyst formation (Lee et al., 2012). Embryo culture medium
are often supplemented with antioxidants, therefore keeping an
oxidant and antioxidant equilibrium in embryos (Agarwal et al.,
2006). It has been demonstrated that embryos in culture medium
produce ROS at various rates, depending on the compound of
medium (Shih et al., 2014). However, Lan et al. (2019) have
reported that the relationship between ROS levels and early human
embryo development in vitro is limited, such that ROS levels in
culturemediumhave no significant relationship with embryo qual-
ity and blastocyst formation. These issues have shown that the
exact role of ROS in early embryo development is not yet fully
distinguished.

Mitochondria are organelles for ATP production that are
important for controlling cell growth, dynamic response, signalling
and apoptosis in most mammalian cells. In oocytes and embryos, a
high level of ATP production is necessary for maturation of
oocytes, fertilization, and early embryo development in vivo and
in vitro. Mitochondria in oocyte and early embryo are spherical
organelles with short cristae that surround the high-electron den-
sity matrix. Despite their simple appearance, they are active in oxi-
dative phosphorylation and are the primary source of ATP in the
human oocyte and early embryo (Van Blerkom et al., 1995; Van
Blerkom, 2011). During ATP production, various types of ROS
such as superoxide, hydrogen peroxide and hydroxyl radicals
are produced by oxidative phosphorylation in mitochondria.
This production of ROS is related to oocyte maturation, fertiliza-
tion and embryo development, so that ROS accumulation
decreases embryo development and blastocyst quality. In addition,
severe oxidative stress resulting from enhancing ROS causes
mitochondrial fission that leads to the mitochondrion dynamic
response, therefore enhancing mitochondrial fission by the accu-
mulation of ROS decreases ATP production (Yang et al., 2018).
During embryo culture, ROS levels enhance compared with in vivo
embryos at similar stages. Hajian et al. (2017) reported that ROS
production in embryos decreased from fertilization to about 8 to 16
cell stage and increased from compaction to blastocyst stage. This
increase in ROS production is likely to be related to the change
from anaerobic to aerobic glycolysis, because ATP production at
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Table 1. Beneficial effects of various antioxidants on the development of different embryo species in vitro

Antioxidant (Reference)
Embryo
species Effective dose Results

Alpha-lipoic acid (ALA)
(Truong and Gardner, 2017)

Mice 5 μM Total cell numbers in the blastocysts increased and embryonic cell cleavage was
performed faster.

Alpha-lipoic acid (ALA)
(Truong and Gardner, 2020)

Mice 5 μM ALA conveyed beneficial effects on embryo development during cryopreservation
by decreasing oxidative stress and apoptosis and increasing cell numbers and
acetylation levels.

Allicin (Jeong et al., 2017) Porcine 0.1 μM Rates of cleavage and blastocyst formation increased by decreasing ROS levels.

Anethole (Anjos et al., 2019) Bovine 30 μg/ml Rate of blastocyst formation and the number of embryonic cells increased by decreasing
ROS levels.

Apigenin (Safari et al., 2018) Mice 10 μM Rate of blastocysts and hatched blastocysts, the number of embryonic cells, zona
pellucida thickness against H2O2, or actinomycin D improved by decreasing apoptosis and
ROS.

Ascorbic acid (Nohalez et al.,
2018)

Porcine 50 μg/ml Quality of blastocysts improved by decreasing ROS production.

Ascorbic acid (Torres et al.,
2019)

Bovine 100 μM Quality of embryos increased by downregulating Bax, GPx1, and BMP15 and upregulating
Bcl-2 and CYP51A1. Moreover, reduced fat accumulation in the blastocysts by increasing
lipolysis and suppressing lipogenesis.

Astragalus polysaccharide
(Weng et al., 2018)

Boar 0.5 mg/ml Rate of cleavage and blastocysts was increased by improving mitochondrial activity,
decreasing the concentration of ROS, and improving the activity of SOD and CAT.

Astaxanthin (Li et al., 2015) Bovine 0.5 mg/l Astaxanthin improved embryo development, increased chromosomal stability,
normalized the epigenetic modifications, and inhibited the overproduction of
lipid peroxidation.

Baicalin (Guo et al., 2019) Pig 0.1 μg ml-1 Cleavage and blastocyst formation rates and the number of blastomeres increased
by inhibiting the production of ROS and reducing apoptosis.

β-Cryptoxanthin (Park et al.,
2018)

Porcine 1 μM Blastocyst formation rate and the number of blastomeres increased by enhancing
glutathione (GSH) levels and expression of the antioxidant genes superoxide
dismutase 1 and peroxiredoxin 5 and by decreasing ROS levels.

C-Phycocyanin (Niu et al.,
2017)

Porcine 5 μg/ml Blastocyst formation and hatching rate increased by attenuating mitochondrial
dysfunction, oxidative stress and apoptosis.

Canthaxanthin
(Taweechaipaisankul
et al., 2016)

Porcine 40 μM Rate of cleavage and blastocyst formation increased by enhancing mRNA expression of
Bcl2 and Oct4, and GSH levels and reducing Caspase-3 expression and ROS levels.

Carnitine (Sovernigo et al.,
2017)

Bovine 0.5 mg/ml Blastocyst development improved by decreasing ROS levels and increasing GSH levels.

Chlorogenic acid (CGA)
(Nguyen et al., 2017)

Porcine 50 μM Embryos were protected from DNA damage induced by oxidative stress.

Crocetin (Dos Santos et al.,
2019)

Bovine 1 μM Rate of blastocysts and the number of embryonic cells increased and intracellular levels
of ROS decreased. Moreover, embryonic genes related to response to stress and lipid
metabolism included ATF4, BAX, FOXO3, GADD45A, GPx1, GPx4, HSF1, SOD2, ACACA,
SREBF1 and SREBF2 were upregulated.

Crocin (Chen et al., 2019) Porcine 400 μg/ml Embryos were protected against apoptosis by increasing expression levels of SOD,
CAT, GPx, and Bcl-2 and level of GSH, and decreasing expression levels of Bax
and levels of ROS.

Cysteamine (Sovernigo et al.,
2017)

Bovine 100 μM Blastocyst development improved by decreasing ROS levels or increasing GSH levels.

Ferulic acid (Tanihara et al.,
2018)

Porcine 10 μM Quality and development of embryos improved following in vitro fertilization (IVF).

Glutathione (GSH) (Sun et al.,
2015)

Bovine 3 mM Exogenous GSH during embryo development in vitro improved developmental potential
and quality of embryos by the ability of GSH to maintain the redox balance.

Glutathione (GSH) (Li et al.,
2019)

Bovine 3 mM Exogenous GSH affected intracellular GSH levels through the γ-glutamyl cycle and
improved embryo development in vitro by increasing the redox regulation.

Glutathione (GSH) (Ali et al.,
2018)

Mice 1 mM Embryo development improved by reducing endoplasmic reticulum stress.

Grape seed extract (GSE)
(Karimian et al., 2018)

Sheep 800 μg/ml Blastocyst formation rate increased by scavenging free radicals.

(Continued)
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Table 1. (Continued )

Antioxidant (Reference)
Embryo
species Effective dose Results

Kaempferol (Zhao et al.,
2020)

Porcine 0.1 μM Rate of blastocyst formation improved by decreasing the caspase-3 gene and ROS levels,
and increasing COX2 and SOX2 gene expression levels (embryo development-related
genes).

Kaempferol (Yao et al., 2019) Porcine 0.1 μM Rate of formation and quality of blastocysts increased by attenuating oxidative stress
and increasing mitochondrial function.

L-Carnitine (Kim et al., 2018) Human 1 mM Number of cells in the inner cell mass and trophectoderm, embryo development,
the numbers of good-quality embryos, the rate of implantation and clinical pregnancy
increased.

L-Carnitine (Truong and
Gardner, 2017)

Mice 10 μM Total cell numbers of the blastocysts increased and embryonic cell cleavage was
performed faster.

L-Carnitine (Abdelrazik et al.,
2009)

Mice 0.3 and 0.6
mg/ml

Embryos were protected against hydrogen peroxide (H2O2), actinomycin D and TNF-α by
decreasing DNA damage, apoptosis rate and ROS levels.

L-Carnitine (Khanmohammadi
et al., 2016)

Mice 0.5 mg/ml Rate of blastocysts and hatched blastocyst, zona pellucida thickness, and the number
of blastocysts’ inner cell mass improved.

L-Carnitine (Zare et al., 2015) Mice 0.6 mg/ml Cleavage rate and blastocyst development rate increased.

L-Carnitine (Zare et al., 2017) Mice 0.6 mg/ml Expression levels of Dppa2 (an important gene for embryonic development) and Bcl-xL
mRNA in the 2-cell stage embryos and blastocysts increased.

L-Carnitine (Shafiei et al.,
2020)

Mice 0.3 mg/ml Embryo development improved by decreasing ROS levels and increasing
implantation-related genes: ErbB1 and ErbB4 (the earliest expressed genes
on preimplantation embryos).

L-Carnitine (Truong and
Gardner, 2020)

Mice 10 μM L-Carnitine conveyed beneficial effects on embryo development during cryopreservation
by reducing oxidative stress and apoptosis rate and increasing the cell numbers and
acetylation levels.

L-Ergothioneine (Mishra et al.,
2018)

Sheep 10 mM Percentage of cleavage, morula, and blastocyst increased while there was no change
in expression of the majority of apoptotic and antioxidant genes studied in the
developmental stages of embryos.

Lupeol (Khan et al., 2018) Bovine 2 μM Blastocyst quality and the number of blastomeres increased by reducing the expression
of NFκB1, COX2, CASP3, and the rate of apoptosis.

Lycium barbarum
polysaccharide (LBP)
(Yang et al., 2019)

Mice 400 μg/ml Development of cryopreserved 2-cell embryos improved by restoring mitochondrial
function and decreasing ROS levels.

Lycopene (Chowdhury et al.,
2017)

Bovine 0.2 μM The quality of embryos increased by decreasing expression levels of ROS, NFκB, COX2,
caspase-3, iNOS, and Bax, and increasing expression of the Bcl-2 gene.

Melatonin (Marques et al.,
2018)

Bovine 10–9 M Production and quality of blastocysts improved by reducing ROS levels and apoptosis and
increasing GSH levels and expression of SOD and HSPB1 genes.

Melatonin (Pang et al., 2016) Bovine 10–3 M Rate of blastocyst development increased and the rate of apoptosis in the blastomeres
decreased by reducing BAX and CASP3 and enhancing BCL2, XIAP and CAT genes.

Melatonin (Soto-Heras et al.,
2019)

Goat 10–7 M The quality of embryos increased by decreasing ROS levels, increasing mitochondrial
activity, and ATP concentration and regulating the expression of related genes
(ACTB, SLC1A1, SOD1, GPx1, Bax, DNMT1, GCLC, and GDF9).

Melatonin (Zou et al., 2020) Human 10 μM/l The high-quality blastocyst formation rate increased by protecting mitochondrial
function and decreasing the ROS level.

Melatonin (Asgari et al., 2012) Mice 100 nM Embryo development improved by increasing embryonic inner cell mass.

Melatonin (Tian et al., 2017) Mice 10–7 M The quality of the blastocysts improved by decreasing ROS levels and cellular apoptosis.

Melatonin (Lee et al., 2018) Porcine 1 nM The cell number of blastocysts and embryo development increased.

Melatonin (Kim et al., 2019) Porcine 10–7 M Rate of blastocyst formation and the number of blastomeres increased by decreasing
oxidative stress through the Nrf2/ARE signalling pathway.

N-Acetyl-L-cysteine (NAC)
(Truong and Gardner, 2020)

Mice 10 μM NAC conveyed beneficial effects on embryo development during cryopreservation by
reducing oxidative stress, increasing the cell numbers, reducing apoptotic cells and
increasing acetylation levels.

N-Acetyl-L-cysteine (NAC)
(Truong and Gardner, 2017)

Mice 10 μM Total cell numbers in the blastocysts increased and embryonic cell cleavage was
performed faster.

Naringenin (Perez-Pasten
et al., 2010)

Mice Up to 30 μM Embryos were protected from damage caused by hydroxyurea including developmental
retardation and abnormalities.

(Continued)
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this stage depends on the Krebs’ cycle, whereas prior to this stage
ATP production is mainly dependent on glycolysis.

For ROS measurement, fluorescent probes are superior sensors
due to high sensitivity, ease in data collection and high resolution
in microscopy imaging techniques. The fluorescent probe for
detecting each type of ROS is different (Gomes et al., 2005).
However, 2,7-dichlorodihydrofluorescein diacetate (H2DCFDA)
is used to detect overall ROS production and in culture medium
and is used in IVF (Martin-Romero et al., 2008). Although in
general, detection of ROS in human early embryos using sensitive
fluorescent probes, rather than exact identification of species and

quantification of level, has been generally observed as a negative
factor (Betts and Madan, 2008; Van Blerkom, 2009). Due to the
toxic effects of these fluorescent probes on embryo development,
detection of ROS cannot be carried out at the same time in cultured
embryos for transfer (Kohler et al., 1994; Yang et al., 1998).

In the embryo culture process, ROS are generated both endog-
enously and exogenously. Endogenous ROS are produced
by embryo metabolism, while exogenous ROS are produced
spontaneously by buffers and enriched culture medium. The most
important ROS produced in this manner are superoxide anions,
H2O2, hydroxyl radicals, and alkyl hydroperoxide. Given that

Table 1. (Continued )

Antioxidant (Reference)
Embryo
species Effective dose Results

Polydatin (Khan et al., 2017) Bovine 1 μM Blastocyst development improved by increasing the expression of Sirt1 protein and
decreasing expression of NFκB and COX2 proteins and ROS levels.

Pterostilbene (Ullah et al.,
2019)

Mice 0.25 μM Embryonic cells were protected by increasing expression levels of Bcl-2, Nrf2, CAT, Heme
oxygenase1 (HMOX1), GPx and SOD, and decreasing expression of Bax and caspase-3.

Quercetin (Sovernigo et al.,
2017)

Bovine 2 μM Blastocyst development improved by decreasing ROS levels or increasing GSH levels.

Quercetin (Sameni et al.,
2018)

Mice 5 μM Rate of blastocysts and hatched blastocysts, the number of embryonic cells, zona
pellucida thickness against actinomycin D were improved by decreasing apoptosis.

Quercetin (Perez-Pasten
et al., 2010)

Mice Up to 30 μM Embryos were protected from damage caused by hydroxyurea including developmental
retardation and abnormalities.

Quercetin (Fan et al., 2017) Rat 1.0 μmol/l Embryo development was improved by decreasing ROS levels.

Quercetin (Karimian et al.,
2018)

Sheep 5–15 μg/ml Blastocyst formation rate increased by scavenging free radicals.

Quercetin (Lee et al., 2015) Zebrafish 100 μM Embryos were protected against cisplatin-induced toxicity with decreased apoptosis.

Resveratrol (Sovernigo et al.,
2017)

Bovine 2 μM Blastocyst development improved by decreasing ROS levels and increasing GSH levels.

Resveratrol (Hayashi et al.,
2018)

Bovine 1 μM Quality of embryos improved after cryopreservation and thawing through mitochondrial
synthesis.

Resveratrol (Madrid Gaviria
et al., 2019)

Bovine 0.5 μM Resveratrol helped embryos to partially restore the initial quality they had before the
cryopreservation process by maintaining GSH levels.

Resveratrol (Hara et al., 2018) Bovine 0.5 μM Development of frozen embryos after warming increased with increasing mitochondrial
activity.

Resveratrol (Abe et al., 2017) Bovine 0.5 μM Embryo development improved by decreasing ROS levels and modifying mitochondrial
function.

Resveratrol (Wang et al.,
2018)

Mice 25 μM Number of blastomeres and the levels of GSH increased and the levels of ROS and the
abnormal mitochondrial distribution decreased.

Resveratrol (Lee et al., 2018) Porcine 2 μM Cell number of blastocysts and embryo development increased.

Resveratrol (Zabihi et al.,
2019)

Sheep 0.5 μM Rate of morula and blastocyst and the number of blastomeres increased during in vitro
culture and in vitro maturation.

Retinol (vitamin A) (Elomda
et al., 2018)

Rabbit 1000 nM Embryo development improved by decreasing the malondialdehyde (MDA) level,
increasing SOD and GPx activities, and upregulating expression of the gap junction
protein alpha 1 (GJA1).

Royal jelly (Eshtiyaghi et al.,
2016)

Ovine 10 mg/ml Rate of cleavage and blastocyst formation increased by enhancing SOD and GPx
activities.

Sericin (Khatun et al., 2018) Bovine 1.0% (w/v) Rate of apoptosis and expression of BAX and HSPA1A genes decreased in the blastocysts
and IFNT2 levels increased.

Syzygium aromaticum (Santos
et al., 2019)

Bovine 20 μg/ml Embryo development and the number of embryonic cells were increased by reducing ROS
levels and increasing mitochondrial activity.

Vitamin C (Sovernigo et al.,
2017)

Bovine 50 μg/ml Blastocyst development improved by decreasing ROS levels and increasing GSH levels.

Vitamin C (Karimian et al.,
2018)

Sheep 25–200 μg/ml Blastocyst formation rate increased by scavenging free radicals.
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extracellular oxidation rates of ROS-sensitive dyes are higher
than those measured within the intracellular environment, these
data should not be interpreted as a higher rate of total ROS
generation in the extracellular environment. Buffers and culture
media containing cupric or ferric salts may lead to the generation
of significant amounts of superoxide anions. Moreover, in the
composition of serum and serum synthetic replacements (SSR),
oxidase activities exist that may speed up the generation of
ROS in these buffers. Also, it seems that ROS production is higher
in more complex culture media compared with simple media
(Martin-Romero et al., 2008; Menezo et al., 2010).

There are several types of ROS including peroxide, superoxide
anions, hydrogen peroxide, hydroxyl radicals and nitric oxide.

Peroxide is a compound that possesses one or more oxygen–
oxygen bonds. The most common peroxide is hydrogen peroxide.
Hughes et al. (2010) showed that the presence of peroxide in cul-
ture medium affected mouse embryo development, such that 1-cell
embryos had the highest sensitivity for peroxides in mineral oil
(Hughes et al., 2010). The sources of peroxide in embryo culture
media are embryonic mitochondria and mineral oil, which is used
to cover the culture media (Burton et al., 2003; Otsuki et al., 2007).

Superoxide anions (O2
•−) are the most common type of ROS

that is generated in mitochondria. In aerobic organisms, most oxy-
gen is converted to water through the mitochondrial respiratory
chain, however a small proportion of the oxygen molecules (about
1–2%) is converted to superoxide anion radicals. Increased mito-
chondrial activity is directly related to increased levels of superox-
ide anion production, which could adversely affect mitochondrial
respiration. The half-life of superoxide anions is about 10−9 to 10−11 s,
but in the presence of superoxide dismutase (SOD), this reduces to
10−15 s. (Taverne et al., 2013; Chen et al., 2018). Joo et al. (2001)
have shown that increasing superoxide anion concentrations
in embryo culture media reduces embryo development, and
Nonogaki et al. (1992) showed that adding SOD into the culture
medium has a protective effect on embryo development against
oxidative stress. For detecting superoxide anions, dihydroethidium
(or hydroethidine) (DHE) is used as a fluorescent probe; when
DHE is oxidized by superoxide anion, it is converted to ethidium
which is a fluorescent compound (Benov et al., 1998).

Hydrogen peroxide (H2O2) is a neutral molecule, which is
the least reactive molecule among types of ROS and is stable under
physiological pH and temperature in the absence of metal ions. It is
highly diffusible and crosses the plasma membrane easily. H2O2

can be produced from superoxide anions by SOD. Moreover, in
the presence of metal ions and superoxide anions, H2O2 can pro-
duce hydroxyl radicals. H2O2 is oxidized by catalase and peroxi-
dase (Dickinson and Chang, 2011; Taverne et al., 2013).
Catalase is a ROS-scavenging enzymes found in all adult organs
and the embryo, although the activity of embryonic catalase is only
about 5% that of adult activity, it may enhance the risk of injury
during embryo development due to increased ROS. If catalase is
not effective, H2O2 may initiate signal transduction pathways or
react with iron to create highly reactive hydroxyl radicals, which
can damage cells. The protective role for catalase against teratogen-
esis has been demonstrated in embryo culture, such that it is a
specified exogenous catalase that increases embryonic antioxidant
activity and protects against DNA oxidation (Abramov and Wells,
2011; Miller-Pinsler and Wells, 2015). The half-life of H2O2 is
about 10−3 s in the absence of catalase and 10−8 s in its presence
(Taverne et al., 2013). H2O2 is one of the major ROS produced
in culture medium (Martin-Romero et al., 2008). Several studies
have shown that H2O2 damages embryo development in vitro

and adding antioxidants such as L-carnitine, apigenin, and querce-
tin into culture medium can protect the embryos against it
(Abdelrazik et al., 2009; Yu et al., 2014; Safari et al., 2018).
For detecting H2O2, H2DCFDA and Amplex-red/horseradish
peroxidase are used (Wang and Joseph, 1999; Martin-Romero
et al., 2008).

The hydroxyl radical (•OH) is the neutral form of the hydroxide
ion (OH−). Hydroxyl radicals are the most reactive and dangerous
radicals that can be formed from superoxide anions and H2O2 in
the presence of metal ions. In vivo, the half-life of hydroxyl radicals
is only about 10−9 s, therefore when hydroxyl radicals are produced
in vivo, they react close to their site of formation (Dickinson
and Chang, 2011). Due to their features, the presence of hydroxyl
radicals is very harmful to the embryo development in vitro
(Dumoulin et al., 1995). Fluorescein is used as a fluorescent
compound to detect hydroxyl radicals. Fluorescein is oxidized
by hydroxyl radicals to a non-fluorescent product. This reactivity
is useful to assess antioxidant activity in an assay using hydroxyl
radical averting capacity (Ou et al., 2002).

Nitric oxide (NO) is an uncharged lipophilic molecule contain-
ing a single unpaired electron, which causes it to be reactive with
other molecules such as oxygen, superoxide radicals and gluta-
thione. While NO is not a very reactive free radical, it is able to
form other reactive intermediates that have an effect on protein
function and on the function of the entire organism. NO is
removed within seconds by diffusion from tissues and enters the
red blood cells and reacts with oxyhaemoglobin. The direct toxicity
of NO is modest, but is greatly increased by reacting with super-
oxide anion. These reactive intermediates can trigger nitrosative
damage in biomolecules. Conversely, NO can act as an antioxidant.
NO is a neurotransmitter and blood pressure regulator. At physio-
logical concentrations, the half-life of NO due to its reaction
with oxygen is in the range 9–900 min. In aqueous solution, the
half-life of NO decrease to between 6.2 and 3.8 s (Beckman and
Koppenol, 1996; Kelm, 1999). In relating the effect of NO on
embryo development in vitro, it seems that NO is useful and acts
as a regulator in preimplantation embryo development (Chen
et al., 2001; Tranguch et al., 2003). NO has regulatory functions
in modulating oxidative respiration by binding to the same site
as oxygen in the electron transport chain. Such normal functions
have been described for oocytes during their maturation and for
embryos, in which for some species, endogenous NO synthase
has been detected (Tranguch et al., 2003; Feng, 2012; Tengan
and Moraes, 2017). Multi-component Hantzsch ester synthesis
of 1,4-dihydropyridines (DHPs) compounds can be used via the
fluorescent probes to detect NO (Wang et al., 2016).

Types of antioxidants

Antioxidants are divided into enzymatic and non-enzymatic anti-
oxidants based on their catalytic activity (Haida and Hakiman,
2019). Enzymatic antioxidants are produced in cells and protect
the body against free radicals via some enzymes that form a distinc-
tive group, with detoxification. Glutathione peroxidase (GPx),
superoxide dismutase (SOD) and catalase (CAT) are the key
enzyme antioxidants of this defence system by which free radicals
that are generated during metabolic reactions are removed (Jeeva
et al., 2015). Non-enzymatic antioxidants mainly include polyphe-
nols (flavonoids, phenolic acids, and anthocyanins), carotenoids
(carotenes, xanthophylls) and vitamins (vitamins A and C)
(Kumar et al., 2017; Xu et al., 2017). These types of antioxidants
are found naturally in fruits, vegetables and foods such as orange,
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tomato, carrot and fish. To obtain these antioxidants, their
separation and purification are needed. This means that they must
be separated from feedstock to enhance their purity and antioxi-
dant capacity (Rozoy et al., 2012; Jeeva et al., 2015). These types
of antioxidants scavenge free radicals by donating hydrogen ions
to stabilize the free radicals (Parveen et al., 2016; Maarman,
2017; Xu et al., 2017; Haida and Hakiman, 2019).

Genes involved with antioxidants

Antioxidants usually activate certain genes to neutralize free
radicals and protect cells. Nuclear factor erythroid-derived 2-like
2 (Nrf2) is a key transcription factor that is able to activate
anti-oxidative reactions; it is known as the master regulator of
the antioxidant response and modulates the expression of various
antioxidant genes. Nrf2 plays an important role in immune and
inflammatory responses and tissue remodelling (Hybertson
et al., 2011). Moreover, Nrf2 signalling is a key pathway by which
enzymatic antioxidants remove ROS and other harmful free
radicals to protect cells from oxidative stress. Upregulation of
many enzymatic antioxidants or inhibition of lipid peroxidation
is mediated by Nrf2 (Chen et al., 2015; Canella et al., 2018).

In addition to Nrf2, Kelch-like ECH-associated protein 1
(Keap1) and antioxidant response element (ARE) or electrophile
response element (EpRE) are also important genes involved in pro-
tecting cells, therefore the Nrf2/Keap1/ARE signalling pathway is
one of the most important cellular defence mechanisms against
oxidative stress. When oxidative stress injures cells, Nrf2 expres-
sion levels are significantly increased, while Keap1, a signalling
molecule that binds to motifs in the N-terminal region of Nrf2,
is decreased. Subsequent stabilization and nuclear localization
of ARE/EpRE binding leads to protection of cells (Kundu and
Surh, 2010; Yan et al., 2019).

NAD(P)H/quinone oxidoreductase 1 (NQO1) is an antioxidant
gene that is overexpressed under certain conditions such as in
cancer tumours, to suppress it. For this disease, NQO1 activates
Nrf2 to initiate cellular defence mechanisms against the tumour
(Pey et al., 2016; Osman et al., 2015).

Effect of antioxidants on apoptosis

Apoptosis or programmed cell death is essential for the normal
functioning and survival of most multicellular organisms.
Apoptosis is important for removing damaged or infected cells,
however excess apoptosis can cause adverse biological conse-
quences (Kannan and Jain, 2000). Apoptosis plays an important
role in embryo development, If apoptosis is increased in embryonic
cells, the blastocyst expands, decreasing the zona pellucida thick-
ness, such that hatching and implantation may not occur correctly.
Apoptosis could eventually lead to embryo death (Abdelrazik et al.,
2009; Yu et al., 2014; Safari et al., 2018).

Maintaining the integrity of the mitochondrial membrane is an
important process to prevent apoptosis. Under oxidative stress, the
permeability of mitochondria increases and leads to uncoupling of
the respiratory chain, resulting in hyperproduction of ROS, cessa-
tion of ATP synthesis, and depletion of glutathione (GSH)
(Kannan and Jain, 2000; Susin et al., 1998; Morel and Barouki,
1999). Under these conditions, to establish osmotic balance, diffu-
sion of H2O leads to swelling of mitochondria. This change in
mitochondrial membrane potential predisposes the cells to oxida-
tive damage by impairing the endogenous antioxidant defence
mechanisms (Marzo et al., 1998; Yang and Cortopassi, 1998).

This antioxidant defence system has two main ROS degrading
pathways that involve GSH and thioredoxin (Trx) (Tonissen
and Di Trapani, 2009; Handy and Loscalzo, 2012).

In the GSH pathway, GSH is one of the most abundant mole-
cules among endogenous antioxidants. GSH directly reacts with
ROS or indirectly scavenges ROS by revitalizing other antioxi-
dants. Many antioxidants used to scavenge oxidative stress are
converted chemically into oxidation products, such that they react
with GSH to form GSH adducts during protection against free
radicals such as ROS and H2O2 (Espinosa-Diez et al., 2015;
Kwon et al., 2019). Mitochondria are the main intracellular sites
of oxygen consumption and the chief sources of ROS production,
most of which originate from the respiratory chain in mitochon-
dria. Mitochondrial GSH (mGSH), an antioxidant enzyme existing
in mitochondria, acts as the primary line of defence against oxida-
tive modifications (Mari et al., 2009). The importance of mGSH is
based on its abundance and its versatility to counteract with H2O2,
mainly as a cofactor of enzymes such as GPx (Dannenmann et al.,
2015). GPx is an enzyme antioxidant that is expressed inmany cells
and tissues during embryo formation and it protects embryos
against oxidative stress. As GPx removes H2O2, the rate of apop-
tosis in embryonic cells decreases (Yu et al., 2014). In embryogen-
esis, cytosolic GPx is highly expressed in most cells to protect
embryos from oxidative stress (Baek et al., 2005). It seems that
some flavonoid antioxidants can affect GPx activity. Yu et al.
(2014) showed that quercetin reduced apoptosis in mouse zygotes
by maintaining the activity of GPx, preventing mitochondrial dys-
function, and decreasing intracellular ROS levels (Yu et al., 2014).
Other studies have shown that these antioxidants, such as apigenin
and quercetin, can decrease the rate of apoptosis in mouse embry-
onic blastomeres by decreasing the destructive effects of H2O2

(Safari et al., 2018; Sameni et al., 2018). Lagoa et al. (2011) have
shown that flavonoid antioxidants inhibit H2O2 production by
increasing mitochondrial activity. Boadi et al. (2016) have shown
that flavonoid antioxidants, such as quercetin, genistein, and
kaempferol, sustained intracellular GSH levels in the cells.
Therefore, it seems that flavonoid antioxidants may improve
embryo development in vitro by affecting GSH activity and
decreasing the destructive effects of H2O2 and ROS.

In the Trx pathway, Trx is a major antioxidant for maintaining
the intracellular reduction–oxidation (redox) state. Trx acts as a
redox-active protein to regulate the activity of different enzymes
within the cell. Also, Trx acts as a ROS scavenger and directly
inhibits pro-apoptotic proteins such as apoptosis signal-regulating
kinase 1 (ASK1).Mitochondria and cytoplasm contain Trx systems
and inhibition of either system can lead to activation of apoptotic
pathways (Miranda-Vizuete et al., 2000; Tonissen and Di Trapani,
2009). Bing et al. (2003) showed that Trx is involved in the
improvement of the development of bovine embryos in vitro.
Thioredoxin-2 (Trx2), is a mitochondrial protein that reduces
oxidative stress, regulates apoptosis and is essential for the control
of cell survival during mammalian embryonic development
(Patenaude et al., 2004; Hansen, 2012). Moreover, Trx2 may con-
tribute to the development of the embryonic nervous system, as
Pirson et al. (2015) reported that Trx2 modulated apoptosis of
neurons during embryonic development of the chick spinal cord.
It seems that flavonoid antioxidants can affect Trx (s) expression.
Park et al. (2020) showed that quercetin prevents the decrease in
Trx expression following neuronal cell damage. Sharma et al.
(2007) reported that flavonoids significantly decreased the release
of ROS from astrocytes stimulated with IL-1β. This decrease
caused an increase in SOD and Trx1 expression levels and
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protection against oxidative stress. In this regard, Khera et al.
(2013, 2017) showed that overexpression of endogenous antioxi-
dants such as GPx and Trx following supplementation with
selenium, an exogenous antioxidant, could protect embryo tropho-
blast cells from mitochondrial oxidative stress.

Action mechanisms of antioxidants on embryo
development

Culture conditions during early developmental stages affect meta-
bolic activity and the ability of embryos to adapt to the environ-
ment. In embryo development in vitro, oxidative stress generates
excessive ROS free radicals, and leads to increased apoptosis,
changes in gene expression, and reduced embryo quality (Ullah
et al., 2019). Oxidative stress occurs as a result of an imbalance
between antioxidants and ROS production which is induced by
endogenous and exogenous factors during embryo culture in vitro.
Enhanced embryo development under lower oxygen conditions is
probably due to improved embryo metabolism and reduced ROS
production (Guerin et al., 2001). There are some mechanisms in
embryo culture that lead to a decrease in levels of ROS and protect
against oxidative stress. Under oxidative stress conditions, the Nrf2
transcription factor binds to ARE to induce antioxidant and
detoxification enzymes. ROS generation in the culture medium,
in particular, increases in the blastocyst stage. The Nrf2-mediated
oxidative stress response pathway is the main pathway in the
blastocyst for which upregulation for most antioxidant-related
genes is controlled by transcription factor Nrf2 (Gad et al.,
2012). Indeed, Nrf2 signalling has themost effect on embryo devel-
opment in vitro (Ullah et al., 2019). Expression of the Nrf2 gene
also increases during embryo cryopreservation to protect embry-
onic cells (Mehaisen et al., 2015). Nrf2 activates enzyme antioxi-
dants such as GPx, SOD, and CAT against excessive ROS in
embryos and therefore protects embryonic cells in vitro (Ullah
et al., 2019). Moreover, antioxidants can increase the expression
of the anti-apoptotic gene Bcl-2 and reduce the expression of
pro-apoptotic genes, Bax and caspase-3 in blastocysts, indicating
the protective effects of antioxidants on embryo development
(Mishra et al., 2017; Ullah et al., 2019). Pterostilbene is an antioxi-
dant that acts by the same mechanism in embryonic cells or adult
cells. Sireesh et al. (2017) have reported that pterostilbene increases
Bcl-2 expression and reduces the expression of Bax and caspase-3
in pancreatic β-cells of diabetic animals through Nrf2 activation.
For embryo culture, pterostilbene protects embryonic cells by
increasing expression levels of Bcl-2, Nrf2, CAT, Heme oxygenase1
(HMOX1), GPx and SOD, and by decreasing expression levels of
Bax and caspase-3 (Ullah et al., 2019).

The oviduct and the uterine environments contain many sub-
stances that maintain embryo development or remove toxic agents.
To mimic these conditions in vitro, various substances that
decrease ROS concentrations in embryos are added to culture
media. For example, adding SOD or CAT improves embryo devel-
opment by upregulating GSH synthesis as an effective antioxidant
for the developmental potential of embryos (Orsi and Leese, 2001;
Ali et al., 2018).

Conversely, intracellular lipid contents may affect embryo qual-
ity and developmental potential. Lipid metabolism and oxidative
stress response-related genes are the most affected via embryonic
genes in vitro (Jeong et al., 2009). Moreover, inhibition of fatty
acid oxidation during IVM impairs embryo development and
indicates the importance of lipid metabolism in embryonic devel-
opment (Somfai et al., 2011). During preimplantation embryo

development, lipid may be sequestered within cells and used by
mitochondria to increase the production of ATP required for com-
paction and blastocyst formation or differentiation of cell lineages
(Jeong et al., 2009). Excess lipids may be accumulated in the
embryo by uptake from the culture environment and may impair
mitochondrial activity to metabolize complex lipids (Tarazona
et al., 2006; Krisher and Prather, 2012; Walther and Farese,
2012). Some antioxidants such as L-carnitine, quercetin, and
apigenin play a primary role in fatty acid transportation from
the cytosol into mitochondria, increase mitochondrial activity,
enhance lipid metabolism and improve cleavage rates in embryos,
which indicates the importance of mitochondria and lipid metabo-
lism in embryo development (Khanmohammadi et al., 2016; Safari
et al., 2018; Sameni et al., 2018; Talebi et al., 2020).

Optimizing embryo culture medium

Optimizing embryo culture media is essential to obtain high-qual-
ity embryos. Various factors added to culture media can improve
the oxidative state of early embryos. Weathersbee et al. (1995)
reported that synthetic serum substitute was a suitable, standard-
izedmeans of adding protein to embryo culturemedium. Synthetic
serum substitute is primarily a globulin-enriched protein prepara-
tion containing mostly human serum albumin (HSA). HSA scav-
enges ROS and protect embryos against DNA damage (Lan et al.,
2019). Albumin is one of the most important substances used to
optimize embryo culture media. Albumin is a small protein that
is present in human plasma. Its functions consist of regulation
of osmotic pressure and transport of some substances (Otsuki
et al., 2013). Albumin acts as a surfactant that facilitates the han-
dling of gametes and preimplantation embryos in vitro (Bungum
et al., 2002). Albumin has specific binding sites for copper ions.
Copper ions can accelerate the destruction of free radical reactions.
Most plasma copper is bound to the protein ceruloplasmin, which
has antioxidant properties. In this regard, cytosolic SOD (SOD1)
functions more than mitochondrial SOD (SOD2) because it works
to scavenge ROS with the aid of metal cofactors including copper
and zinc. The mechanism of scavenging ROS by SOD1 involves
alternate reduction and reoxidation of the copper at the active site
of the enzyme, and zinc participates in proper protein folding and
stability (Fukai and Ushio-Fukai, 2011). Albumin is able to inhibit
copper-stimulated peroxidation and inhibits the production of free
radicals from systems containing copper ions and H2O2. Another
antioxidant activity of albumin may be to scavenge peroxy radicals
and decrease lipoxygenase activity (Halliwell, 1988). Albumin has
different functions in the growth of embryos in vitro. It acts as a
regulator of pH and osmotic pressure, a scavenger of toxins
and free radicals, a stabilizer of cell membranes, a carrier of
growth-promoting substances, and a nutrient (Otsuki et al.,
2013). Three different types of albumin are used to optimize
embryo culture medium: HSA, bovine serum albumin (BSA),
and recombinant HSA (rHSA):

1. HSA is known to be a multifunctional protein in the intravas-
cular compartment (Maciazek-Jurczyk et al., 2018). HSA was
used in human embryo culture media for the first time by
Pool and Martin (1994), who showed that albumin accelerated
the growth of embryos. HSA is the primary protein supplement
used in clinical embryo culture media. HSA as a macromolecule
supplementation can act as a surfactant, as a nitrogen source, as
a carrier molecule for other compounds, modulate the physical

186 Zarbakhsh

https://doi.org/10.1017/S0967199420000660 Published online by Cambridge University Press

https://doi.org/10.1017/S0967199420000660


microenvironment, and stabilize membranes (Swain et al.,
2016).

2. BSA is the most abundant protein in bovine blood plasma. Due
to its unique characteristics and known structure, is commonly
used as a model protein for the culture of animal oocyte and
embryo and is effective in their development (Ledesma-
Osuna et al., 2008; Nasrollahzadeh et al., 2017).

3. rHSA has been shown to be as efficient as HSA for fertilization
and embryo development. In addition, using rHSA for IVFmay
decrease the risk of contamination and the transmission of
plasma-derived impurities. However, rHSA has not been widely
applied in human embryo culture media because of the high
cost of production (Bungum et al., 2002; Otsuki et al., 2013).

In addition to the role of albumin in optimizing embryo culture
medium, studies have shown that albumin can also optimize cul-
ture media used for sperm and oocytes through its antioxidant
properties. Some studies have shown that centrifugation during
sperm preparation using density gradient centrifugation or
swim-up without serum albumin is associated with iatrogenic
damage to sperm. Free radicals produced by mitochondria during
centrifugation cause membrane lipid peroxidation and DNA dam-
age in the absence of albumin (Aitken and Clarkson, 1988; Twigg
et al., 1998; Aitken et al., 2014; Muratori et al., 2019). This damage
may result from tightly packed sperm pellets through peroxide
formed from superoxide radicals by MnSOD. It is released from
damaged mitochondria and induces lipid peroxidation of the
plasma membrane, depolarizes mitochondria, affects sperm
motility and reduces ATP generation (De Iuliis et al., 2006; Uribe
et al., 2015; Barbonetti et al., 2016; Kotwicka et al., 2016). Another
study showed that BSA protected spermatozoa against cool stor-
age-induced DNA damage through its antioxidant properties.
(Sariozkan et al., 2013). Conversely, it has been shown that increas-
ing serum albumin improved the viability of bovine oocytes in vitro
(Hamman et al., 2019).

Despite all the benefits of using albumin in embryo culture
media, Otsuki et al. (2009) reported that when peroxide in mineral
oil (used to maintain embryos in the culture medium) is more than
0.02 mEq/kg, albumin present in culture media allows entry of free
radicals into the zona pellucida, causing damage to the human
embryos. In other studies, Martinez et al. (2017) showed that
peroxidized mineral oil enhanced the oxidant status of culture
media and inhibited porcine embryo development in vitro.
Otsuki et al. (2007) demonstrated that peroxidation of mineral
oil applied in culture was harmful to fertilization and human
embryo development. In this regard, Ainsworth et al. (2017)
reported that the standard embryo assays used by manufacturers
did not detect the potential toxicity of peroxides in mineral oil.
It seems that the use of mineral oil requires further studies and
would depend on various factors such as brand, purity, starting
material, method of production and storage. These issues indicated
that optimization of human embryo culture media requires more
comprehensive, complete study.

Some studies have shown that when purified serum albumin
cannot be used, organic compounds such as polyvinyl alcohol
(PVA) or certain dextran polymers can be adequate substitutes
for IVF and preimplantation embryogenesis. PVA is a polymer
and a suitable replacement for BSA in embryo culture media
that supports the development of preimplantation embryos.
Dextran is also a polymer chain consisting of a non-toxic branch
of glucose. These polymers with their surfactant properties facili-
tate the handling of the embryos, probably by influencing the

physico-chemical attributes of the media. Moreover, they have
been shown to protect embryos against cryoinjury by avoiding
the mechanical pressure that occurs during cryopreservation
(Dumoulin et al., 1994; Biggers et al., 1997).

Comparison of the effect of different antioxidants
on embryo development

Some studies have shown that different antioxidants have various
differing effects on embryo development in vitro, therefore com-
paring their effects would help future studies to select the most
suitable candidates. Conversely, it seems that combined and con-
comitant use of antioxidants can be even more effective than their
separate use. In this regard, Sovernigo et al. compared the effects of
five well known antioxidants (quercetin, cysteamine, carnitine,
vitamin C and resveratrol) by the levels of ROS and GSH in bovine
embryos. The results showed that quercetin, vitamin C and resver-
atrol significantly reduced ROS levels compared with cysteamine
and carnitine. GSH levels increased in cysteamine and carnitine
compared with quercetin, vitamin C and resveratrol (Sovernigo
et al., 2017).

Perez-Pasten et al. (2010) compared the effects of quercetin and
naringenin on the development of mouse embryos in vitro. The
results showed that quercetin and naringenin both reduced the
abnormal development of embryos produced by hydroxyurea at
doses less than 30 μM. Lee et al. (2018) showed that the combina-
tion of resveratrol and melatonin supported a synergistic increase
in blastocyst formation rates and total cell numbers of blastocysts
and improved the development of porcine embryos. Truong et al.
(2-16) showed that the combination of different antioxidants
(acetyl-L-carnitine, N-acetyl-L-cysteine and α-lipoic acid) in cul-
ture media had a more beneficial effect on mouse embryo develop-
ment in vitro (Truong et al., 2016).

Antioxidants in the clinic

The use of antioxidants clinically in IVF is still very limited.
Currently, lipoic acid is the most common used antioxidant in
human embryo culture media (Truong and Gardner, 2017), but
more antioxidants are expected to be used in human embryo cul-
ture media in the future. More recently, there have been some
investigations into the effects of antioxidants on human embryo
development in vitro. Kim et al. (2018) reported that adding
L-carnitine to culture media improved human embryo quality
and pregnancy outcomes. L-Carnitine may improve embryo
development in vitro by increasing mitochondrial activity and
β-oxidation processes (Arenas et al., 1998; Abdelrazik et al.,
2009; Kepka et al., 2014; Khanmohammadi et al., 2016). Truong
et al. (2016) suggested that the combination of some specific anti-
oxidants may improve human embryo culture media, however
before the use of human embryos proper evaluation is required
(Truong et al., 2016; Truong and Gardner, 2017).

Prescribing the proper dose of antioxidants is one of the most
important aspects of their effectiveness. Many antioxidants are
dose dependent and may be harmful if consumed in too large
quantities (Halliwell, 2012). Quercetin is a flavonoid antioxidant
that, at appropriate doses, has favourable effects in vitro on the
development of different species of embryos (Perez-Pasten et al.,
2010; Lee et al., 2015; Fan et al., 2017; Sameni et al., 2018).
Perez-Pasten et al. (2010) showed that quercetin at doses above
100 μM caused significant increase abnormalities such as oedema,
rotation failure, neural tube defects, somite dysmorphology, and

Effect of antioxidants on embryo development 187

https://doi.org/10.1017/S0967199420000660 Published online by Cambridge University Press

https://doi.org/10.1017/S0967199420000660


telencephalic hypoplasia for developing mouse embryos
in vitro. L-Carnitine is a useful antioxidant for ovarian regeneration
(Zarbakhsh et al., 2019) and embryo development in vitro, but it is
toxic at high doses, (Abdelrazik et al., 2009; Khanmohammadi
et al., 2016). Perez-Pasten et al. (2010) compared different doses
of pure naringenin on developing mouse embryos in vitro. They
reported that 30 μM pure naringenin with antioxidant and free
radical scavenging activities had a protective effect against hydrox-
yurea-induced embryonic damage, while at doses above 100 μM it
produced growth retardation, developmental defects and reduced
viability in cultured mouse embryos.

As many antioxidants have beneficial effects on embryo devel-
opment in vitro, to achieve proper supplement levels for human
embryo culture media, a study on antioxidants is needed because
they constitute a promising therapeutic approach.

Conclusion

Based on the reviewed literature, correct doses of most antioxi-
dants have the potential to protect embryo development in vitro
through mediating in signalling pathways, scavenging free
radicals, increasing mitochondrial activity and decreasing apopto-
sis. Therefore, it seems that the use of antioxidants in human
embryo culture media can be applied in the future as a non-inva-
sive and effective method to improve human embryo development
in vitro, although further studies including clinical trials must be
conducted for confirmation. The important role of ROS in IVF
and the fact that its effects have not yet been fully elucidated, more
research is needed.
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