
Math. Struct. in Comp. Science (2010), vol. 20, pp. 639–654. c© Cambridge University Press 2010

doi:10.1017/S0960129510000150 First published online 24 June 2010

Diagrammatic logic applied to a parameterisation

process

CÉSAR DOMÍNGUEZ†§ and DOMINIQUE DUVAL‡

†Departamento de Matemáticas y Computación, Universidad de La Rioja,

Edificio Vives, Luis de Ulloa s/n, E-26004 Logroño, La Rioja, Spain

Email: cesar.dominguez@unirioja.es
‡Laboratoire Jean Kuntzmann, Université de Grenoble,

51 rue des mathématiques, BP 53, F-38041 Grenoble Cédex 9, France

Email: Dominique.Duval@imag.fr

Received 25 August 2009; revised 19 April 2010

This paper provides an abstract definition of a class of logics, called diagrammatic logics,

together with a definition of morphisms and 2-morphisms between them. The definition of

the 2-category of diagrammatic logics relies on category theory, mainly on adjunction,

categories of fractions and limit sketches. This framework is applied to the formalisation of a

parameterisation process. This process, which consists of adding a formal parameter to some

operations in a given specification, is presented as a morphism of logics. Then the parameter

passing process for recovering a model of the given specification from a model of the

parameterised specification and an actual parameter is shown to be a 2-morphism of logics.

1. Introduction

This paper provides an introduction to the framework of diagrammatic logics with an

application to the formalisation of a parameterisation process.

We will present the framework of diagrammatic logics in Section 2. This framework

originated in Duval (2003; 2007), where the aim was to get an abstract definition of logics,

with relevant notions of models and proofs, together with a good notion of morphism

between logics: we were looking for logics to deal with computational effects, and for

morphisms for expressing the meaning of these effects in more traditional logics. This work

is based on adjunction (Kan 1958) and categories of fractions (Gabriel and Zisman 1967)

with an additional level of abstraction provided by limit sketches (Ehresmann 1968),

which leads to a notion of entailment related to that in Makkai (1997). Our point of view

is more abstract than institutions (Goguen and Burstall 1984) – see Duval (2003) for a

comparison. Note that the current paper does not depend on Duval (2003; 2007).

On the other hand, the EAT and Kenzo software systems have been developed by

F. Sergeraert for symbolic computation in algebraic topology (Rubio et al. 2007; Dousson

et al. 1999). Previous analysis of the data types used in EAT and Kenzo (Lambán

et al. 2003; Domı́nguez et al. 2007; Domı́nguez et al. 2006) shows that there are two

layers of data structures in these systems: the first layer consists of the usual abstract data

§ Partially supported by Ministerio de Educación y Ciencia, project MTM2009-13842-C02-01.

https://doi.org/10.1017/S0960129510000150 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129510000150


C. Doḿınguez and D. Duval 640

types, like the type of integers, while the second layer deals with algebraic structures, like

the structure of groups, which are implemented using the abstract data types in the first

layer. In addition, this analysis made it clear that in EAT, groups (for instance) are not

implemented individually, but are implemented through parameterised families of groups.

Lambán et al. (2003) defined an operation called the imp construction – it was given this

name because of its role in the implementation process in the system EAT. In fact, the imp

construction is a parameterisation process: starting from a specification Σ in which some

operations are labelled as ‘pure’ (Domı́nguez et al. 2006), the imp construction builds a

new specification ΣA with a distinguished sort A added to the domain of each non-pure

operation. Then the parameter passing process derives an implementation of Σ from each

implementation of ΣA and each value in the interpretation of A. Moreover, the exact

parameterisation property was proved in Lambán et al. (2003): the implementations of

EAT algebraic structures are as general as possible in the sense that they are ingredients

of terminal objects in some categories of models. The parameter set in the Kenzo and

EAT systems is encoded by means of a record of Common Lisp functions, which has

a field for each operation in the algebraic structure to be implemented. The pure terms

correspond to functions, which can be obtained from the fixed data and do not require

any explicit storage, so each particular instance of the record gives rise to an algebraic

structure; more details can be found in Lambán et al. (2003).

Lambán et al. (2003) then reinterpreted these results for the EAT algebraic structures

in terms of object-oriented techniques, like hidden algebras (Goguen and Malcolm 2000)

or coalgebras (Rutten 2000). Domı́nguez et al. (2007) then extended these results in the

algebraic framework of institutions (Goguen and Burstall 1984): the imp construction is

represented through institution encodings in the sense of Tarlecki (2000). Goguen and

Roşu (2002) provided a survey of the different notions of morphisms between institutions,

where institution encodings are called forward institution morphisms. In fact, institution

encodings are not that common in institution theories, where institution morphisms are

preferred. Also, the results in Domı́nguez et al. (2007) were obtained in a simplified

context where the pure part in the given specifications was not taken into account. In

addition, the institutional machinery could not be used directly as it had to be stretched

with new ad hoc institutions and with degenerated parts of other institutions.

A first attempt at using diagrammatic logics to formalise this parameterisation process

was given in Domı́nguez et al. (2005). In Section 3 we present a simple formalisation of

the parameterisation and parameter passing processes as a morphism and a 2-morphism

of diagrammatic logics, respectively.

Most categorical notions used in this paper can be found in Mac Lane (1998) or Barr

and Wells (1999). For simplicity, we omit most size issues and will not always distinguish

between equivalent categories. The class of morphisms from X to Y in a category C

is denoted C[X,Y ]. A graph means a directed multigraph, and in order to distinguish

between the various kinds of structures with an underlying graph, our terminology will

refer to: the objects and morphisms of a category; the types and terms of a theory or a

specification; and the points and arrows of a limit sketch. As usual, a span in a category

is a pair of morphisms with the same source, and a cospan is a pair of morphisms with

the same target.

https://doi.org/10.1017/S0960129510000150 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129510000150


Diagrammatic logic applied to parameterisation 641

2. Diagrammatic logics

We will define the 2-category of diagrammatic logics and its related notions in Sections 2.1,

2.2 and 2.3, and then describe the diagrammatic equational logic in Section 2.4.

2.1. Limit sketches

There are several definitions of limit sketches (also called projective sketches), but in all

of them a limit sketch generates a category with limits (Coppey and Lair 1984; Barr and

Wells 1999). While a category with limits is a graph with identities, compositions, limit

cones and tuples, satisfying a bunch of axioms, we define a limit sketch E as a graph with

potential identities, compositions, limit cones and tuples, which become real features in the

generated category with limits C (E). For instance, a point X in E may have a potential

identity, this is an arrow idX : X → X in E, which becomes the identity morphism at the

object X in C (E). As another example, a diagram in E may have a potential limit cone,

which becomes a limit cone in C (E). Potential features are not required to satisfy any

axiom in E. In addition, for notational simplicity, we assume that each potential feature

is unique: a point has at most one potential identity; a diagram has at most one potential

limit cone; and so on.

A morphism of limit sketches e : E1 → E2 is a graph morphism that maps the potential

features of E1 to potential features of E2. This forms the category of limit sketches. A

realisation (or loose model ) of a limit sketch E with values in a category C is a graph

morphism that maps the potential features of E to real features of C. A morphism of

realisations is (an obvious generalisation of) a natural transformation. This gives rise to

the category Real (E,C) of realisations of E with values in C, which is simply denoted by

Real (E) when C is the category of sets. The category Real (E) has colimits, and we will

use the fact that left adjoint functors preserve colimits.

The Yoneda contravariant realisation YE of a limit sketch E takes its values in Real (E).

It is defined as YE(E) = P (E)[E,−] where P (E) is the prototype of E, which means the

category generated by E such that every potential feature of E becomes a real feature of

P (E). Thanks to YE, up to contravariance, the limit sketch E can be identified with a part

of Real (E), which will be called the elementary part of Real (E) (with respect to E) and

denoted Realel (E). This is a graph with distinguished features, defined as the identities,

compositions, colimits and cotuples, which are the images of the potential features of E.

A fundamental property is that the elementary part of Real (E) is dense in Real (E): every

realisation or morphism of realisations of E can be obtained by colimits and cotuples

from Realel (E). Moreover, a fundamental theorem due to Ehresmann states that every

morphism of limit sketches e : E1 → E2 gives rise to an adjunction Fe � Ge, where the

right adjoint Ge is the precomposition with e, which maps every X2 : E2 → Set to

X2 ◦ e : E1 → Set (Ehresmann 1968):

Real (E1)
Fe

⊥
�� Real (E2)

Ge

�� .

https://doi.org/10.1017/S0960129510000150 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129510000150


C. Doḿınguez and D. Duval 642

Then the functor Fe contravariantly extends e via the Yoneda contravariant realisations

in the sense that there is a natural isomorphism:

Fe ◦ YE1
∼= YE2

◦ e.

A locally presentable category (Gabriel and Ulmer 1971) is a category C that is equivalent

to the category of set-valued realisations of a limit sketch E, and we say E is a limit

sketch for the category C. In addition, we define a locally presentable functor as a functor

F : C1 → C2 that is the left adjoint to the precomposition with some morphism of limit

sketches e such that C1 and C2 are locally presentable categories. We say e is a morphism

of limit sketches for the functor F .

2.2. Diagrammatic logic: models and proofs

The framework of diagrammatic logics comes from Duval (2003; 2007).

Definition 2.1. A diagrammatic logic is a locally presentable functor L : S → T such that

its right adjoint R : T → S is full and faithful. The categories S and T are the category of

specifications and the category of theories, respectively, of the diagrammatic logic L (they

are also called L-specifications and L-theories, respectively). A specification Σ presents a

theory Θ if Θ is isomorphic to L(Σ). Two specifications are equivalent if they present the

same theory.

Informally, this definition means that each specification Σ generates a theory L(Σ), and

that each theory Θ may be viewed as a specification R(Θ). The fact that R is full and

faithful is equivalent to the fact that the counit natural transformation ε : L ◦ R ⇒ Id is

an isomorphism. According to Gabriel and Zisman (1967), it is also equivalent to the fact

that L is a localisation, up to an equivalence of categories: it consists of adding inverse

morphisms for some morphisms to constrain them to become isomorphisms. Consider a

diagrammatic logic L:

S
L

⊥
�� T

R

�� .

Definition 2.1 also means that R defines an isomorphism from T to its image, which

is a reflective subcategory of S (reflective subcategories are defined in Mac Lane (1998,

Chapter 4), but will not be used any further in the current paper). The fact that R is full

and faithful means that every theory Θ, when viewed as a specification R(Θ), presents

itself. The next definition claims that every model of a specification takes its values in

some theory.

Definition 2.2. A (strict) model M of a specification Σ in a theory Θ is a morphism

of theories M : LΣ → Θ or, equivalently (thanks to the adjunction), a morphism of

specifications M : Σ → RΘ.

It follows that equivalent specifications have the same models. A model M of Σ in Θ

is sometimes called an oblique morphism, and is denoted M : Σ → Θ. If, in addition, S

and T are 2-categories with a natural isomorphism between T[LΣ,Θ] and S[Σ, RΘ], then

https://doi.org/10.1017/S0960129510000150 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129510000150


Diagrammatic logic applied to parameterisation 643

T[LΣ,Θ] is the category of models of Σ in Θ, and is denoted L[Σ,Θ]. Otherwise, L[Σ,Θ]

is simply the discrete category with the models of Σ in Θ as objects.

Definition 2.3. An entailment is a morphism τ in S such that Lτ is invertible in T.

A similar notion can be found in Makkai (1997). Two specifications that are related by

entailments are equivalent.

Definition 2.4. An instance ρ of a specification Σ in a specification Σ1 is a cospan in S

made up of a morphism σ : Σ → Σ′
1 and an entailment τ : Σ1 → Σ′

1. It is also called a

fraction with numerator σ and denominator τ, and is denoted by ρ = τ\σ : Σ → Σ1.

We can illustrate an instance ρ = τ\σ of Σ in Σ1 graphically by

Σ
σ �� Σ′

1

������
Σ1τ

��

This then easily gives us a diagram in the category S by omitting the dotted arrow, and a

diagram in the category T by making the dotted arrow a solid one inverse to Lτ:

in S : Σ
σ �� Σ′

1 Σ1τ
�� in T : LΣ

Lσ �� LΣ′
1

(Lτ)−1

��
LΣ1

Lτ
��

Since the category S has colimits and the composition of entailments is an entailment, the

instances can be composed in the usual way as cospans, thanks to pushouts. This forms

the bicategory of instances of the logic, denoted S2. Let ρ = τ\σ : Σ → Σ1 in S2 and define

Lρ = (Lτ)−1 ◦ Lσ : LΣ → LΣ1 in T. The instances are better suited than the morphisms

of specifications for presenting the morphisms of theories because for every morphism of

theories θ : LΣ → LΣ1 there is an instance ρ such that Lρ = θ. Since L is a localisation,

the quotient category of the bicategory S2 is equivalent to T.

Definition 2.5. An inference system for a diagrammatic logic L is a morphism of limit

sketches e : ES → ET for the locally presentable functor L.

Thanks to the Yoneda contravariant realisation, the morphism e has properties similar

to the functor L. In particular, e can be chosen so as to consist of adding inverse arrows

for some collection of arrows in ES ; see Duval (2003, Theorem 3.13) for a systematic

construction of e. The next definitions depend on the choice of an inference system

e : ES → ET for L – see Duval (2007) for more details.

Definition 2.6. An inference rule r with hypothesis H and conclusion C is a span in ES ,

made of two morphisms t : H ′ → H and s : H ′ → C such that e(t) is invertible in

ET . It is also called a fraction with numerator s and denominator t, and is denoted by

r = s/t : H → C .

With this definition we claim that an inference rule with hypothesis H and conclusion C

can be viewed, via the Yoneda contravariant realisation, as an instance of Y(C) in Y(H).

So we can define an inference step simply as a composition of fractions, in other words,

as a pushout in the category S.

https://doi.org/10.1017/S0960129510000150 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129510000150


C. Doḿınguez and D. Duval 644

Definition 2.7. Given an inference rule r = s/t : H → C and an instance κ : Y(H) → Σ

of the hypothesis Y(H) in a specification Σ, the corresponding inference step provides the

instance κ ◦ Y(r) : Y(C) → Σ of the conclusion Y(C) in Σ.

Definition 2.8. A proof (or derivation, or derived rule) is the description of a fraction in

S2 in terms of inference rules (using composition and cotuples).

Typically, by deriving ρ = τ\idσ for a given morphism τ : Σ1 → Σ, we get the property

that τ is an entailment. For instance, in equational logic, let τ be the inclusion of a given

specification Σ1 into the specification Σ consisting of Σ1 together with an equation f = g

consisting of two terms f, g in Σ1; then τ is an entailment if and only if the equation

f = g holds in the theory presented by Σ1.

2.3. The 2-category of diagrammatic logics

Definition 2.9. A morphism of logics F : L1 → L2 is a pair of locally presentable functors

(FS , FT ) together with a natural isomorphism FT ◦ L1
∼= L2 ◦ FS .

This means that there are inference systems e1 and e2 for L1 and L2, respectively,

and morphisms of limit sketches eS and eT for FS and FT , respectively, which form a

commutative square of limit sketches:

L1

F

��
L2

S1
L1 ��

FS

��

T1

FT

��
S2

L2 �� T2

∼=

E1,S
e1 ��

eS

��

E1,T

eT

��
E2,S

e2 �� E2,T

=

Using the Yoneda contravariant realisation, a morphism of logics F : L1 → L2 can be

determined by any graph morphism on S1,el (the elementary part of S1 with respect to

E1) with values in S2 preserving the distinguished features of S1,el and the entailments

of L1. Some morphisms of logics are easier to describe at the sketch level (such as

the undecoration morphism in Section 3.1) while others are easier to describe at the

logic level (such as the parameterisation morphism in Section 3.2). The next result is a

straightforward application of adjunction.

Proposition 2.10. Given a morphism of logics F : L1 → L2 and the corresponding

adjunctions FT � GT between theories and FS � GS between specifications, for each

specification Σ1 of L1 and each theory Θ2 of L2, the adjunctions provide an isomorphism

natural in Σ1 and Θ2 between the categories of models:

L1[Σ1, GT (Θ2)] ∼= L2[FS (Σ1),Θ2].

Definition 2.11. A 2-morphism of logics � : F ⇒ F ′ : L1 → L2 is a pair of natural

transformations (�S , �T ) where �S : FS ⇒ F ′
S : S1 → S2 and �T : FT ⇒ F ′

T : T1 → T2

are such that �T ◦ L1 = L2 ◦ �S .

Given a morphism of logics F = (FS , FT ) or a 2-morphism of logics � = (�S , �T ), we will

usually omit the subscripts S and T .

https://doi.org/10.1017/S0960129510000150 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129510000150


Diagrammatic logic applied to parameterisation 645

The diagrammatic logics, together with their morphisms and 2-morphisms, form a 2-

category. By focusing on theories, we get a functor from the 2-category of diagrammatic

logics to the 2-category of categories. The other parts of the logic (the category of

specifications, the adjunction, and the inference system) provide a way to answer some

questions about theories, typically, whether some morphisms of theories are invertible.

2.4. The diagrammatic equational logic

Equational logic provides a fundamental example of a diagrammatic logic. As usual in

categorical logic (see Pitts (2000)), equational theories are defined as the categories with

chosen finite products; together with the functors that preserve the chosen finite products,

they form a category Teq . Similarly (see Lellahi (1989), Barr and Wells (1999) and

Wells (1993)), equational specifications are defined as finite product sketches, which means

the limit sketches (as in Section 2.1) such that their potential limits are only potential

products; together with the morphisms of finite product sketches, they form a category

Seq . Since all finite products may be recovered from binary products and a terminal type,

we restrict the arity of products to be just 2 or 0. We will often omit the word ‘equational’.

Every theory Θ can be seen as a specification ReqΘ and every specification Σ generates,

or presents, a theory LeqΣ. This corresponds to an adjunction:

Seq

Leq

⊥
�� Teq

Req

�� .

The category of sets with cartesian products as the chosen products forms an equational

theory denoted Set . By default, the models of an equational specification Σ are the models

of Σ in Set , called the set-valued models of Σ. Building limit sketches for Teq and Seq

is a classical exercise, and it is then easy to check that Leq is a diagrammatic logic. We

will now give a simplified description – see Domı́nguez and Duval (2009) for a detailed

construction. The starting point is the limit sketch for graphs Egr , where the points Type

and Term stand for the sets of vertices (or types) and edges (or terms) and the arrows dom

and codom for the functions source (or domain) and target (or codomain):

Type Term .
dom��

codom
��

Figure 1 presents the main part of the graph underlying Eeq ,S . In addition, there are

potential limits, including the specification of potential monomorphisms, and equalities of

arrows. We have represented this graph in such a way that the bottom line, which consists

of Egr with potential limits and tuples, is equivalent to Egr . The point Type has been

duplicated to aid readability, and the point Unit is a potential terminal type, interpreted

as a singleton.

— The point Comp stands for the set of pairs of composable terms, the arrow i for the

inclusion into the set of pairs of consecutive terms and comp for (f, g) 
→ g ◦ f.

— The point Selid stands for the set of types with a potential identity, the arrow i0 for

the inclusion and selid for X 
→ idX .

https://doi.org/10.1017/S0960129510000150 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129510000150


C. Doḿınguez and D. Duval 646

Fig. 1. The graph underlying Eeq ,S

— The point 2-Prod stands for the set of pairs of types with a potential binary product,

the arrow j for the inclusion into the set of pairs of types and 2-prod for (Y1, Y2) 
→
(pr i : Y1 × Y2 → Yi)i=1,2.

— The point 2-Tuple stands for the set of binary cones with a potential binary tuple,

the arrow k for the inclusion into the set of binary cones, 2-base′ for recovering the

base (fi : X → Yi)i=1,2 
→ (Y1, Y2), and 2-tuple for the construction of the potential

binary tuple (fi : X → Yi)i=1,2 
→ 〈f1, f2〉 : X → Y1 × Y2.

— The point 0-Prod stands for the set of potential terminal types, the arrow j0 for

the injection (ensuring that there is at most one terminal type) and 0-prod for the

selection of the potential terminal type (if any).

— The point 0-Tuple stands for the set of types with a potential collapsing term (or

nullary tuple), the arrow k0 for the inclusion into the set of types, 0-base′ for recovering

the potential terminal type and 0-tuple for the construction of the potential collapsing

term X 
→ 〈 〉X : X → 1.

A limit sketch Eeq ,T for equational theories is obtained from Eeq ,S by choosing

the entailments and mapping them to equalities; the corresponding morphism is the

diagrammatic equational logic Leq . Figure 2 provides the correspondence between the

usual rules of equational logic and the diagrammatic inference rules as fractions. Since

only a part of Eeq ,S is considered, some rules are missing, but we leave enlarging Eeq ,S

to get them as an exercise. It should be noted that in this definition of the equational

theories and specifications, the equations are identities of terms; a more subtle point of

view, where the equations in a theory form a congruence, can be found in Domı́nguez

and Duval (2009).

3. A parameterisation process

In Section 3.1 we define several variants of the diagrammatic equational logic, which are

related by morphisms. We then formalise the parameterisation and parameter passing

processes in Sections 3.2 and 3.3, respectively.

3.1. Some diagrammatic logics

The theories of the parameterised equational logic LA are the equational theories together

with a distinguished type, called the type of parameters, and usually denoted A. The

https://doi.org/10.1017/S0960129510000150 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129510000150


Diagrammatic logic applied to parameterisation 647

Fig. 2. Rules for the equational logic

specifications are the equational specifications with, possibly, a distinguished type A. The

inclusion of limit sketches determines a morphism of logics FA : Leq → LA.

The theories of the equational logic with a parameter La are the parameterised equational

theories together with a distinguished constant of type A, called the parameter, and usually

denoted a : 1 → A. The specifications are the parameterised equational specifications with,

possibly, a distinguished term a : 1 → A. The inclusion of limit sketches determines a

morphism of logics Fa : LA → La.

The theories of the decorated equational logic Ldec are the equational theories together

with a wide subtheory called pure (wide means with the same types). The specifications are

the equational specifications together with a wide subspecification. We can build Edec,T

from Eeq ,T , in a way that reflects the meaning of the word ‘decoration’ as follows – a

smaller choice for Edec,T can be found in Domı́nguez and Duval (2009). The decorations

in this context simply consist of the two keywords p for ‘pure’ and g for ‘general’. Some

terms are pure, all terms are general, and there are rules for dealing with the decorations:

identities and projections are always pure, and the compositions or tuples of pure terms

are pure. This information can be encoded as a realisation Δ of Eeq ,T with values in the

category of equational theories, as follows. We will first describe the set-valued realisation

Δ0 of Eeq ,T underlying Δ. The set Δ0(Type) consists of one type D and the set Δ0(Term)

of two terms p and g, so

Δ0(Cons) = {(p, p), (p, g), (g, p), (g, g)}
Δ0(2-Cone) = {(p, p), (p, g), (g, p), (g, g)}
Δ0(Type

2) = {(D,D)},

https://doi.org/10.1017/S0960129510000150 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129510000150


C. Doḿınguez and D. Duval 648

and we use the denotation

Δ0(Unit) = {	}.

Then:

— Δ0(selid) maps D to p;

— Δ0(comp) maps (p, p) to p and everything else to g;

— Δ0(2-prod) maps (D,D) to (p, p);

— Δ0(2-tuple) maps (p, p) to p and everything else to g;

— Δ0(0-prod) maps 	 to p;

— Δ0(0-tuple) maps D to p.

The structure of the equational theory on each set Δ0(E) is induced by a monomorphism

p → g in Δ(Term). Then Edec,T is the sketch of elements (which is similar to the more usual

category of elements) of the realisation Δ of Eeq ,T : the points of Edec,T include one point

Type.D over the point Type of Eeq ,T , two points Term.p and Term.g over the point Term

of Eeq ,T , four points over Cons, and so on, and the arrows of Edec,T include an arrow

c : Term.p → Term.g over idTerm, which is a potential monomorphism for the conversion

of pure terms to general terms.

Clearly, by forgetting the decorations, we get a morphism of diagrammatic logics Fund

from Ldec to Leq , which is called the undecoration morphism. And by mapping every

feature of Eeq ,T to the corresponding pure feature of Edec,T , we get a morphism of

diagrammatic logics Fp from Leq to Ldec such that Fund ◦ Fp = idLeq
.

3.2. The parameterisation process is a morphism of logics

In this section we define a morphism of logics Fpar : Ldec → LA. We define Fpar on

specifications; its definition on theories follows easily. We will use the fact, which follows

from the definition of a morphism of logics, that a specification may be replaced by an

equivalent one whenever needed.

The parameterisation process starts from a decorated specification and returns a

parameterised specification. Roughly speaking, it replaces every general feature in a

decorated specification by a parameterised one in such a way that a pure feature does

not really depend on the parameter. More precisely, types and pure terms are unchanged,

while every general term f : X → Y is replaced by f′ : A × X → Y where A is the type

of parameter. Figures 3 and 4 define the image of the elementary decorated specifications

(pure terms are denoted using ‘�’, and the projections prX : A×X → A and εX : A×X → X

are often omitted): for each point E.x in Edec,S , the parameterisation process replaces the

elementary decorated specification Y(E.x) by the parameterised specification Fpar (Y(E.x)).

The morphisms between elementary decorated specifications are transformed in a

straightforward way. For instance, the image of the morphism Y(c), where c : Term.p →
Term.g is the conversion arrow, maps f′ : A×X → X in Fpar (Y(Term.g)) to f◦εX : A×X →
Y in Fpar (Y(Term.p)), or, more precisely, in a parameterised specification equivalent to

Fpar (Y(Term.p)). This provides a graph morphism Fpar : Realel (Edec,S ) → Real (EA,S ).

https://doi.org/10.1017/S0960129510000150 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129510000150


Diagrammatic logic applied to parameterisation 649

Fig. 3. The parameterisation morphism on elementary decorated (pure) specifications

Theorem 3.1. The graph morphism Fpar defines a morphism of diagrammatic logics

Fpar : Ldec → LA,

which is the inclusion on the pure part of Ldec , in the sense that Fpar ◦Fp = FA. It is called

the parameterisation morphism.

Proof. It is straightforward to check that this graph morphism preserves the distin-

guished features of Realel (Edec,S ) and the entailments of the decorated logic so that

it provides a morphism of diagrammatic logics. It is then easy to check the equality

Fpar ◦ Fp = FA on elementary specifications.

To sum up, we have built the following logics and morphisms of logics, where FA, Fa

and Fp come from inclusions of limit sketches. The morphism Fund is the identity on the

pure part of Ldec . The morphisms Fund , Fpar and FA form a (non-commutative) triangle,

https://doi.org/10.1017/S0960129510000150 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129510000150


C. Doḿınguez and D. Duval 650

Fig. 4. The parameterisation morphism on elementary decorated (general) specifications

which becomes commutative when restricted to the pure part of Ldec:

Leq

Fp ��
id

=

��

FA

=

		

LdecFund



�������� Fpar

����������

Leq
FA

�� LA
Fa

�� La

The parameterisation morphism Fpar formalises the parameterisation process. The span

made of Fund and Fpar formalises the process of starting from an equational specification

Σeq , choosing a pure subspecification Σ0 of Σeq so as to get a decorated specification Σdec

such that Σeq = Fund (Σdec), then forming the parameterised specification ΣA = Fpar (Σdec).

3.3. The parameter passing process is a 2-morphism of logics

In this section, we define a 2-morphism of logics � : Fa ◦ FA ◦ Fund ⇒ Fa ◦ Fpar :

LdecFund



�������� Fa◦Fpar

����������

Leq
Fa◦FA

��

⇑

�

La

In order to explain how a 2-morphism of logics may provide a formalisation of the

parameter passing process, we will focus on the decorated specification Σ0
dec = Y(Term.g)

(where g means ‘general’, as above). This decorated specification Σ0
dec consists of a term

fg : X → Y decorated as ‘general’ (the superscript ‘g’ emphasises this decoration), and its

pure part consists of X and Y . On the one hand, the Leq -specification Σ0
eq = Fund (Σ

0
dec) is

f : X → Y , as well as the LA-specification FA(Fund (Σ
0
dec)) and the La-specification Σ0

eq ,a =

Fa(FA(Fund (Σ
0
dec))). On the other hand, as in Figure 4, the LA-specification Σ0

A = Fpar (Σ
0
dec)

is f′ : A×X → Y (which is shorthand for A, X, Y , the product A×X with its projections,

https://doi.org/10.1017/S0960129510000150 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129510000150


Diagrammatic logic applied to parameterisation 651

and f′ : A×X → Y ), hence the La-specification Σ0
a = Fa(Fpar (Σ

0
dec)) is also f′ : A×X →

Y . Up to entailment in the logic La, we may add to Σ0
a the terms a : 1 → A, a×idX : X → A

(where X is identified with 1 × X for readability) and f′ ◦ 〈a, idX〉 : X → Y . Obviously,

there is a morphism of La-specifications σ0 : Σ0
eq ,a → Σ0

a that maps f to f′ ◦ 〈a, idX〉.

X
fg �� Y

�
Fa◦FA◦Fund

��
����

�
Fa◦Fpar

��

��

X
f �� Y σ0

f 
→f′◦〈a,idX 〉
��

A × X f′

��										
= Y

X

a×idX

��

f′◦〈a,idX 〉

��













We claim that this morphism σ0 corresponds to the parameter passing process. Indeed,

if we look at set-valued models, a model MA of Σ0
A consists of three sets �, �, � for

interpreting X, Y and A, respectively, and a function ϕ′ : � × � → � for interpreting

f′. A model MA,α of Σ0
a extending MA is characterised by the argument α in �, which

interprets the formal parameter a. Then MA,α ◦σ is the model of Σ0
eq , which interprets f as

ϕ′(α,−) : � → �. So, when we focus on this decorated specification Σ0
dec , the morphism

of La-specifications σ0 corresponds to the parameter passing process. More generally, the

parameter passing process is now defined as a family of morphisms of La-specifications

�Σdec
: Fa(FA(Fund (Σdec))) → Fa(Fpar (Σdec)) with naturality conditions, which means, as a

2-morphism � : Fa ◦ FA ◦ Fund ⇒ Fa ◦ Fpar .

Each decorated specification Σdec , with Σeq = Fund (Σdec), gives rise to two specifications

with a parameter: on the one hand, Σeq ,a = Fa(FA(Σeq )), which is simply Σeq seen as

a specification with a parameter, but, on the other hand, Σa = Fa(Fpar (Σdec)), which

is Fpar (Σdec) viewed as a specification with a parameter. The morphism �Σdec
: Σeq ,a → Σa

is defined as follows. When Σdec is some Y(E.p) (where p means ‘pure’) it is easy to check

that Σeq ,a = Σa, so �Σdec
is the identity. When Σdec = Y(Term.g) (where g means ‘general’),

we have �Σdec
= σ0, as defined above. The definitions when Σdec = Y(Comp.g) and when

Σdec = Y(2-Tuple.g) are similar.

Theorem 3.2. The morphisms �Σdec
: Σeq ,a → Σa define a 2-morphism of diagrammatic

logics

� : Fa ◦ FA ◦ Fund ⇒ Fa ◦ Fpar : Ldec → La,

which is the identity on the pure part of Ldec . It is called the parameter passing 2-morphism.

Proof. We first extend the definition of �Σdec
on the elementary decorated specifications

to all specifications by colimits, and the result then follows.

Theorem 3.2 has the expected consequence on models, which is stated as Proposition 3.3:

given a set-valued model MA of the paramererised specification ΣA, each α ∈ MA(A), which

is called an actual parameter or an argument, gives rise to a model M(α) of the equational

specification Σeq . We introduce the following notation:

— For each set �, let Set� denote the object of TA consisting of the equational theory

of sets with � as the interpretation of A, so RA(Set�) = Set .

https://doi.org/10.1017/S0960129510000150 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129510000150


C. Doḿınguez and D. Duval 652

— For each set � and element α ∈ �, let Set�,α denote the object of Ta consisting of the

equational theory of sets with � and α as the interpretations of A and a, respectively,

so Ra(Set�,α) = Set�.

— For each decorated specification Σdec = (Σeq ,Σ0), consisting of an equational specific-

ation Σeq and a wide subspecification Σ0, and for each set-valued equational model

M0 of Σ0, let Leq [Σeq , Set]|M0
denote the set of models of Σeq extending M0.

— Let ΣA = Fpar (Σdec).

The definition of Fpar is such that Σ0 is also a subspecification of ΣA and for each

f : X → Y in Σeq there is a f′ : A × X → Y in ΣA, with f′ = f ◦ εX when f is pure.

Proposition 3.3. Let Σdec = (Σeq ,Σ0) be a decorated specification and let ΣA = Fpar (Σdec).

For each set � and each set-valued model MA : ΣA → Set� in LA, let M0 : Σeq → Set

denote the restriction of MA to Σ0. Then there is a function

M : � → Leq [Σeq , Set]|M0

that maps each α ∈ � to the model M(α) of Σeq extending M0 and such that M(α)(f) =

MA(f′)(α,−) for each f : X → Y in Σeq .

Proof. Let Σeq ,a = Fa(FA(Σeq )) and Σa = Fa(Fpar (Σdec)). The precomposition with the

morphism

�Σdec
: Σeq ,a → Σa

gives rise to a functor

La[Σa, Set�,α] → La[Σeq ,a, Set�,α].

Proposition 2.10 provides the isomorphisms

La[Σa, Set�,α] ∼= LA[ΣA, Set�]

and

La[Σeq ,a, Set�,α] ∼= Leq [Σeq , Set].

So, for each α ∈ �, we get a functor

LA[ΣA, Set�] → Leq [Σeq , Set].

Let MA,α denote the image of MA. The definition of �Σdec
means that MA,α extends M0

and satisfies

MA,α(f) = MA(f′)(α,−)

for each f : X → Y in Σeq . When MA is fixed, the result now follows by defining

M(α) = MA,α.

The function M is not a bijection in general, but under the conditions of Proposition 3.4

it may be: this is the exact parameterisation property of Lambán et al. (2003, Corollary 2),

which is also proved in Domı́nguez and Duval (2009, Corollary 3.8).

Proposition 3.4. With the specifications Σeq , Σ0 and ΣA as in proposition 3.3, let M0 be

a model of Σ0 and MA be a terminal model of ΣA extending M0. Then the function M

https://doi.org/10.1017/S0960129510000150 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129510000150


Diagrammatic logic applied to parameterisation 653

from Proposition 3.3 is a bijection:

MA(A) ∼= Leq [Σeq , Set]|M0
.

It follows from Rutten (2000) and Hensel and Reichel (1995) that there is a terminal

model of ΣA over M0. Proposition 3.4 corresponds to the way algebraic structures are

implemented in the systems Kenzo and EAT, as described in Lambán et al. (2003).

4. Conclusion

In this paper we have defined the framework of diagrammatic logics and its application to

both a parameterisation process and its associated parameter passing process. Our focus

here has been on the models; Dumas et al. (2009) studied another kind of application

where proofs in a diagrammatic logic play an important role. In this paper we have only

considered equational logic and some related logics. However, building on the theories

of limit sketches and locally presentable categories, it should be possible to build a large

variety of diagrammatic logics.

References

Barr, M. and Wells, C. (1999) Category Theory for Computing Science, 3rd Edition, Centre de

Recherches Mathématiques (CRM) Publications.

Coppey, L. and Lair, C. (1984) Leçons de Théorie des Esquisses. Diagrammes 12.

Domı́nguez, C. and Duval, D. (2009) A parameterization process as a categorical construction.

Available at arXiv:0908.3634.

Domı́nguez, C., Duval, D., Lambán, L. and Rubio, J. (2005) Towards diagrammatic specifications of

symbolic computation systems. In: Coquand, T., Lombardi, H. and Roy, M. (eds.) Mathematics,

Algorithms, Proofs. Dagstuhl Seminar 05021. (Available at http://drops.dagstuhl.de/

portals/index.php?semnr=05021.)

Domı́nguez, C., Lambán, L. and Rubio, J. (2007) Object-oriented institutions to specify symbolic

computation systems. Rairo – Theoretical Informatics and Applications 41 191–214.

Domı́nguez, C., Rubio, J. and Sergeraert, F. (2006) Modeling inheritance as coercion in the Kenzo

system. Journal of Universal Computer Science 12 (12) 1701–1730.

Dousson, X., Sergeraert, F. and Siret, Y. (1999) The Kenzo program. Institut Fourier, Grenoble.

(Available at http://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo.)

Dumas, J.G., Duval, D. and Reynaud, J. C. (2009) Cartesian effect categories are Freyd-categories.

(Available at arXiv:0903.3311.)

Duval, D. (2003) Diagrammatic specifications. Mathematical Structures in Computer Science 13

857–890.

Duval, D. (2007) Diagrammatic inference. (Available at arXiv:0710.1208.)

Ehresmann, C. (1968) Esquisses et types de structures algébriques. Bull. Instit. Polit. Iaşi XIV.

Gabriel, P. and Ulmer, F. (1971) Lokal präsentierbare Kategorien. Springer-Verlag Lecture Notes in

Computer Science 221.

Gabriel, P. and Zisman, M. (1967) Calculus of Fractions and Homotopy Theory, Springer-Verlag.

Goguen, J. A. and Burstall, R.M. (1984) Introducing Institutions. Springer-Verlag Lecture Notes in

Computer Science 164 221–256.

https://doi.org/10.1017/S0960129510000150 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129510000150


C. Doḿınguez and D. Duval 654

Goguen, J. and Malcolm, G. (2000) A hidden agenda. Theoretical Computer Science 245 (1) 55–101.

Goguen, J. A. and Roşu, G. (2002) Institution morphisms. Formal Aspects of Computing 13 274–307.

Hensel, U. and Reichel, H. (1995) Defining equations in terminal coalgebras. In: Recent Trends in

Data Type Specifications. Springer-Verlag Lecture Notes in Computer Science 906 307–318.

Kan, D.M. (1958) Adjoint Functors. Transactions of the American Mathematical Society 87 294–329.

Lambán, L., Pascual, V. and Rubio, J. (2003) An object-oriented interpretation of the EAT system.

Applicable Algebra in Engineering, Communication and Computing 14 (3) 187–215.

Lellahi, S.K. (1989) Categorical abstract data type (CADT). Diagrammes 21 SKL1–SKL23.

Mac Lane, S. (1998) Categories for the Working Mathematician, 2nd Edition Springer-Verlag.

Makkai, M. (1997) Generalized sketches as a framework for completeness theorems (I). Journal of

Pure and Applied Algebra 115 49–79.

Pitts, A.M. (2000) Categorical Logic. In: Abramsky, S., Gabbay, D.M. and Maibaum, T. S. E. (eds.)

Algebraic and Logical Structures. Handbook of Logic in Computer Science 5 Chapter 2, Oxford

University Press.

Rubio, J., Sergeraert, F. and Siret, Y. (2007) EAT: Symbolic Software for Effective Homology

Computation. Institut Fourier, Grenoble. (Available at http://www-fourier.ujf-grenoble.

fr/~sergerar/Kenzo/#Eat.)

Rutten, J. J.M.M. (2000) Universal coalgebra: a theory of systems. Theoretical Computer Science

249 (1) 3–80.

Tarlecki, A. (2000) Towards heterogeneous specifications. In: Gabbay, D.M. and de Rijke, M.

(eds.) Frontiers of Combining Systems (FroCos’98), Studies in Logic and Computation 7 Research

Studies Press/Wiley 337–360.

Wells, C. (1993) Sketches: Outline with References. (Available at http://www.cwru.edu/artsci/

math/wells/pub/papers.html.)

https://doi.org/10.1017/S0960129510000150 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129510000150

