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Temporal shaping of time series is the activity of deriving a time series model with a
prescribed marginal distribution and some sample path characteristics. Starting with an
empirical sample path, one often computes from it an empirical histogram (a step-function
density) and empirical autocorrelation function. The corresponding cumulative distribu-
tion function is piecewise linear, and so is the inverse distribution function. The so-called
inversion method uses the latter to generate the corresponding distribution from a uni-
form random variable on [0,1), histograms being a special case. This paper shows how
to manipulate the inverse histogram and an underlying marginally uniform process, so as
to “shape” the model sample paths in an attempt to match the qualitative nature of the
empirical sample paths, while maintaining a guaranteed match of the empirical marginal
distribution. It proposes a new approach to temporal shaping of time series and identifies
a number of operations on a piecewise-linear inverse histogram function, which leave the
marginal distribution invariant. For cyclical processes with a prescribed marginal distri-
bution and a prescribed cycle profile, one can also use these transformations to generate
sample paths which “conform” to the profile. This approach also improves the ability to
approximate the empirical autocorrelation function.

Keywords: ARM processes, autocorrelation functions, histograms, model fitting, modeling time
series, temporal shaping, TES processes

1. INTRODUCTION

Consider an empirical time series, {Yn}N
n=0, assumed to be from a stationary probability

law. Suppose we calculate from {Yn} its empirical (histogram) probability density func-
tion (pdf), ĥY (y), and the corresponding empirical cumulative distribution function (cdf),
ĤY (y), as well as the corresponding empirical autocorrelation function, ρ̂Y (τ). Thus, we
estimate first-order and second-order statistics of the empirical data, the latter capturing
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information on temporal dependence in the empirical sequence, {Yn}. The general problem
is to construct a time series model, {Xn}, whose marginal cdf, FX , approximates ĤY , and
whose autocorrelation function, ρX(τ), approximates ρ̂Y (τ).

A popular method for generating variates from a prescribed distribution, F , is the
inversion method (see Bratley, Fox, and Schrage [2]). If U is a random variable uniformly
distributed over [0,1), then the random variable X = F−1(U) has distribution F (denoted
X ∼ F ). One approach to fitting a model to the pair (ĥY , ρ̂Y ) is given in Liu and Mun-
son [6]. The idea is to construct a filter (an autoregressive scheme) for independent and
identically distributed (i.i.d.) normal sequence {Zn}, thereby producing an autocorrelated
normal sequence {Bn}, called the background sequence. A transformation D = F−1 ◦ G,
called a distortion, is applied to each Bn, where G is the marginal normal distribution of
the Bn, so G(Bn) ∼ Uniform(0, 1), and F−1 is the inverse distribution function of interest
(in our case it corresponds to the observed inverse histogram, Ĥ−1

Y ). The resulting sequence
Xn = D(Bn), called the foreground sequence, then models the observed data. In particu-
lar, the inversion method guarantees that {Xn} has the prescribed marginal distribution,
F . The problem is to design the filter, so as to approximate the observed (ĤY , ρ̂Y ). A
related approach appears in Cario and Nelson [3,4], which starts with a marginally normal
random sequence, and then transforms it into any marginal distribution and approximate
autocorrelation function.

The approach we take here is related to Liu and Munson [6], but with some modifica-
tions. First, we would like the background sequence {Bn} to be an autocorrelated identically
distributed Uniform (0,1) sequence {Un}, so the distortion D often reduces to F−1; and
second, {Zn} is an i.i.d. Uniform (0,1) pseudo-random number stream, available on most
computers. Examples of such approaches are generation methods based on Transform-
Expand-Sample (TES) processes (see Melamed [14]; Jagerman and Melamed [8,9]), and
Auto-Regressive Modular (ARM) processes (see Melamed [16]) – a generalization of TES
processes, as well as Minification/Maxification methods (see Lewis and McKenzie [7]). This
paper is based on ARM processes, to be briefly reviewed in Section 3. We mention that search
algorithms have been developed for fitting ARM processes to a prescribed pair consisting of a
marginal distribution and autocorrelation function. More specifically, given such a pair, the
algorithm searches for an ARM process that fits exactly the prescribed marginal distribu-
tion and simultaneously approximates the prescribed autocorrelation functions (Jagerman
and Melamed [11]; Jelenkovic and Melamed [12,13]).

In this paper, we observe that the inverse histogram and the background uniform pro-
cess may be manipulated so as to “shape” model sample paths in a controlled way. The
goal is to find a stationary model, which preserves the empirical marginal distribution,
approximates the empirical autocorrelation function, and gives rise to model sample paths
that qualitatively “resemble” the empirical data, all the while retaining an exact match to
the (prescribed) empirical distribution. To this end, we propose a new approach to tem-
poral shaping of time series, to be defined in Section 4. Specifically, we identify a number
of operations on a piecewise-linear inverse distribution function, which leave the marginal
distribution invariant. For cyclical processes with a prescribed marginal distribution and a
prescribed cycle profile, one can also use these transformations to generate sample paths,
which “conform” to the prescribed profile. Overall, given a histogram marginal distribution
and autocorrelation function, our shaping procedure consists of two steps: first, the corre-
sponding linear inverse distribution function is transformed to approximate the prescribed
profile using a heuristic procedure (see Section 5.1); and second, a proposed search algorithm
uses the approximate profile and prescribed autocorrelation function to fit an ARM process
to them (see Section 5.2).
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Henceforth, we restrict the discussion to the case where the sample paths have an
apparent cyclical structure, but otherwise, cycle lengths and histories are random. Unless
otherwise specified, a distortion D is a measurable function on the interval [0, 1).

The remainder of this paper is organized as follows. Section 2 provides some background
material on histogram distributions. Section 3 provides technical preliminaries on ARM
processes and the notion of pseudo-time. Section 4 describes a set of distribution-invariant
operators, while Section 5 proposes a heuristic for temporal shaping of cyclic ARM time
series. Finally, Section 6 concludes the paper.

2. VARIATES WITH HISTOGRAM DENSITIES

Suppose that the empirical distribution is modeled by a histogram ĤY , specified as a finite
set of triplets

ĤY = {(lj , rj , p̂j) : 1 ≤ j ≤ J}, (1)

where J is the number of histogram cells, [lj , rj) is the interval of cell j, and p̂j is the
probability estimator of cell j. We assume, for simplicity, that cell intervals are sorted
in increasing order and disjoint (i.e., [li, ri) ∩ [lj , rj) = Ø, i �= j), and that the index set
I = {1, . . . , J} of histogram cells already reflects this ordering. Recall that the parameters
J and the intervals [lj , rj), 1 ≤ j ≤ J , are prescribed and used to calculate the p̂j from
{Yn} as relative frequencies. Define the index set I+ = {j ∈ I : p̂j > 0}. The histogram ĤY

induces the (step-function) empirical density,

ĥY (y) =
∑

j∈I+

1[lj ,rj)(y)
p̂j

wj
, −∞ < y < ∞, (2)

where 1A(x) is the indicator function of set A, and wj = rj − lj > 0 is the width of cell
j. Thus, the empirical density ĥY (y) is a probabilistic mixture of uniform densities over
the intervals [lj , rj) with mixing probabilities p̂j . Note that the cell widths, wj , in Eq. (2)
are cell dependent. Further, assuming that the cells are contiguous, we shall simplify the
notation by denoting the end points of the cells by s0, s1, . . . , sJ+1, so that step supports
have the form [lj , rj) = [sj−1, sj), for all 1 ≤ j ≤ J . We will show at the end of this section
that this assumption does not invalidate the discussion to follow. A simple example of a
histogram pdf, ĥY , is depicted in Figure 1.

Clearly, the probability that an empirical observation falls in the range [sj−1, sj) is just
the area of cell j; the area under the function ĥY is, of course, 1. The cdf ĤY , corresponding
to the histogram pdf, ĥY , is the piecewise-linear function

ĤY (y) =

⎧⎪⎪⎨⎪⎪⎩
0, y < s0,

Ĉj−1 + (y − sj−1)
p̂j

wj
, y ∈ [sj−1, sj) , 1 ≤ j ≤ J,

1, y ≥ sJ ,

(3)

where {Ĉj}J
j=0 is the cdf corresponding to {p̂j}J

j=1, given by

Ĉj =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, j = 0,

j∑
i=1

p̂i, 0 < j < J,

1, j = J.

(4)
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Figure 1. Histogram pdf, ĥY .

(a) (b)

Figure 2. Histogram cdf (left) and inverse histogram cdf (right), corresponding to the
histogram pdf, ĥY . (a) Histogram cdf, ĤY . (b) Inverse histogram cdf, Ĥ−1

Y .

Since ĤY is a piecewise-linear function, so is its inverse, Ĥ−1
Y . The latter is given by

Ĥ−1
Y (x) =

∑
j∈I+

1[Ĉj−1,Ĉj)
(x)

[
sj−1 + (x − Ĉj−1)

wj

p̂j

]
, 0 ≤ x ≤ 1. (5)

Figure 2 depicts the histogram cdf, ĤY , and its inverse, Ĥ−1
Y , corresponding to the histogram

density, ĥY , of Figure 1.
In order to use the inversion method for generating a Monte Carlo time series with

marginal density ĥY , we employ the distortion D = Ĥ−1
Y . Operationally, this can be

described by the following random experiment:

1. Sample a number u from the Uniform (0,1) distribution.
2. Find the index j such that Ĉj−1 ≤ u < Ĉj .

3. Return x = sj−1 + (u − Ĉj−1)
wj

p̂j
.

The corresponding output random variable, X, has the requisite distribution, ĥY . Note that
even if steps are not contiguous (see our assumption made at the beginning of this session),
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Eqs. (3)–(5) and the above procedure are still valid by simply replacing sj−1 with lj and sj

with rj for j ∈ I+. Hence, for simplicity, the discussion to follow will assume that the steps
are contiguous with [lj , rj) = [sj−1, sj).

3. THE NOTION OF PSEUDO-TIME

Suppose that a stationary sequence {Un} has been generated from a Uniform (0,1) distribu-
tion, and that each Un has been transformed into the corresponding Xn by some distortion
D(Un) = Xn. If {Un} is cyclical in structure, then one way to view it is as a random process
on the circular unit interval (i.e., a unit circle with circumference 1) with net clockwise drift.
Recall that the unit circle with circumference 1 is a geometric model of modulo-1 arithmetic,
where the modulo-1 operator 〈·〉 (fractional part) is defined by 〈x〉 = x − �x where �· is
the floor operator; see for example, Jagerman and Melamed [8]. As {Un} sweeps the abscissa
in the domain [0, 1) of D from left to right, the transformed values {Xn} will roughly follow
the outline of the curve D. Eventually, the {Un} will wrap-around from a neighborhood
of the point 1 to a neighborhood of the point 0, and a new “cycle” will begin. This behavior
manifests itself in the sample paths as visually distinct blocks (cycles), especially when the
leading autocorrelations of {Un} are of high magnitude. Of course, a mathematical device,
such as spectral analysis, can aid the “naked eye” in identifying “random” periodicities,
whereas periodogram analysis can aid in finding deterministic ones. Intuitively, a cycle’s
profile (“average envelope”) will roughly follow the shape of curve D, and the more so if
the drift is pronounced, that is, when the next point lies, say, “clockwise” relative to the
previous one on the unit circle, with high probability. Note that for the distortion and profile
to be comparable, the profile domain need to be scaled to the domain of D, namely, to the
interval [0,1). To this end, letting ϕ(n), n = 0, . . . , N − 1, be the cycle profile, where N is
the period, the normalized cycle profile is given by

p̃
( n

N

)
= ϕ(n), n = 0, . . . , N − 1. (6)

To fix the ideas, consider the class of so-called ARM + background processes (Jagerman and
Melamed [8–10]; Melamed [16]) of the form

U+
n = 〈U+

n−1 + Vn〉, (7)

where U+
0 ∼ Uniform(0, 1) and the sequence {Vn}∞n=1, called the innovation sequence, is

independent of U+
0 , with marginal density fV . Lemma 1 below states the known result that

uniformity is closed under modulo-1 addition of independent random variables.

Lemma 1 (Feller [5], p. 64): Let U ∼ Uniform(0, 1) and let V be any random variable
independent of U . Then, one has W = 〈U + V 〉 ∼ Uniform(0, 1).

Lemma 1 guarantees that the ARM+ background sequence {U+
n } is marginally uniform

on [0, 1), and hence its corresponding foreground sequence, {Xn}, generated by the distor-
tion D = Ĥ−1

Y as Xn = Ĥ−1
Y (U+

n ) has marginal cdf ĤY . We mention that in order to fit a
general ARM process to a prescribed distribution and autocorrelation function simultane-
ously, a heuristic search is performed to identify a suitable innovation density that results
in a foreground (ARM) sequence that approximates the prescribed autocorrelation, while
the prescribed distribution is reproduced exactly by virtue of the inversion method (see
Melamed [16]).
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To simplify the discussion, we focus on basic ARM + processes – those with uniform
innovations of the form

Vn ∼ Uniform(L,R), (8)

parameterized by pairs (L,R), subject to −0.5 ≤ L < R < 0.5. The cyclical structure of
{U+

n } is better expressed under the alternate equivalent parameterization (α, φ), where
α = R − L and φ = (R + L)/α. More specifically φ �= 0 corresponds to drift, and φ = 0
corresponds to no drift; the higher |φ|, the more pronounced the drift. When φ = 0, the
entire data set corresponds to one (infinite) cycle, and so cyclical structure is not apparent.
The parameter α has a strong effect on the autocorrelations of {U+

n }; the smaller α, the
higher the autocorrelations. See Melamed [15] for more details.

The discussion above motivates the view of a background sequence, {Un}, as a “pseudo-
time” (within cycles). While normal time advances uniformly (at rate 1) and monotonically,
a pseudo-time {Un} advances only on average by virtue of its drift. Since we deal with a
discrete time random process, the increments, Un+1 − Un, are generally random and may
even be negative. Nevertheless, the existence of drift allows us to think of {Un} as pseudo-
time (actually a metaphor for time), this term merely serving as a convenient figure of
speech. Certainly, the background variates Un affect the behavior of the corresponding
foreground variates Xn = D(Un) within cycles, in that they determine the (random) cycle
length, whereas D controls the temporal behavior (profile) of the Xn.

4. TEMPORAL SHAPING OPERATIONS

The term temporal shaping is used in this paper to refer to the collective activities of
manipulating the distortion, D, in a model of the form Xn = D(Un), so as to engender
simulated sample paths which conform to or approximate a prescribed cycle profile, but
are subject to the constraint that the observed histogram, ĤY , is preserved by the model.
Naturally, this activity will tend to improve the fit of the model autocorrelation function,
ρY , to its empirical counterpart, ρ̂Y , because temporal shaping ipso facto gives rise to
sample paths that better resemble their counterparts in the empirical time series.

In our case, temporal shaping consists of replacing the inversion distortion, Ĥ−1
Y , by a

new distortion, D, such that D(U) ∼ ĤY ; here D is a general distortion, not necessarily
monotone, so that the inversion method is not used per se; rather, a more general analog
is employed. The idea is that the cycle profile can be approximated by ĤY -invariant oper-
ations on the original distortion Ĥ−1

Y , because distortions can be thought of as defining a
cycle profile, particularly when driven by a highly autocorrelated, marginally Uniform (0,1)
process with positive drift on the unit circle. Recall that as the uniform process sweeps
the interval [0, 1) from left to right, the resulting D-transformed values roughly follow the
outline of D.

We now turn to identifying temporal shaping operations with the requisite properties.
Such operations are generally distribution preserving. However, we distinguish between
operations on the background uniform sequence, {Un}, called pre-distortion transforma-
tions, and operations on the inverse histogram distortion, Ĥ−1

Y , called distribution-invariant
operators. Pre-distortion transformations are uniformity-preserving mappings from [0, 1) to
itself; as such, they map one uniform background process to another. Consequently, a dis-
tortion transformation may follow a pre-distortion transformation to achieve the desired
marginal distribution. Distribution-invariant operators modify a histogram Ĥ−1

Y , replacing
it by a piecewise-linear distortion, not necessarily monotone. Temporal shaping operations
will be discussed next in some detail.
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4.1. Stitching Transformations

The family of so-called stitching transformations, Sξ, 0 ≤ ξ ≤ 1, is a class of pre-distortion
transformations (in our case, pre-inversion transformations), given by

Sξ(y) =

⎧⎪⎪⎨⎪⎪⎩
y

ξ
, 0 ≤ y ≤ ξ,

1 − y

1 − ξ
, ξ ≤ y ≤ 1.

(9)

A picture of some typical stitching transformations appears in Figure 3. Clearly, S1 is the
identity (S1(y) = y), and S0 is the antithetic (reflection) transformation (S0(y) = 1 − y).
For 0 < ξ < 1, Sξ has a “triangular” appearance; for this reason, they are also called tent
transformations. When applied to a cycle of an ARM+ sequence, its effect is to skew the
cycle into some profile from Figure 3. In other words, for a cycle length c, the sequence
{Sξ(Un)} will peak at the point ξc. Thus, as ξ varies from 0 to 1, the profile changes
continuously from the antithetic form (ξ = 0) to a tent form (0 < ξ < 1), finally becoming
the identity (ξ = 1). Since ξ is the fraction of the cycle where the peak occurs, changing ξ
leads to a continuum of correspondingly skewed sample path cycles.

The merit of the Sξ lies in the fact that if U ∼ Uniform (0, 1), then Sξ(U) ∼
Uniform (0, 1) for all 0 ≤ ξ ≤ 1 (see Lemma 2 of Melamed [14]). Thus, not only can stitching
transformations shape marginally uniform sample paths (by skewing), they also preserve
their marginal uniformity, thereby allowing us to apply further distortions.

Suppose that {Un} is a positively autocorrelated uniform background sequence, and we
use Sξ as a pre-inversion, followed by some distortion D. Define the composite distortion,
Dξ = D ◦ Sξ, for some 0 ≤ ξ ≤ 1. In particular, taking D = Ĥ−1

Y gives rise to compos-
ite distortions, DY,ξ, such that for each 0 ≤ ξ ≤ 1, the foreground variates, DY,ξ(Un) =
Ĥ−1

Y (Sξ(Un)), will still have marginal distribution ĤY , while the corresponding sample
paths will be ξ-skewed.

Figure 4 displays a typical cyclical sample path before and after stitching. Specifically,
Figure 4(a) was generated by an unstitched basic ARM+ sequence, {U+

n }, with an inno-
vation of the form (8) and parameters (α, φ) = (0.1, 0.5), whereas Figure 4(b) displays a
sample path of the stitched process, {Sξ(U+

n )}, with stitching parameter ξ = 0.5. Note how

Figure 3. Examples of stitching transformations.
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Figure 4. Cyclical sample paths from a basic ARM+ process (α = 0.1, φ = 0.5) before
and after stitching. (a) Unstitched sample path (ξ = 1). (b) Stitched sample path (ξ = 0.5).

the sawtooth cycles changed to symmetric (zero skew) cycles, even though the marginal
distribution corresponding to both paths is still uniform on [0, 1). It can be shown that
for an ARM background sequence, decreasing ξ in the interval [0,0.5] or increasing ξ in
the interval [0.5,1] results in new sequences whose autocorrelation magnitudes are strictly
monotonically decreasing. The highest magnitude occurs for ξ = 0.5. Interestingly, the auto-
correlation functions of {Sξ(U+

n )} and {S1−ξ(U+
n )} are identical, though the corresponding

sample paths have skews ξ and 1 − ξ, respectively.

4.2. Distribution-Invariant Operators

In this section, we exhibit a number of operators that map an inverse histogram distortion,
Ĥ−1

Y , to piecewise-linear distortions such that the resulting foreground sequence retains the
prescribed histogram cdf, ĤY . More generally, a transformation F of a distortion D is called
a distribution-invariant operator, provided the random variables, D[U ] and F [D](U), have
the same distribution. Here, we shall restrict attention to piecewise-linear distortions – not
necessarily monotone – of which Ĥ−1

Y is a special (monotone) case.
The graph of a piecewise-linear distortion, L, can be specified by a collection of line

segments connecting pairs of two-dimensional points (see, e.g., Figure 2(b)). To put things
in the inverse histogram distortion context of Section 3, we shall assume the following setup
for a piecewise-linear distortion, L. Let {pj}J

j=1 be a discrete pdf with a corresponding cdf
{Cj}J

j=0, where C0 = 0, Cj =
∑j

i=1 pi for 1 ≤ j ≤ J , and CJ = 1. Then a tuple of the form
(Cj−1, sj−1, Cj , sj) is called a linear component of L, provided the line segment connecting
point (Cj−1, sj−1) to point (Cj , sj) in the two-dimensional plane, is a restriction of the
graph of L.

Note that an inverse histogram distortion, Ĥ−1
Y , is always monotonically increasing,

since each of its components is. However, the distortion D obtained by applying a series of
distribution-invariant operators (to be defined in the sequel) may not necessarily be mono-
tone, as its components may be either monotonically increasing or monotonically decreasing.
In order to capture this mixed behavior, we generalize in the remainder of the paper the
quantity wj = sj − sj−1 by allowing it to assume either positive values (on monotonically
increasing components) or negative values (on monotonically decreasing components).

We now proceed to present four classes of elementary distribution-invariant operators,
which map piecewise-linear distortions to piecewise-linear distortions with the same support.
Their effects will be illustrated on the linear distortion function of Figure 2(b).
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Figure 5. Example of operator A.

4.2.1. Operator A (antithetic distortion components). Let (Cj−1, sj−1, Cj , sj) be any
linear component of L. The effect of the operator A is to replace (Cj−1, sj−1, Cj , sj) by the
linear component (Cj−1, s

′
j−1, Cj , s

′
j) = (Cj−1, sj , Cj , sj−1). Figure 5 illustrates the effect

of the operator A on the middle linear component of Figure 2(b). Clearly, A[L] is a linear
distortion with the same support as L. To see that A also preserves the marginal distribution
of L(U), note first that on the event {U ∈ [Cj−1, Cj)}, one has

L(U) = sj−1 + (U − Cj−1)
wj

pj
, A[L](U) = sj + (U − Cj−1)

w′
j

pj
,

where w′
j = s′j − s′j−1 = sj−1 − sj < 0. Thus, on U ∈ [Cj−1, Cj), each of the variates L(U)

and A[L](U) is distributed uniformly on [sj−1, sj); in fact, in this case, A[L](U) is the
antithetic version of L(U). It follows that both variates, L(U) and A[L](U), have the same
distribution.

4.2.2. Operator P (permutation of distortion components). Let (Cm−1, sm−1, Cm, sm)
and (Cn−1, sn−1, Cn, sn) be any two distinct linear components of L. The effect of the
operator P is to permute (interchange) the two linear components in the following way.
First interchange the indices of pm and pn, yielding a new discrete pdf {p′j}J

j=1, where
p′m = pn, p′n = pm, and p′j = pj for all other j; the new {p′j}J

j=1 induces a new cdf, {C ′
j}J

j=0,
where C ′

j =
∑j

i=1 p′i. And second, interchange similarly, sm−1 with sn−1 and sm with sn,
yielding new sequences {s′j}.

Figure 6 illustrates the effect of the operator P on the first and third linear components
of Figure 2(b). Clearly, P[L] is a linear distortion with the same support as L. To see
that P also preserves the marginal distribution of L(U), note that the probabilities P{U ∈
[C ′

j−1, C
′
j)} constitute a mere relabeling, relative to those in L, and that the conditional

probabilities of sampling a value of P[L](U) in an interval [sj−1, sj) are unchanged. It follows
that both variates, L(U) and P[L](U), have the same distribution.

4.2.3. Operator S (splitting of distortion components). Let (Cj−1, sj−1, Cj , sj) be a lin-
ear component of L. The effect of the operator S is to split (Cj−1, sj−1, Cj , sj) into two
contiguous linear components as follows. First, split the probability pj into a sum, pj =
p′j + p′′j , where p′j > 0 and p′′j > 0. Next, define C ′

j−1 ∈ [Cj−1, Cj), by C ′
j−1 = Cj−1 + p′j .

Now replace the original linear component, (Cj−1, sj−1, Cj , sj), by the two linear com-
ponents: (Cj−1, sj−1, C

′
j−1, sj) and (C ′

j−1, sj−1, Cj , sj). In effect, if we view {Cj}J
j=1 as a
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Figure 6. Example of operator P.

Figure 7. Example of operator S.

partition of the interval [0, 1), then the effect of S is to refine that partition by adding the
point C ′

j−1 = Cj−1 + p′j in the interval [Cj−1, Cj).
Figure 7 illustrates the effect of the operator S on the middle linear component of

Figure 2(b). Clearly, S[L] is a linear distortion with the same support as L. To see that S
also preserves the marginal distribution of L(U), note that

P{U ∈ [Cj−1, C
′
j−1) ∪ [C ′

j−1, Cj)} = p′j + p′′j = pj ,

and that conditional on either {U ∈ [Cj−1, C
′
j−1)} or {U ∈ [C ′

j−1, Cj)}, S[L](U) is uniform
on [sj−1, sj), whereas all other probabilities are unchanged. It follows that both L(U) and
S[L](U) have the same distribution.

4.2.4. Operator N (nominal splitting of distortion components). Let (Cj−1, sj−1, Cj , sj)
be a linear component of L. The effect of the operator N is to split (Cj−1, sj−1, Cj , sj)
into two contiguous linear components, but unlike the S operator, the split is only nom-
inal in the sense that L(U) and S[L](U) are identical distortions. Specifically, we again
split pj into a sum pj = p′j + p′′j as before, letting C ′

j−1 = Cj−1 + p′j as above. We further
define s′j−1 ∈ [sj−1, sj) by s′j−1 = sj−1 + (sj − sj−1)(p′j/pj). Now replace the original linear
component, (Cj−1, sj−1, Cj , sj), by the two linear components, (Cj−1, sj−1, C

′
j−1, s

′
j−1) and

(C ′
j−1, s

′
j−1, Cj , sj).

Figure 8 illustrates the effect of the operator N on the middle linear component of
Figure 2(b). Note that the two new linear components represent line segments that are
juxtaposed “seamlessly”, effectively rendering N an identity operator. However, the merit
of replacing a linear component by two equivalent ones is an added flexibility, since all the
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Figure 8. Example of operator N .

previous operators can still be applied to each of the new linear components, and therefore,
to subsets of (Cj−1, sj−1, Cj , sj).

5. TEMPORAL SHAPING OF TIME SERIES

In this section, we put all pieces together to propose a heuristic procedure for temporal
shaping of time series. Assuming that the cycle profile has already been normalized as per
Eq. (6), the temporal shaping procedure consists of two steps:

1. Profile shaping : In this step, we use a heuristic procedure (typically with human
interaction) that applies a sequence of distribution-invariant operators, defined in
Section 4.2, to the prescribed inverse histogram distortion, Ĥ−1

Y , with the goal of
constructing a distortion, D, which approximates the prescribed cycle profile. Recall
that such a distortion preserves the prescribed marginal histogram cdf, ĤY .

2. Autocorrelation approximation: In this step, we employ a search algorithm, which
uses the distortion D obtained in the previous step, and searches for innovation
and stitching parameters, which jointly define an ARM model that approximates
the prescribed autocorrelation function and simultaneously preserves the prescribed
marginal histogram cdf, ĤY .

5.1. Heuristic Procedure for Profile Shaping

Let C(L) denote the closure set of a piecewise-linear distortion L, obtained by applying
to L all possible sequences of the distribution-invariant operators A, P, S, and N . The
application of stitching transformations composed with such operators is also permissible.

Note that while distortion elements of a closure set give rise to foreground sequences
with the same marginal distribution as L(U), they are not necessarily monotone distortions.
The basic idea of the heuristic temporal shaping is to search a closure set for an appropriate
distortion.

Consider now the special case of an inverse histogram distortion, namely, L = Ĥ−1
Y . For

each cell (sj−1, sj , p̂j) in the underlying histogram, ĤY , there is a corresponding linear com-
ponent, (Ĉj−1, sj−1, Ĉj , sj) of Ĥ−1

Y . In this case, the heuristic temporal shaping procedure
is concerned with the closure set C(Ĥ−1

Y ). Specifically, assume that a cycle “profile” is pre-
scribed as a normalized curve over the domain [0, 1). The goal is to start with Ĥ−1

Y , which is a
non-decreasing piecewise-linear distortion, and proceed to apply to it distribution-invariant
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operators, so as to roughly fit the prescribed cycle profile. In effect, the heuristic search pro-
cedure searches along trajectories of linear distortions in the closure set C(Ĥ−1

Y ), starting
with the initial Ĥ−1

Y . That each distortion encountered preserves the cdf ĤY , is guaranteed
by the discussion in the previous sections. Ultimately, we seek a piecewise-linear distortion
D ∈ C(Ĥ−1

Y ), such that D(Un) approximates the cyclical structure of {Yn}. Recall that {Un}
is a positively autocorrelated process with the Uniform (0,1) marginal distribution, playing
the role of pseudo-time within sample path cycles.

From a visual point of view, the heuristic search activity amounts to “chopping up”
Ĥ−1

Y into linear components (possibly adding new ones or eliminating old ones), and then
reassembling the pieces into an acceptable fit of the prescribed profile. Figure 9 shows an
example of such fitting. The left-hand side graph depicts an inverse histogram distribution
(dashed curve) superimposed on some prescribed profile (solid curve). The right-hand side
graph depicts the same profile (solid curve) superimposed on the piecewise-linear distortion
(dashed curve) obtained as a result of a fitting session. To simplify notation, linear com-
ponents will be referred to through their domains: [Cj−1, Cj) will denote a generic linear
component in the left-hand side graph, while [C ′

j−1, C
′
j) will denote the same in the right-

hand side graph. With these notational conventions, the transformations applied in Figure 9
are as follows.

1. The linear component [C0, C1) was split into two pieces by an S operator. The
first piece, [C ′

0, C
′
1), stayed in place, while the second piece was rendered antithetic

(descending) by an A operator and then permuted by a P operator, ending up as
the rightmost linear component, [C ′

5, C
′
6).

2. The linear component [C1, C2) was first split by an S operator and both pieces were
permuted away from their position, ending up as linear components [C ′

1, C
′
2) and

[C ′
4, C

′
5]. The latter was rendered antithetic by an A operator.

3. The linear component [C2, C3) was manipulated similarly to the previous one, ending
up as linear components [C ′

2, C
′
3) and [C ′

3, C
′
4).

We point out that the fitting performed in Figure 9 is just one among many alternatives.
However, the common pattern of such fittings is apparent: the linear components of the
(monotone) inverse histogram distortion are split up by S operators and usually permuted
away from their current position by P operators to fit one ascending portion and one
descending portion of the prescribed cycle profile, the latter via A operators. If the profile
is not symmetric, in the sense that the cycle profile does not terminate at its initial point,
then N operators may be used in lieu of S operators to capture such asymmetries.

Figure 9. Example of shaping an inverse histogram to comport with a prescribed profile.
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5.2. Autocorrelation Approximation

Given the distortion D, obtained by shaping the profile using distribution-invariant opera-
tors, the next step is to search for innovation and stitching parameters that give rise to an
ARM model which approximates the prescribed autocorrelation function while preserving
the prescribed marginal histogram cdf, HY . Essentially, we seek an optimal pair of inno-
vation density and stitching parameter (f∗

V , ξ∗), such that the weighted sum of squared
differences between the empirical and modeled autocorrelations is minimized, that is,

(f∗
V , ξ∗) = argmin

(fV ,ξ)

{
T∑

τ=1

aτ [ρfV ,ξ(τ) − ρ̂Y (τ)]2
}

, (10)

where T is the maximal autocorrelation lag to be approximated, aτ (0 < aτ ≤ 1) is a weight
coefficient for the term corresponding to lag τ , and ρfV ,ξ(τ) is the model autocorrelation of
lag τ . To this end, we employ a variant of a heuristic search algorithm, called global search
local optimization (GSLO) (Jagerman and Melamed [11]; Jelenkovic and Melamed [12,13]),
adapted to basic ARM+ processes with uniform innovations of the form (8), to be reviewed
next.

The lag τ autocorrelation of an ARM+ process {Xn} is given by (Jelenkovic and
Melamed [13])

ρfV ,ξ(τ) =
2

σ2
X

∞∑
ν=1

Re[f̃τ
V (i2πν)]|D̃ξ(i2πν)|2, (11)

where 0 < σ2
X < ∞ is the common variance of {Xn}, f̃V is the Laplace transform of inno-

vation fV , and D̃ξ is the Laplace transform of distortion D composed with stitching
transformation Sξ. In particular, for a uniform innovation of the form (8), Proposition
1 in Jagerman and Melamed [9] has

Re
[
f̃τ

V (i2πν)
]

= cos(πν(R + L)τ)
(

sin(πν(R − L))
πν(R − L)

)τ

. (12)

Furthermore, for the piecewise-linear distortions of Section 5.1, Jagerman and Melamed [9],
(Proposition 4) has ∣∣∣D̃ξ(i2πν)

∣∣∣2 = a2
ξ,ν + b2

ξ,ν , (13)

where

aξ,ν =
J∑

j=1

sj [sin(2πνξCj) + sin(2πν(1 − ξ)Cj)]
2πν

−
J∑

j=1

sj−1[sin(2πνξCj−1) + sin(2πν(1 − ξ)Cj−1)]
2πν

+
J∑

j=1

wj

pj

cos(2πνξCj) − cos(2πνξCj−1)
ξ(2πν)2

+
J∑

j=1

wj

pj

cos(2πν(1 − ξ)Cj) − cos(2πν(1 − ξ)Cj−1)
(1 − ξ)(2πν)2

, (14)
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bξ,ν =
J∑

j=1

sj [cos(2πνξCj) − cos(2πν(1 − ξ)Cj)]
2πν

−
J∑

j=1

sj−1[cos(2πνξCj−1) − cos(2πν(1 − ξ)Cj−1)]
2πν

−
J∑

j=1

wj

pj

sin(2πνξCj) − sin(2πνξCj−1)
ξ(2πν)2

+
J∑

j=1

wj

pj

sin(2πν(1 − ξ)Cj) − sin(2πν(1 − ξ)Cj−1)
(1 − ξ)(2πν)2

. (15)

We mention that the results in Eqs. (14) and (15) were previously derived in Jagerman
and Melamed [9] for piecewise-linear and monotonically increasing distortions (cf. ibid.,
Eqs. (3.7) and (3.8)); however, they actually extend to any piecewise-linear distortions,
provided we admit negative-valued wj for each portion of D that decreases monotonically
over the associated interval [Cj−1, Cj). The derivation of Eqs. (14) and (15) is identical to
its counterpart in Jagerman and Melamed [9].

Next, substituting (12) and (13) into (11), we have in our case,

ρR,L,ξ(τ) =
2

σ2
X

∞∑
ν=1

cos (πν(R + L)τ)
(

sin (πν(R − L))
πν(R − L)

)τ

(a2
ξ,ν + b2

ξ,ν), (16)

where aξ,ν and bξ,ν are given by Eqs. (14) and (15), respectively. Partial derivatives of
ρR,L,ξ(τ) with respect to R, L, and ξ are computed from Eq. (16) (see Jelenkovic and
Melamed [13]), and will not be reproduced here.

In our case, we search for an optimal triple (R∗, L∗, ξ∗) in the following non-linear
optimization problem:

min
(R,L,ξ)

T∑
τ=1

aτ [ρR,L,ξ(τ) − ρ̂Y (τ)]2,

s.t. − 0.5 ≤ L < R < 0.5,

0 ≤ ξ ≤ 1.

To this end, we implement a variant of the GSLO algorithm, modified to take advantage of
the simpler structure of the abovementioned optimization problem. This algorithm consists
of three steps: it first discretizes the solution space by partitioning it into equal-size cubes;
then explores the neighborhood of each cube’s center by a Steepest Descent algorithm for a
locally optimal solution; and finally selects a near-optimal solution as the best of all locally
optimal solutions. More specifically, the proposed algorithm (to be referred to as Simplified
GSLO) unfolds as follows:

1. Divide the solution space into equal-size cubes with centers

(L,R, ξ) =
(
−0.5 +

2m + 1
2K

,−0.5 +
2n + 1

2K
,
2l + 1
2K

)
,

where K, m, n, and l are integers, such that 0 ≤ m < n ≤ K − 1, and 0 ≤ l ≤ K − 1.
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2. Starting from each of the center points above, use the Frank–Wolfe algorithm
(Bertsekas [1], p. 215) to solve the following non-linear optimization problem,

min
(R,L,ξ)

T∑
τ=1

aτ [ρR,L,ξ(τ) − ρ̂Y (τ)]2,

s.t. − 0.5 +
m

K
≤ L < −0.5 +

m + 1
K

,

− 0.5 +
n

K
≤ R < −0.5 +

n + 1
K

,

l

K
≤ ξ ≤ l + 1

K
.

3. Select the minimal solution from the set obtained in step 2.

5.3. Numerical Example

To test the performance of the proposed temporal shaping algorithm, we analyzed an empir-
ical time series {yn}, consisting of 1,000 equal-length cycles of 25 (random) observations for
a total of 25,000 observations. The initial portion of the {yn} time series and the associated
histogram pdf and cdf of the entire {yn} time series are shown in Figure 10.

A non-normalized cycle profile was constructed from the aforementioned empirical time
series by averaging all points in the same cycle position, and then normalized as per Eq. (6).
Figure 11(a) depicts the profile (solid curve) with the inverse histogram (dotted line) corre-
sponding to the cdf in Figure 10(c). We then shaped the inverse histogram of Figure 11(a)
to comport with that profile by applying heuristically the distribution-invariant operators
as described in Section 5.1, with the result shown in Figure 11(b).

Next, we set T = 10, aτ = 1 for all τ = 1, . . . , T and K = 20, and ran the Simplified
GSLO algorithm to find the optimal innovation and stitching parameter for two ARM
models, {X1

n} and {X2
n}, using respectively the distortion with the inverse histogram in

Figure 11(a) and the shaped inverse histogram in Figure 11(b). Finally, we generated 100
sample paths using each of the models, {X1

n} and {X2
n}.

Figure 12(a) compares the histogram pdf of {yn} (solid curve) to the histogram pdfs
selected randomly from the 100 sample paths generated by the ARM models {X1

n} and {X2
n}

(dashed and dotted curves, respectively). The agreement among those three histograms
confirms that both {X1

n} and {X2
n} preserve the distribution of the empirical time series,

{yn}. Figure 12(b) further depicts the initial portion of the corresponding three sample
paths. It shows that the sample path generated by the model {X2

n} using the shaped inverse
histogram (dotted curve) better matches the empirical time series {yn} (solid curve) and
its cyclical pattern than its {X1

n} counterpart (dashed curve).
Finally, we computed the autocorrelation functions of lag τ = 1, . . . , T , for {yn} and

the 100 sample paths generated by each of {X1
n} and {X2

n}. Figure 13(a) compares the
autocorrelation function of {yn} (solid line) to the average autocorrelations, averaged over
the respective 100 sample paths generated by {X1

n} (circles) and {X2
n} (squares). It shows

that both models approximate the empirical autocorrelations closely. Figure 13(b) further
shows the total autocorrelations discrepancy as the weighted sums of squared differences
between the empirical and modeled autocorrelations (

∑T
τ=1 aτ [ρ̂X(τ) − ρ̂Y (τ)]2) for each

sample path generated by {X1
n} and {X2

n}. It is observed that the model {X2
n} using the

shaped inverse histogram improves the approximation of autocorrelations, as compared to
the model {X1

n}. The improvement averages about 41%.
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Figure 10. Empirical statistics of the time series {yn}. (a) Initial portion of {yn}. (b) Histogram pdf of {yn}. (c) Corresponding cdf of
{yn}.
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(a) (b)

Figure 11. Shaping an inverse histogram to comport with the cycle profile of {yn}. (a)
Cycle profile and the inverse histogram to be shaped. (b) Cycle profile and the shaped
inverse histogram.

(a) (b)

Figure 12. Comparisons of histograms and sample paths of {Yn}, {X1
n}, and {X2

n}.
(a) Comparison of histogram pdfs. (b) Comparison of sample paths.

(a) (b)

Figure 13. Comparisons of autocorrelations. (a) Comparison of the autocorrelation
functions. (b) Comparison of total autocorrelations discrepancies.

The numerical examples demonstrate that the proposed temporal shaping method is
capable of generating sample paths that match the empirical marginal distribution and
closely approximate the empirical autocorrelation function.
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6. CONCLUSION

We have introduced the concept of temporal shaping in the context of Monte Carlo simula-
tion modeling of cyclical stationary time series, utilizing the inversion method. The goal of
temporal shaping is to give rise to simulated sample paths that “conform” to a prescribed
cycle profile, while retaining the empirical distribution. Such “conformity” also tends to
improve the fit of the model autocorrelation function to its empirical counterpart.

Finally, we observe that since the heuristic shaping activity is inherently visual and
interactive in nature, it is reasonable to suggest that it would be effectively carried out with
the aid of software. It may also be possible to use expert-system technology to perform
automated heuristic searches to assist a human worker in manual searches.
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