
Robotica (2023), 41, pp. 1931–1946
doi:10.1017/S0263574723000127

RESEARCH ARTICLE

Potential field-based dual heuristic programming for
path-following and obstacle avoidance of wheeled mobile
robots
Yaoqian Peng, Xinglong Zhang∗ , Haibin Xie∗ and Xin Xu

College of Intelligence Science and Technology, National University of Defense Technology, Changsha, 410073, China
∗Corresponding authors. E-mail: zhangxinglong18@nudt.edu.cn; xhb2575_sx@sina.com

Received: 28 June 2022; Revised: 8 September 2022; Accepted: 18 October 2022; First published online: 27 April 2023

Keywords: dual heuristic programming, wheeled mobile robots, path following, obstacle avoidance, potential field

Abstract
Path-following control of wheeled mobile robots has been a crucial research topic in robotic control theory and
applications. In path-following control with obstacles, the path-following control and collision avoidance goals
might be conflicting, making it challenging to obtain near-optimal solutions for path-following control and obstacle
avoidance with low tracking error and input energy consumption. To address this problem, we propose a potential
field-based dual heuristic programming (P-DHP) algorithm with an actor–critic (AC) structure for path-following
control of mobile robots with obstacle avoidance. In the proposed P-DHP, the path-following control and collision
avoidance problems are decoupled into two ones to resolve the control conflict. Firstly, a neural network-based AC
is constructed to approximate the near-optimal path-following control policy in a no-obstacle environment. Then,
with the trained path-following control policy fixed, a potential field-based control policy structure is constructed
by another AC network to generate opposite control forces as the robot moves toward the obstacle, which can guar-
antee the robot’s control safety and reduce the tracking error and input energy consumption in obstacle avoidance.
The simulated and experimental results show that P-DHP can realize near-optimal path-following control with the
satisfaction of safety constraints and outperforms state-of-the-art approaches in control performance.

1. Introduction
In recent years, mobile robots have been continuously expanded to industries, services, transportation,
and other fields [1–4]. The application of mobile robots in complex, cluttered environments requires
robots to avoid obstacles safely while following their desired path. Thus, the path-following and obstacle
avoidance of wheeled mobile robots have been an active research direction and have been widely studied
(see refs. [5–7]).

Among the recent works, the path-following and obstacle avoidance of mobile robots in complex
environments can be achieved via two general methods [8]: reactive methods [9] and motion planning
methods [10].

Motion planning methods, such as model predictive control (MPC) [10, 11], obtain a smooth
collision-free path according to the receding horizon principle, which solves the optimal path-following
control problem with collision avoidance. However, the classic MPC with numerical solvers will have
a high computational cost, especially when using nonlinear dynamical models. Despite the fact that
the computational efficiency can be enhanced by the improved MPC [12] with efficient solvers, this
approach is still restrictive in environments with a large number of obstacles of different sizes. The
reactive algorithms have advantages in the above scenarios. As a reactive method, the potential field-
based (PF) approach [9], which treats each obstacle as a repulsive point to keep the robot away from
it, is widely implemented in mobile robots. The PF methods for path-following and obstacle avoidance

C© The Author(s), 2023. Published by Cambridge University Press.

https://doi.org/10.1017/S0263574723000127 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000127
https://orcid.org/0000-0002-0587-2487
https://doi.org/10.1017/S0263574723000127

1932 Yaoqian Peng et al.

are addressed in refs. [8, 13, 14]. This approach, however, does not take into account the high-level
objectives, such as energy consumption in obstacle avoidance. Moreover, its learning and optimization
capabilities in complex environments need to be strengthened.

As a branch of machine learning, reinforcement learning (RL) and approximate dynamic program-
ming (ADP) are advanced tools to solve nonlinear optimal control problems and have aroused the interest
of researchers nowadays [15, 16]. Many works have been developed for path-following control with
obstacle avoidance of wheeled mobile robots [17–19]. The integrated path-following control and obsta-
cle avoidance of mobile robots can be transformed into a learning-based optimal control problem with
constraints.

Related research works in the safe RL setting focus on optimal control with state constraints. These
approaches transform the constrained optimal control problem into an unconstrained one, such as the
reward/cost shaping-based RL approach, where the cost function is incorporated with safety guarantee
terms (such as the Lyapunov functions [20] or barrier functions [18, 21, 22]) in the training process.
By embedding costs of safety constraints into the reward function, a barrier-based online learning ADP
algorithm was addressed in ref. [23] for optimal control problems with the safe guarantee. In ref. [24], a
barrier function-based system transformation method was presented, transforming the original problem
into an unconstrained one with virtual state variables. With the idea of constraint system transforma-
tion, a constrained cross-entropy-based approach was developed in ref. [22] for a safe RL problem with
constraints defined as the expected cost. Some other exciting works for safety-critical systems may refer
to [25], with the unification of control barrier functions and control Lyapunov functions for automotive
applications. In ref. [18], a model-based ADP method was proposed for motion planning with constraints
of moving avoidance regions.

Noteworthy, these techniques may not deal with conflicting control objectives as the optimal con-
trol objective and constraint satisfaction are contradictory. For example, in path-following control of
wheeled mobile robots with obstacle avoidance, ensuring both optimal tracking control and obstacle
avoidance is a difficult task since the convergence of the actor–critic (AC) might not be guaranteed
by the reward/cost shaping-based RL approach due to conflicting learning objectives. In addition, the
energy loss and control costs are valuable to consider in the obstacle avoidance process.

In this paper, to decouple the impact of path-following control and obstacle avoidance on mobile
robots, we propose a potential field-based dual heuristic programming (P-DHP) algorithm with two
progressive AC structures to achieve a trade-off between control cost and safe performance. To decouple
the conflicting learning goals, the training process was decoupled into two parts in the proposed P-DHP.
Firstly, a path-following control policy was learned by value iteration with an initial AC based on the
standard neural network. Then, with the neural network weights fixed, the PF term is used to construct
another AC structure to learn a safe control policy with collision avoidance capability. Moreover, another
cost is designed in the second part of the learning process. This cost is minimized to reduce the energy
loss and state errors of the robot with obstacle avoidance.

Different from ref. [19], in our approach, the control policy’s learning mode for path-following con-
trol and obstacle avoidance is asynchronous to guarantee convergence in the case of conflicting learning
objectives. Besides, this paper also contributes to the optimization of reducing the energy loss and state
errors in the obstacle avoidance process.

The remainder of the paper is constructed as follows. Section II formulates the tracking error model
and problem formulation. In Section III, we present the proposed P-DHP approach for mobile robots,
while the simulated and experimental results are demonstrated in Section IV.

Notation
For a vector h ∈Rm, ‖h‖2 is defined as the Eulidean norm, and ‖h‖2

R is denoted as h�Rh. For a function
φ(ν(k)) with an input variable ν(k), we denote φ(k) to represent φ(ν(k)) for short.

https://doi.org/10.1017/S0263574723000127 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000127

Robotica 1933

Robot

Virtual robot

o

Fig. 1. Tracking error model of the wheeled robot.

2. Tracking error model and problem formulation
2.1. Tracking error model
The wheeled mobile robot is shown in Fig. 1, and it is assumed that its particle and center point are
coincident. The model is described as

[ẋ, ẏ, θ̇ , v̇, ω̇]� = [v cos θ , v sin θ , ω, av, aω]�, (1)

where q= (x, y) is the position of the robot in the global coordinate frame and θ is the heading angle
related to the robot’s kinematic model. v and ω denote the linear velocity and angular velocity of the
robot, respectively. av and aω are the accelerations of v and ω, respectively, related to the dynamic model
of the robot. The control input is u= [av, aω]�, and the state of the robot is defined as p= [x, y, θ , v, ω]�.

Suppose a virtual robot guides the robot to move forward, and its state is described as pr =
[xr, yr, θr, vr, ωr]�, satisfying:

[ẋr, ẏr, θ̇r, v̇r, ω̇r]
� = [vr cos θr, vr sin θr, ωr, av,r, aω,r]

�, (2)

where ur = [av,r, aw,r]� is the control input of the virtual leader robot.
The tracking error model of the robot can be written as

e= T(pr − p), (3)

where T is the coordinate transformation matrix from the global coordinate frame XOY to the robot’s
local coordinate frame xoy, which is

T =
⎡
⎢⎣

cos θ sin θ 0

− sin θ cos θ 0

0 0 I3

⎤
⎥⎦ . (4)

Then, we can get the tracking error model in derivative form by differentiating both sides of (3),
which is

ė= T(ṗr − ṗ)+ Ṫ(pr − p). (5)

According to Eqs. (1)–(2) and (5), the discrete-time tracking error model according to the forward-
Euler discretization can be written as

https://doi.org/10.1017/S0263574723000127 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000127

1934 Yaoqian Peng et al.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ex (k+ 1)= ex (k)+�h
(
ω (k) ey (k)− v (k)+ vr (k) cos eθ (k))

ey (k+ 1)= ey (k)+�h (−ω (k) ex (k)+ vr (k) sin eθ (k))

eθ (k+ 1)= eθ (k)+�h (ωr (k)−ω (k))

ev (k+ 1)= ev (k)+�h
(
av,r (k)− av (k)

)
eω (k+ 1)= eω (k)+�h

(
aω,r (k)− aω (k)

)
,

(6)

where e= [ex, ey, eθ , ev, eω]�, v(k)= vr(k)− ev(k), ω(k)=ωr(k)− eω(k), k is the discrete-time index, and
�h is the adopted sampling interval.

The nonlinear tracking error model can be abbreviated as

e(k+ 1)= f (e(k))+ g(u(k)), (7)

where f is the error transition function, and g is the input mapping function.

2.2. Problem formulation
We define the performance index of path-following control as

J(e(k))=
∑∞

k=0
γ kr(e(k), u(k)), (8)

where

r(e(k), u(k))= ‖e(k)‖2
Q + ‖u(k)− ur(k)‖2

R, (9)

and γ ∈ (0, 1] is the discounting factor, Q� =Q ∈R5×5, R� = R ∈R2×2, Q� 0, R� 0.
The cost J(e(k)) is minimized subject to the following constraints q(k) ∈X , ∀k ∈ [1,∞], where

X = {q|‖q− qo‖2 > r+ ro}, (10)

qo, o ∈Nn
1, is the position of the obstacle o. r and ro are the radii of the smallest approximate circles

surrounding the robot and obstacle o, o ∈Nn
1, respectively.

Below, we give the definition of the potential field function and the assumption on the detection rules
for the robot.

Definition 1 (Potential field function):
For the robot’s position q and the obstacle’s position qo ∈R2, o ∈Nn

1, the potential field function Bo

is defined as

Bo(q)=

⎧⎪⎨
⎪⎩

1

2
κo

(
1

‖q− qo‖2

− 1

ro + r

)2

, ‖q− qo‖2 ≤ ro + r

0, ‖q− qo‖2 > ro + r,
(11)

where κo is the relaxation factor of the potential field. ‖q− qo‖2, o ∈Nn
1, represents the distance between

the robot and the obstacle o. The depiction of the above parameters is shown in Fig. 2.

Assumption 1 (Detection rules): The robot can detect the position and angle of obstacles in a sector area
(with the robot as the center and a radius of rd).

3. P-DHP for path-following control with collision avoidance
3.1. Design of P-DHP
To solve the path-following control problem with safety constraints, we propose a control policy that
has two control parts, which is described as

u(k)= ūi1 (e(k))+
∑n

o=1
ηo(k)∇Bo(k), (12)

https://doi.org/10.1017/S0263574723000127 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000127

Robotica 1935

Perceptual area

Robot Obstacle

Fig. 2. Depiction of robot’s parameters in obstacle avoidance.

where ūi1 (e(k)) is a control policy that corresponds to a fixed weight matrix without the obstacles’ con-
straints. ηo ∈R2×2, o ∈Nn

1, are variables to be optimized for obstacles of different sizes and positions
(see Section 3.2). ∇Bo = ∂Bo/∂q.

Remark 1: As the robot approaches the obstacle, the input item ∇Bo could generate a repulsive force
to drive q(k) to satisfy the constraint (10). Meanwhile, the parameter ηo is continuously optimized to
ensure safety in path tracking. In the case that the input item ∇Bo is identically equal to 0, the policy
ū(k) is to approach the path-following control policy under no obstacle.

To decouple the conflicting learning objectives of path-following control and obstacle avoidance, the
learning process is divided into two parts, where ū and ηo in (12) are learned asynchronously by value
iteration to guarantee convergence.

Then, the performance index of path-following control is redefined as

J1(ē(k))=
∑∞

k=0
γ kr1(ē(k), ū(k)), (13)

where r1(ē(k), ū(k))= ‖ē(k)‖2
Q1
+ ‖ū(k)− ur(k)‖2

R1
, Q�1 =Q1 ∈R5×5, R�1 = R1 ∈R2×2, Q1 � 0, R1 � 0.

ē(k+ 1) is the state of the robot that satisfies ē(k+ 1)= f (ē(k))+ g(ū(k)).
Define J∗1 as the optimal value function of J1 under the optimal control policy ū∗. According to the

Hamilton–Jacobi–Bellman (HJB) equation, one has

J∗1 (k)=min
ū(k)

r1(ē(k), ū(k))+ γ J∗1 (k+ 1), (14)

and
ū∗(k)= argmin

ū(k)
r1(ē(k), ū(k))+ γ J∗1 (k+ 1). (15)

Define i as the number of iterations. Firstly, the control policy ū(k) in the unconstrained scenario
is learned within iterations i= 1, . . . , i1, and the update rule in each iteration of J1(k) and ū(k) can be
obtained as

Ji+1
1 (k)= r1(ē(k), ūi(k))+ γ Ji

1(k+ 1), (16)

ūi+1(k)= argmin
ū(k)

r1(ē(k), ū(k))+ γ Ji+1
1 (k+ 1), (17)

where i1 is the iterative value as Ji
1(k) converges (see Algorithm 1 for details).

With the fixed control policy ūi1 (k), the variable ηo in the second item of (12) is updated within itera-
tions i= i1, . . . , i2 to minimize the reconstructed cost function J2(k) for collision avoidance constraints,
which is

https://doi.org/10.1017/S0263574723000127 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000127

1936 Yaoqian Peng et al.

J2(k)=
n∑

o=1

J2,o(k), (18)

J2,o(k)=
∞∑

k=0

γ kr2(Bo(k), e(k), u(k)), (19)

where r2(Bo(k), e(k), u(k))= ‖e(k)− ē(k)‖2
Q2
+ ‖u(k)− ūi1 (k)‖2

R2
+μBo(k), Q�2 =Q2 ∈R5×5, R�2 = R2 ∈

R
2×2, Q2 � 0, R2 � 0, and μ > 0 is a tuning parameter.

Remark 2: The control objective is to minimize the cost J2, which is equivalent to reducing the tracking
error and input energy consumption while satisfying the obstacle avoidance constraint. The trade-off
among obstacle avoidance, reduced tracking error and input energy consumption can be adjusted by the
value of μ and the weight of matrix Q2 and R2, respectively.

Let −→η be the sequence of η1, . . . , ηn. Then J2 and −→η can be updated in each iteration i= i1, . . . , i2

by

Ji+1
2 (k)=

n∑
o=1

r2(Bo(k), e(k), ui(k))+ γ Ji
2(k+ 1), (20)

−→η i+1(k)= argmin
−→η (k)

n∑
o=1

r2(Bo(k), e(k), u(k))+ γ Ji+1
2 (k+ 1). (21)

The main steps of the proposed P-DHP can be seen in Algorithm 1.
In the following, we prove the convergence of our proposed P-DHP.

Theorem 1 (Convergence of (16) and (17)): If the initial condition satisfies J0
1 (k)≥ r1(ē(k), ū0(k))+

γ J0
1 (k+ 1), then it follows that
1) Ji+1

1 (k)≤ Ji
1(k).

2) limi→∞Ji
1(k)= J∗1 (k).

Proof. For the proof details please refer to refs. [26] and [19].

Theorem 2 (Convergence of (20) and (21)) [19]: If Ji1
2 (k)≥ ∑n

o=1 r2(Bo(k), e(k), ui1 (k))+ γ Ji1
2 (k) and

ui1 (k)= ūi1 (k)+∑n
o=1 ηi1

o (k)∇Bo(k) is a safe control policy to restrain qi1 (k) ∈X , then
1) Ji+1

2 (k)≤ Ji
2(k).

2) ui(k)= ūi1 (k)+∑n
o=1 ηi

o(k)∇Bo(k), i≥ i1, is a safe control policy.

Proof. 1): The proof is similar to that in Theorem 1, which is to replace Ji
1(k) with Ji

2(k).
2): As ui1 (k) is a safe control policy, one has Ji1

2 (k)≤ Jf
2, where Jf

2 is the threshold of the safe value
function. According to Theorem 1, for i≥ i1, it satisfies Ji

2(k)≤ Ji1
2 (k)≤ Jf

2, i.e., qi(k) ∈X . Therefore,
ui(k), i≥ i1, is a safe control policy.

3.2. AC learning for P-DHP
In this section, the AC learning structures (see Fig. 3) are introduced to implement Algorithm 1. The
AC learning structures consist of two decoupling parts. The actor-1–critic-1 network corresponds to the
iteration of J1(k) and ū(k), and the actor-2–critic-2 network corresponds to the iteration of J2(k) and−→η ,
respectively. The AC network weights are updated in an incremental learning mode.

The critic-1 network is constructed as

∇ Ĵ1(k)=W�
c (k)hc(ē(k)), (22)

where the costate ∇ Ĵ1(k)= ∂ Ĵ1(k)/∂ ē(k), Wc ∈R5×5 is the weighting matrix, and hc is the activation
function.

https://doi.org/10.1017/S0263574723000127 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000127

Robotica 1937

Pseudocode of P-DHP.

Algorithm 1. Pseudocode of P-DHP.
Require: ε1 > 0, ε2 > 0, i= 0.

...
Learn ū:

1: Randomly initialize the control input ū0(1).
2: for k= 1, 2, . . . do
3: repeat
4: Generate the control input ūi(k).
5: Compute ē(k+ 1) with ūi(k) via (6).
6: Compute the reward r1(ē(k), ūi(k)).
7: One step policy evaluation:
8: Ji+1

1 (k)= r1(ē(k), ūi(k))+ γ Ji
1(k+ 1)

9: Control policy update:
10: ūi+1(k)= argmin

ū(k)
r1(ē(k), ū(k))+ γ Ji+1

1 (k+ 1)

11: i← i+ 1
12: until |Ji−1

1 (k)− Ji
1(k)| ≤ ε1

13: i1 = i
14: end for

...
Learn u:

13: Randomly initialize the sequence −→η i1 (1).
14: for k= 1, 2, . . . do
15: repeat
16: Generate the control input ui(k).
17: Compute e(k+ 1) with ui(k) via (6).
18: Compute the reward r2(Bo(k), e(k), ui(k)).
19: One step policy evaluation:

Ji+1
2 (k)=∑n

o=1 r2(Bo(k), e(k), ui(k))+ γ Ji
2(k+ 1)

20: Control policy update:−→η i+1(k)= argmin
−→η (k)

∑n
o=1 r2(Bo(k), e(k), u(k))+ γ Ji+1

2 (k+ 1)

ui+1(k)= ūi1 (k)+∑n
o=1 ηi+1

o (k)∇Bo(k) � ūi1 is a weight fixed control policy’
21: i← i+ 1
22: until |Ji−1

2 (k)− Ji
2(k)| ≤ ε2

23: i2 = i
24: if Bo(k− 1) �Bo(k) then
25: Set ∇Bo(k)= 0.
26: end if
27: end for

Define∇J∗1 = ∂J∗1/∂ ē. To minimize the bias between∇ Ĵ1 and∇J∗1 , we designed a target to be followed
by ∇ Ĵ1, i.e.,

∇Jd
1 (k)= 2Q1ē(k)+ γ∇f (k)�∇ Ĵ1(k+ 1), (23)

where ∇f = ∂f /∂ ē.
Let the quadratic approximation error of the critic-1 network be defined as Ec(k)= ||∇ Ĵ1(k)−

∇Jd
1 (k)||22. The goal of the critic-1 network is to minimize the distance between ∇ Ĵ1(k) and ∇Jd

1 (k) by

https://doi.org/10.1017/S0263574723000127 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000127

1938 Yaoqian Peng et al.

Actor1 Actor2

Critic1 Critic1

Actor1

Model

Critic2 Critic2

Actor2

Model

Learned policy

Tracking

error model

Learned weight

Actor1

Critic1

Inertial navigation Differential-drive robot

Fig. 3. The structure of the actor–critic learning algorithm.

updating weights. At each time instant k, the update rule of Wc is

Wc(k+ 1)=Wc(k)− αc

∂Ec(k)

∂Wc(k)
, (24)

where αc is the learning rate of Wc.
Then we design the actor-1 network for the robot, which is

ˆ̄u(k)=W�
a (k)ha(ē(k)), (25)

where the Wa ∈R5×2 is the weighting matrix, and ha is the activation function.
In view of (17), we define the ūd(k) as the desired value of ˆ̄u(k), which is expressed as

ūd(k)=−1

2
γ R1

−1∇g(k)�∇ Ĵ1(k+ 1)+ ur(k), (26)

where ∇g= ∂g/∂ ū, and ∇ Ĵ1 is the output of the critic-1 network.
The quadratic approximation error of actor-1 network can be defined as Ea(k)= ||ˆ̄u(k)− ūd(k)||22, and

the update rule of Wa is

Wa(k+ 1)=Wa(k)− αa

∂Ea(k)

∂Wa(k)
, (27)

where αa is the learning rate of Wa. Note that the learning process (27) is performed in i1 iterations. We
define the converged matrix Wa as Wa and the learned control policy ˆ̄u as ˆ̄u, respectively.

Suppose that the potential fields of obstacles do not overlap. In the following design, we decompose
the actor-2–critic-2 network into n subnetworks to learn the variable ηo, o ∈Nn

1, in (12) respectively,
which corresponds to obstacles o, o ∈Nn

1, of different sizes and positions.
The sub-critic-2 network for each obstacle o is given as

∇ Ĵ2,o(k)=μcWc
�hc(e(k))+ ρo(k)∇Bo(k), (28)

where ρo ∈R2×2, and ∇ Ĵ2,o = ∂ Ĵ2,o/∂e. Wc is the learned matrix of Wc, and μc > 0 is a tuning parameter.
The desired value of ∇ Ĵ2,o i.e., ∇Jd

2,o is defined as

∇ Ĵd
2,o(k)= 2Q2(e(k)− ē(k))+μ

(
∂q(k)

∂e(k)

)�
∇Bo(k)+ γ∇f (k)�∇ Ĵ2,o(k+ 1). (29)

where ∇f = ∂f /∂e.
https://doi.org/10.1017/S0263574723000127 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000127

Robotica 1939

Denote Ec,o(k)= ||∇ Ĵ2,o(k)−∇Jd
2,o(k)||22 as the quadratic approximation error of the sub-critic-2

network. The update rule of ρo can be obtained as

ρo(k+ 1)= ρo(k)− βc

∂Ec,o(k)

∂ρo(k)
, (30)

where βc is the learning rate of ρo, o ∈Nn
1.

In view of (12), the sub-actor-2 network for each obstacle o is designed with the following form:
ûo(k)=W�

a ha(e(k))+ ηo(k)∇Bo(k), (31)
where ûo(k) is the control policy for the robot to avoid the obstacle o, which is equal to û(k) in the case
of only one obstacle o to be avoided.

Define εo = 2R2(ûo − ˆ̄u). Then the desired value of εo(k) is redefined as
εd

o(k)=−γ∇g(k)�∇ Ĵ2,o(k+ 1). (32)
where ∇g= ∂g/∂u.

In the same way, the quadratic approximation error of the sub-actor-2 network and the update rule of
ηo are given as

Ea,o(k)= ||εo(k)− εd
o(k)||22, (33)

ηo(k+ 1)= ηo(k)− βa

∂Ea,o(k)

∂ηo(k)
, (34)

where βa is the learning rate of ηo, o ∈Nn
1.

Given that all variables ηo, o ∈Nn
1, have been trained until converging, the overall control policy to

be deployed to the robot is

û(k)=W�
a ha(e(k))+

∑n

o=1
ηo(k)∇Bo(k). (35)

4. Simulation and experimental results
We first test our algorithm by numerical simulation in a MATLAB environment and deploy the control
policy on a real-world differential-drive wheeled robot platform. Suppose the robot is equipped with
sensors that can measure the obstacles’ approximate size, relative distance, and angle in the simulation
and experiment.

4.1. Simulation experiments
4.1.1. Parameter settings and training process
In the simulation, a relaxed potential function is defined and used as follows to guarantee the smoothness
in the control process, i.e.,

Br
o(q)=

⎧⎨
⎩
Bo(q), do ≥ δo

σo(q), do < δo,
(36)

where do = ‖q− qo‖2 and 0 < δo < do is an adjustable relaxing factor. σo(q) is a derivative and monotonic
function, where σo(q)= 1

2
σ1(do − δo)2 + σ2(do − δo)+ σ3, σ1 =∇2

do
Bo(q)|do=δo , σ2 =∇doBo(q)|do=δo , σ3 =

Bo(q)|do=δo .
Also, the perceived radius values of obstacles are properly expanded to construct ∇B̄o(q), which

replaces ∇Bo(q) in (12) to ensure control safety. The reconstructed B̄o(q) is defined as

B̄o(q)=

⎧⎪⎨
⎪⎩

1

2
κ̄o

(
1

do

− 1

rd

)2

, do ≤ rd

0, do > rd,

(37)

https://doi.org/10.1017/S0263574723000127 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000127

1940 Yaoqian Peng et al.

Fig. 4. Variations of Ji
r,1 and Ji

r,2 in the learning process.

Fig. 5. Iteration of robot’s trajectories in a single-obstacle scenario based on P-DHP algorithm. The
radii of the robot and obstacle are r= 1 m and ro = 1 m, respectively.

where rd indicates the maximum distance that the robot can detect the obstacles, and the definitions
of relevant parameters can be seen in Fig. 2. The parameters satisfy κo < κ̄o and ro + r < rd. Similar to
Br

o(q) in (36), B̄o(q) is deflated into B̄r
o(q) by δ̄o, 0 < δ̄o < rd.

In the training process, the discounting factor was γ = 0.95. The penalty matrices were set as Q1 =
I5, R1 = 0.01I2, Q2 = 0.001I5, R2 = 0.001I2, μ= 1, μc = 0.001, αa = 0.2, αc = 0.4, βa = 0.4, βc = 0.4,
δo = 1.5, δ̄o = 5, κo = 5.5, κ̄o = 600, rd = 6, and �h= 0.05 s. In the learning process, the weights were
initialized with uniformly distributed random values. The simulations were implemented in the Matlab
2019b environment on a laptop with an AMD Ryzen 7 4800H CPU.

Firstly, we tested our algorithm in a straight-line path scenario with one obstacle in the center of
the road. The recorded performance costs were defined as Ji

r,1 =
∑K1

k=1 Ji
1(k) and Ji

r,2 =
∑K2

k=1 Ji
2(k) with

K1 = 1000 and K2 = 1000 in each training iteration. The variation results of Ji
r,1 and Ji

r,2 in Fig. 4 show that
both the performance costs decrease with iteration increases and converge in 30 iterations. Moreover,
the robot’s trajectories in the learning process and the actor weights of the robot in a single-obstacle
scenario are displayed in Figs. 5 and 6. The results illustrate that the robot gradually moves away from
the obstacle by continuous iterative learning until the robot’s trajectory is circumscribed by the edge of
the obstacle’s potential field.

https://doi.org/10.1017/S0263574723000127 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000127

Robotica 1941

Fig. 6. Actor-2 weights of robot with the increase of iteration, where ηo(i, j) refers to the element in the
i-th row and j-th column of matrix ηo, and o= 1.

Table I. Comparative results of P-DHP and CS-based RL in 100 tests.

Learning success rate
Methods Actor learning rate (number of success/total number)
Ours βa = 0.05 100% (100/100)
CS-based RL αa = 0.05 100% (100/100)
Ours βa = 0.1 100% (100/100)
CS-based RL αa = 0.1 98% (98/100)
Ours βa = 0.2 100% (100/100)
CS-based RL αa = 0.2 95% (95/100)
Ours βa = 0.4 100% (100/100)
CS-based RL αa = 0.4 90% (90/100)

4.1.2. Comparison results with state-of-the-art approaches
In this subsection, we compared our approach with the reward/cost shaping-based RL approach (CS-
based RL) [27], the MPC using a disjunctive chance constraint (MPC-dc) [28], and the MPC using a
linearized chance constraint (MPC-lc) [29]. Please refer to Fig. 9 for the adopted reference paths in the
simulation tests.

In the CS-based RL approach, the cost function was constructed as r= ‖e(k)‖2
Q1
+ ‖u(k)− ur(k)‖2

R1
+

μ∇Bo(k), and the parameters of ∇Bo were fine-tuned. For a fair comparison, the same DHP-based AC
learning structure(actor-1-critic-1) was used in CS-based RL. The comparative results in 100 tests with
different learning rates are illustrated in Table I and Fig. 7, which show that our approach outperforms
the CS-based RL approach in the success rate of the learning process. Although the success rate between
ours and CS-based RL is similar as the learning rate is set small, as shown in Fig. 8, the CS-based RL
approach has a probability of failure to avoid obstacles due to the lack of corrective terms ∇Bo in the
control policy. As the learning rate increases, the learning failure rate of the CS-based RL approach
also increases and has a longer obstacle avoidance distance with more energy loss, whereas our method
possesses stable control performance for different learning rates. This illustrates, in part, that only shap-
ing the cost function may not be sufficient to learn a convergent control policy efficiently via a standard
AC learning algorithm. To solve this problem, our P-DHP approach are proposed to resolve the conflict
between the path-following control and obstacle avoidance goals in the learning process.

The MPC-dc [28] and MPC-lc [29] algorithms were implemented by the CasADi toolbox with an
Ipopt solver [30]. The stage costs in MPC-dc and MPC-lc were designed the same as (9) in our approach.
The performance indicator Je was defined as Je = 1/K̄

∑
k∈K ‖e(k)‖2, where K is the time interval in

https://doi.org/10.1017/S0263574723000127 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000127

1942 Yaoqian Peng et al.

Obstacle avoidance

failure

Fig. 7. Simulation results of our approach and the CS-based RL [27] with vr = 1 m/s, r= 1.3 m,
ro = 0.7 m or ro = 1 m. The CS-based RL method has a certain probability of learning failure, see Table I
for details.

Safe bound

Fig. 8. Statistics on the closest distance from the robot to the obstacle in 100 repetitive tests. The
comparisons were made between P-DHP and the CS-based RL [27] in the single-obstacle scenario
(shown in Fig. 5). The safe bound is represented in red, and the outliers are drawn as blue circles.

obstacle avoidance, and K̄ is the length of K. The comparative study was carried out under the sce-
nario with three different sizes of obstacles, where the side lengths of the bounding boxes were set as
2.3/
√

2 m, 2/
√

2 m, and 2.6/
√

2 m. The prediction horizon was set as N = 30. For the details of the
simulation parameters, please refer to ref. [28].

The comparative simulation results are illustrated in Fig. 9 and Tables II and III. The results show
that our approach outperforms the fixed-parameters MPC-lc and MPC-dc with smaller cost values and
shorter path length in obstacle avoidance, demonstrating that our approach has better control perfor-
mance at different reference velocities. This is due to the learning optimization mechanism and policy
design of our algorithm. In addition, our approach has advantages in computational efficiency (see
Table III).

4.2. Real-world experiments
We also tested our algorithm on the experimental platform of a real-world differential-drive wheeled
robot. As shown in Fig. 10, the robot was controlled by a laptop equipped with the Ubuntu operating
system, and the state of the robot and the positions of obstacles were obtained by mounted satellite
inertial. In the experiment, we deployed the offline training weights from the simulation to generate
control policy u= [av, aω]� to drive the underlying system of the robot, and the sampling interval was
�h= 0.1 s.

https://doi.org/10.1017/S0263574723000127 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000127

Robotica 1943

Table II. Numerical comparison of P-DHP, MPC-dc and MPC-lc.

Velocity (m/s) Methods Path length (m) Je (in coll. avoid.)
vr = 1 m/s Ours 72.739 1.091

MPC-dc [28] 74.795 1.277
MPC-lc [29] 76.766 1.543

vr = 1.3 m/s Ours 72.793 1.169
MPC-dc 74.494 1.296
MPC-lc 75.892 1.593

vr = 1.6 m/s Ours 73.026 1.311
MPC-dc 75.823 1.506
MPC-lc 76.133 1.793

Table III. Computational time comparison (vr = 1 m/s).

Ours
Methods Path foll. Coll. avoid. Total MPC-dc [28] MPC-lc [29]
One-step average computational
time (ms)

1.22 1.59 2.81 191.2 272.9

Fig. 9. Simulation results of our approach, MPC-lc [29] and MPC-dc [28] with vr = 1.6 m/s: the filled
blue circular area represents the obstacles and the light blue dotted line indicates the influence range
of the obstacle potential field. The simulation scene contains three sizes of obstacles, corresponding to
ro = 0.7 m, ro = 1 m and ro = 1.3 m respectively. The radius of the robot is r= 1.3 m.

https://doi.org/10.1017/S0263574723000127 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000127

1944 Yaoqian Peng et al.

Obstacle 1

Obstacle 1

Obstacle 2Obstacle 3

Laptop

Inertial
navigation

Fig. 10. Experimental platform of the differential-drive wheeled robot.

Fig. 11. Experiment results of robot’s path aerial view in a real-world scenario.

The real-world experimental results are shown in Figs. 11 and 12, which illustrate that the robots can
follow the desired path from an initial state, meanwhile avoiding all encountered obstacles on the path
and recovering path following after collision avoidance. Moreover, the above-reported results show that
our approach can resolve the weight divergence problem caused by the conflict between path following
and obstacle avoidance.

https://doi.org/10.1017/S0263574723000127 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000127

Robotica 1945

Obstacle avoidance

Fig. 12. Experiment results of robot’s state errors in real-world scenario.

5. Conclusion
This paper proposed a P-DHP algorithm for path-following control of wheeled robots with obstacle
avoidance. As for the main characteristics, the proposed P-DHP utilizes two coupled AC networks to
resolve the conflicting goals, developing a near-optimal and safe control policy for path-following and
obstacle avoidance. The convergence and safety of our method were proven. Our approach has been
evaluated in simulation and tested on a real-world differential-drive mobile robot. The simulated and
experimental results illustrate that our approach can realize path-following control with collision avoid-
ance under conflicting learning objectives, showing the advantages in computational efficiency and
smaller cost values compared with state-of-the-art approaches. Future work will focus on the application
of model-free RL on wheeled mobile robots.

Author contributions. All authors have made great contributions to this paper.

Financial support. The work was supported by the National Natural Science Foundation of China under Grant U21A20518,
62003361, and 61825305, China Postdoctoral Science Foundation under Grant 47680, and the National Key R&D Program of
China 2018YFB1305105.

Conflicts of interest. The authors declare no conflicts of interest exist.

Ethical approval. Not applicable.

References
[1] T. P. Nascimento, C. E. Dórea and L. M. G. Gonçalves, “Nonholonomic mobile robots’ trajectory tracking model predictive

control: A survey,” Robotica. 36(5), 676–696 (2018).
[2] Z. Li, K. Zhao, L. Zhang, X. Wu, T. Zhang, Q. Li, X. Li and C. Su, “Human-in-the-loop control of a wearable lower limb

exoskeleton for stable dynamic walking,” IEEE/ASME Trans. Mechatron. 26(5), 2700–2711 (2021).
[3] H. Su, Y. Hu, H. R. Karimi, A. Knoll, G. Ferrigno and E. De Momi, “Improved recurrent neural network-based manipulator

control with remote center of motion constraints: Experimental results,” Neural Netw. 131, 291–299 (2020).

https://doi.org/10.1017/S0263574723000127 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000127

1946 Yaoqian Peng et al.

[4] Z. Li, Z. Ren, K. Zhao, C. Deng and Y. Feng, “Human-cooperative control design of a walking exoskeleton for body weight
support,” IEEE Trans. Ind. Inform. 16(5), 2985–2996 (2020).

[5] Z. Chen, Y. Liu, W. He, H. Qiao and H. Ji, “Adaptive-neural-network-based trajectory tracking control for a nonholonomic
wheeled mobile robot with velocity constraints,” IEEE Trans. Ind. Electron. 68(6), 5057–5067 (2021).

[6] M. S. Wiig, K. Y. Pettersen and T. R. Krogstad, “Collision avoidance for underactuated marine vehicles using the constant
avoidance angle algorithm,” IEEE Trans. Control. Syst. Technol. 28(3), 951–966 (2019).

[7] J. Alonso-Mora, P. Beardsley and R. Siegwart, “Cooperative collision avoidance for nonholonomic robots,” IEEE Trans.
Robot. 34(2), 404–420 (2018).

[8] M. Hoy, A. S. Matveev and A. V. S. Al, “Algorithms for collision-free navigation of mobile robots in complex cluttered
environments: A survey,” Robotica. 33(3), 463–497 (2015).

[9] Khatib, Real-time obstacle avoidance for manipulators and mobile robots,” Int. J. Robot. Res. 5(1), 500–505 (1986).
[10] J. Funke, M. Brown, S. M. Erlien and J. C. Gerdes, “Collision avoidance and stabilization for autonomous vehicles in

emergency scenarios,” IEEE Trans. Control. Syst. Technol. 25(4), 1204–1216 (2017).
[11] I. B. Hagen, D. K. M. Kufoalor, E. F. Brekke and M. T.A.Johansen, “MPC-Based Collision Avoidance Strategy for Existing

Marine Vessel Guidance Systems,” In: 2018 IEEE International Conference on Robotics and Automation (ICRA) (IEEE,
2018) pp. 7618–7623.

[12] B. Brito, B. Floor, L. Ferranti and J. Alonso-Mora, “Model predictive contouring control for collision avoidance in
unstructured dynamic environments,” IEEE Robot. Autom. Lett. 4(4), 4459–4466 (2019).

[13] P. Leica, M. Herrera, C. Rosales, F. Roberti, J. Toibero and R. Carelli, “Dynamic Obstacle Avoidance Based on Time-
Variation of a Potential Field for Robots Formations,” In: 2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM)
(IEEE, 2017) pp. 1–6.

[14] P. Sudhakara, V. Ganapathy, B. Priyadharshini and K. Sundaran, “Obstacle avoidance and navigation planning of a wheeled
mobile robot using amended artificial potential field method,” Proc. Comput. Sci. 133, 998–1004 (2018).

[15] B. Hu, Z.-H. Guan, F. L. Lewis and C. P. Chen, “Adaptive tracking control of cooperative robot manipulators with markovian
switched couplings,” IEEE Trans. Ind. Electron. 68(3), 2427–2436 (2021).

[16] H. Dong, X. Zhao and H. Yang, “Reinforcement learning-based approximate optimal control for attitude reorientation under
state constraints,” IEEE Trans. Control. Syst. Technol. 29(4), 1664–1673 (2020).

[17] Z. Zhang, S. Chen, X. Zhu and T. Z.Yan, “Two hybrid end-effector posture-maintaining and obstacle-limits avoidance
schemes for redundant robot manipulators,” IEEE Trans. Ind. Inform. 16(2), 754–763 (2020).

[18] P. Deptula, H.-Y. Chen, R. A. Licitra, J. A. Rosenfeld and W. E. Dixon, “Approximate optimal motion planning to avoid
unknown moving avoidance regions,” IEEE Trans. Robot. 36(2), 414–430 (2020).

[19] X. Zhang, Y. Peng, B. Luo, W. Pan, X. Xu and M. H.Xie, “Model-Based Safe Reinforcement Learning with Time-Varying
State and Control Constraints: An Application to Intelligent Vehicles,” arXiv preprint, arXiv:2112.11217 (2021).

[20] Y. Dong, X. Tang and Y. Yuan, “Principled reward shaping for reinforcement learning via Lyapunov stability theory,”
Neurocomputing. 393, 83–90 (2020).

[21] M. Ohnishi, L. Wang, G. Notomista and M. Egerstedt, “Barrier-certified adaptive reinforcement learning with applications
to brushbot navigation,” IEEE Trans. Robot. 35(5), 1186–1205 (2019).

[22] M. Wen and U. Topcu, “Constrained cross-entropy method for safe reinforcement learning,” IEEE Trans. Autom. Control
66(7), 3123–3137 (2021).

[23] M. H. Cohen and C. Belta, “Approximate Optimal Control for Safety-Critical Systems with Control Barrier Functions,”
In: 2020 59th IEEE Conference on Decision and Control (CDC) (IEEE, 2020) pp. 2062–2067.

[24] Y. Y. Yang, W. He, K. G. Vamvoudakis, H. M. Modares and D. C. Wunsch, “Safety-Aware Reinforcement Learning
Framework with an Actor-Critic-Barrier Structure,” In: 2019 American Control Conference (ACC) (IEEE, 2019)
pp. 2352–2358.

[25] A. Ames, X. Xu, J. Grizzle and C. P.Tabuada, “Control barrier function based quadratic programs for safety critical systems,”
IEEE Robot. Automat. Lett. 62(8), 3861–3876 (2017).

[26] B. Luo, D. Liu, T. Huang and J. Liu, “Output tracking control based on adaptive dynamic programming with multistep
policy evaluation,” IEEE Trans. Syst. Man Cybernet. Syst. 49(10), 2155–2165 (2019).

[27] T. J. Perkins and A. G. Barto, “Lyapunov design for safe reinforcement learning,” J. Mach. Learn. Res. 3(12), 803–832
(2002).

[28] M. Castillo-Lopez, P. Ludivig, S. A. Sajadi-Alamdari, J. L. Sanchez-Lopez, M. A. Olivares-Mendez and H. Voos, “A
real-time approach for chance-constrained motion planning with dynamic obstacles,” IEEE Robot. Automat. Lett. 5(2),
3620–3625 (2020).

[29] H. Zhu and J. Alonso-Mora, “Chance-constrained collision avoidance for mavs in dynamic environments,” IEEE Robot.
Automat. Lett. 4(2), 776–783 (2019).

[30] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings and M. Diehl, “CasADi: A software framework for nonlinear
optimization and optimal control,” Math. Program. Comput. 1(1), 1–36 (2019).

Cite this article: Y. Peng, X. Zhang, H. Xie and X. Xu (2023). “Potential field-based dual heuristic program-
ming for path-following and obstacle avoidance of wheeled mobile robots”, Robotica 41, 1931–1946. https://doi.org/
10.1017/S0263574723000127

https://doi.org/10.1017/S0263574723000127 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000127
https://doi.org/10.1017/S0263574723000127
https://doi.org/10.1017/S0263574723000127

	
	Introduction
	Tracking error model and problem formulation
	Tracking error model
	Problem formulation
	P-DHP for path-following control with collision avoidance
	Design of P-DHP
	AC learning for P-DHP
	Simulation and experimental results
	Simulation experiments
	Parameter settings and training process
	Comparison results with state-of-the-art approaches
	Real-world experiments
	Conclusion

