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Abstract

In the current study, simulations by five crop models (WOFOST, CERES-Barley, HERMES,
DAISY and AQUACROP) were compared for 7–12 growing seasons of spring barley
(Hordeum vulgare) at three sites in the Czech Republic. The aims were to compare how vari-
ous process-based crop models with different calculation approaches simulate different values
of transpiration (Ta) and evapotranspiration (ET) based on the same input data and compare
the outputs of these simulations with reference data. From the outputs of each model, the
water use efficiency (WUE) from Ta (WUETa) and from actual ET (WUEETa) was calculated
for grain yields and above-ground biomass yield. The results of the first part of the study show
that the model with the Penman approach for calculating ET simulates lower actual ET (ETa)
sums, at an average of 250 mm during the growing season, than other models, which use the
Penman–Monteith approach and simulate 330 mm on average during the growing season. In
the second part of the current study, WUE reference values in the range 1.9–2.4 kg/m3 were
calculated for spring barley and grain yield. Values of WUETa/WUEETa calculated from the
outputs of individual models for grain yields and above-ground biomass yields ranged
from 2.0/1.0 to 5.9/3.8 kg/m3 with an average value of 3.2/2.0 kg/m3 and from 3.9/2.1 to
10.5/6.8 kg/m3 with an average value of 6.5/4.0 kg/m3, respectively. The results confirm that
the average values of all models are nearest to actual values.

Introduction

Climate change impacts on agriculture and their implications for crop production are increas-
ingly becoming the main themes of many case studies. These studies often emphasize that
water may become one of the principal limiting factors for crop production in many areas
(Blum 2005; Trnka et al. 2007, 2014; Hlavinka et al. 2009; Kang et al. 2009; Asseng et al.
2013; Ashofteh et al. 2014; Iglesias & Garrote 2015; Cammarano et al. 2016; Carlton et al.
2016; Gohar & Cashman 2016; Mall et al. 2016; Gosain 2017). Crop productivity is commonly
determined by the availability of water (Hsiao & Acevedo 1974; Steduto 1996; Cossani et al.
2012). Water availability is limited and cannot be indefinitely supplied by irrigation in all loca-
tions (Hartmann 1981; Steduto et al. 1986; Howell 2001; Nawarathna et al. 2001). Therefore, it
is crucial to focus on the consumption of water by plants for areas with insufficient reserves.
Water use efficiency (WUE) may be one of the key issues for agriculture: it is the ability of a
crop to produce biomass per unit of water transpired and is often considered an important
determinant of yield. In a purely hydrological context, WUE has been defined as the ratio
of the volume of water used productively (Stanhill 1986; Siddique et al. 1990; Stewart &
Steiner 1990). Water use efficiency can be calculated as the ratio of biomass or grain yield
to water supply, evapotranspiration (ET) or transpiration (Ta) on a daily or seasonal basis
(Sinclair et al. 1984). Actual crop yield and actual ET (ETa) depend on physiological processes
(e.g. the stomata need to open for carbon inhalation and vapour exhalation). For an individual
crop and climate, there is a well-established linear relationship between plant biomass pro-
duced and Ta (Steduto et al. 2007; Drechsel et al. 2015). Different types of crops are more
water-efficient in terms of the ratio between biomass and Ta: C3 crops, such as wheat and bar-
ley, are less water-efficient than C4 crops, such as maize and sorghum. These differences are
explained by the relationship between photosynthesis and stomatal conductance realized on
the leaf level, which is specific for each species (Huang et al. 2006; Katerji et al. 2008;
Drechsel et al. 2015). Wheat and barley usually have an average WUE value of approximately
1.5 kg/m3, while maize and sorghum have an average WUE value of approximately 2.0 kg/m3

(Katerji et al. 2008; Cossani et al. 2012; Drechsel et al. 2015; Fritsch & Wylie 2015; Greaves &
Wang 2016). A knowledge of WUE is also necessary for evaluating individual crops and their
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demands for water. The WUE values of species whose market
values are related to fresh weight (tomatoes, potatoes) are higher
than those observed for species with a dry yield weight such as
grain crops (Katerji et al. 2008).

Experimentally determined water consumption is difficult to
obtain for a large number of locations, therefore, crop models
have been used for this purpose. Among the outputs of crop models
are data regarding Ta, ET and grain yield or above-ground biomass
(Palosuo et al. 2011; Rötter et al. 2012), all of which are used to cal-
culate WUE. The current study compares five crop models:
WOFOST, CERES-Barley, HERMES, DAISY and AQUACROP.
The selected crop models differ from each other in complexity, algo-
rithms and approaches regarding the major processes determining
crop growth and development (Eitzinger et al. 2002; Palosuo
et al. 2011; Rötter et al. 2012). The differences between the parame-
terizations and configurations of each model lead to different results.

The primary aim was to compare the WUE values calculated
using different process-based crop models. Another purpose
was to examine the consistency of estimates based on individual
models, with the hypothesis that the ensemble arithmetic mean
(EAM) or the total ensemble (TE, range of all model values) is
superior to individual models. Another aim was to quantify
ranges in WUE values calculated using actual Ta/ET and grain
and biomass yields.

Material and methods

Study locations and input data for crop models

The selected crop models were applied to three different soil-
climate locations in the Czech Republic: Lednice (48°48′51′′N,
16°48′46′′E, altitude 171 m a.s.l.), Věrovany (49°27′39′′N, 17°
17′42′′E, altitude 210 m a.s.l.) and Domanínek (49°31′42′′N, 16°
14′13′′E, altitude 560 m a.s.l.) (Fig. 1). The simulated crop was
spring barley, as it is widely grown in the Czech Republic.

The Czech Republic comprises various soil types and climatic
conditions. The selected locations represent three basic regimes.

Lednice is a warm and relatively dry spring barley growing region.
Věrovany is located in the most fertile area of the country, with
warm temperatures and generally sufficient rainfall conditions, and
Domanínek represents the coolest and wettest of all three sites.
The main characteristics of each location are summarized in Table 1.

The first step included the calibration and subsequent
validation of a crop model ensemble. Within the calibration, para-
meters for length of the vegetative and reproductive development
stages were modified manually using sensitivity analysis.
Calibration and validation were performed using experimental
data from the Central Institute for Supervising and Testing in
Agriculture (SIAST) multi-year field experiments in the selected
locations. These data were combined with data from a 4-year
field experiment for the spring barley variety ‘Tolar’ in 2011
and 2012 and a variety with the same properties, ‘Bojos’, in
2013 and 2014 in Domanínek (Table 2). The lengths of the grow-
ing season and the flowering stage (growth stage [GS] 61, Zadoks
et al. 1974), time to maturity (GS 90) and grain yields were
recorded for all years and all study locations. Above-ground bio-
mass yields were not available (Fig. 2).

Measurements

In the second step, the ET (Figs 3 and 4), Ta (Figs 3 and 4) and soil
water balance (SWB) (Figs 5 and 6) were compared based on
model outputs. Simulated values of ETa, reference ET (ETo) and
SWB were compared with measured values (ETa, ETo, SWB) for
Domanínek from 2011 to 2014 (Figs 4 and 5). The data, which
were used as reference data for ET (ETa, ETo), were measured
from data by two meteorological stations permanently located on
turfgrass at Domanínek (49°31′28′′N, 16°14′30′′E and 540 m asl;
49°31′18′′N, 16°14′10′′E and 575 m asl). The actual evapotranspir-
ation of the turfgrass was measured using the Bowen ratio energy
balance method. Measurements and data processing have been
extensively described in a previous study by Fischer et al. (2013).
Temperature and humidity gradients were measured by combined
EMS 33 instruments placed in AL 070/1 radiation shields (EMS

Fig. 1. Map of the Czech Republic indicating the study
locations.
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Brno, Czech Republic). The net radiation was measured by an NR
8110 net radiometer (Philipp Schenk GmbH Wien, Austria), and
the soil heat flux was monitored by an HFP01 sensor (Hukseflux
Thermal Sensors, Netherlands). Measurements were taken every
minute and logged as half-hour averages. Raw data of latent heat
flux were subjected to quality control filtering according to Guo
et al. (2007). Gaps in the flux data were filled using the algorithm
of Reichstein et al. (2005), as implemented in the R package
REddyProc (http://r-forge.r-project.org/projects/reddyproc/). The
soil water balance was measured using the time domain reflectom-
etry (TDR) method, (CS 616, Campbell Scientific Inc., Shepshed,

UK): TDR sensors were placed vertically to monitor the SWB
from the surface to a depth of 0.3 m in field experiments with
spring barley in Domanínek at the central time during the growing
seasons from 2011 to 2014 (Fig. 5).

Crop models and methods for calculating evapotranspiration
and soil water balance

The current paper describes various results from the selected
models. The models and approaches for the calculations used in
the current study are described as follows (Table 3).

Table 1. Basic characteristics of the study locations. The climate data are derived from the years 1971–2000 (Tomiška et al. 2003; Tolasz 2007; Hájková & Dahl 2012)

Location Lednice Věrovany Domanínek

Latitude (N) 48°48′ 49°27′ 49°31′

Longitude (E) 16°47′ 17°17′ 16°14′

Production area Maize Sugarbeet Potato

Altitude (m a.s.l.) 171 210 560

Ø annual temperature (°C) 9.6 8.7 6.8

Ø date of emergence of spring barley 18 April 18 April 28 April

Ø date of full ripeness of spring barley 28 June 28 June 13 August

Ø duration of Ø daily air temperature of 10 °C and more (number of days) 180 170 140

Ø annual temperature during the growing season (°C) 16.4 16.0 14.5

Ø annual precipitation (mm) 461 502 575

Ø annual precipitation during the growing season (mm) 291 316 309

Soil type Chernozem Chernozem Cambisol

Textural type Loamy clay Loamy Loamy

Soil depth (m) 1.50 1.50 1.50

Ø maximum capillary capacity (%) 38.6 37 36.9

Ø wilting point (m3/m3) 14 14.6 13.5

Ø bulk density (g/m3) 1.54 1.53 1.62

m % m % m %

Clay 0–0.30 0.223 0–0.28 0.169 0–0.24 0.158

0.30–0.82 0.251 0.28–0.64 0.219 0.24–0.66 0.263

0.82–1.02 0.198 0.64–0.94 0.247 0.66–0.94 0.186

1.02–1.50 0.151 0.94–1.22 0.184 0.94–1.30 0.133

1.22–1.50 0.180 1.30–1.50 0.129

Silt 0–0.30 0.606 0–0.28 0.664 0–0.24 0.500

0.30–0.82 0.575 0.28–0.64 0.637 0.24–0.66 0.461

0.82–1.02 0.628 0.64–0.94 0.617 0.66–0.94 0.387

1.02–1.50 0.645 0.94–1.22 0.658 0.94–1.30 0.196

1.22–1.50 0.632 1.30–1.50 0.262

Sand 0–0.30 0.171 0–0.28 0.167 0–0.24 0.342

0.30–0.82 0.174 0.28–0.64 0.144 0.24–0.66 0.276

0.82–1.02 0.174 0.64–0.94 0.136 0.66–0.94 0.493

1.02–1.50 0.204 0.94–1.22 0.158 0.94–1.30 0.382

1.22–1.50 0.187 1.30–1.50 0.452
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Approaches for calculating evapotranspiration

Approaches to ET calculations (Table 3) vary from quite simple
(empirical or semi-empirical) requiring only information on
monthly average temperatures, to complex (more physical),
requiring daily data on maximum and minimum temperature,
solar radiation, humidity and wind speed, as well as characteristics
of the vegetation (Eitzinger et al. 2002; Fischer 2012). The model
computes daily net solar radiation. Evapotranspiration (combin-
ation of soil evaporation and plant Ta) can be limited by low
solar radiation and cool temperatures (low leaf area index, low
soil water content, low root length density and their distributions
relative to each other) (detailed in Ritchie 1972).

WOFOST (WOrld FOod STudies), as one of the selected mod-
els, uses the Penman (P) approach (Penman 1956), adapted accord-
ing to Frère & Popov (1979), to calculate ET. In WOFOST, the
actual crop Ta is determined by the potential ET time correction
factors for the degree of light interception, the degree of water stress
and the crop in general (Wolf & De Wit 2003). Weather data must
include wind and humidity data (Doorenbos & Pruitt 1977). The P
approach is elucidated by the following equation:

ET = DRn,a + gEa
D+ g

where ET is the evapotranspiration rate, R(n,a) is the net absorbed
radiation (expressed in equivalent evaporation), Ea is the evapora-
tive demand, Δ is the slope of the saturation vapour pressure curve
and γ is a psychometric constant (Supit et al. 1994).

CERES-Barley calculates ET based on the Priestley–Taylor (PT)
approach in the current study. The PT equation is useful for the
calculation of daily ET in case when weather inputs for the aero-
dynamic term (relative humidity, wind speed) are unavailable.
This radiation-based method approach requires only daily solar
radiation and temperature (Ritchie 1972). The equation is given as:

lET = a
S

S+ g
(Rn − G)

where ET is evapotranspiration, λ is the latent heat of vaporization,
α is a model coefficient (which Priestley and Taylor allowed to vary
for drying conditions), S is the slope of the saturation vapour dens-
ity curve, γ is a psychrometric constant, Rn is the net radiation, and
G is the soil heat flux (Priestly & Taylor 1972; Flint & Childs 1991;
Ngongondo et al. 2013).

The approach of Penman–Monteith (PM) is used to calculate
ET for the remainder of the selected models: HERMES, DAISY and
AQUACROP. Unlike the original P model, in the PM model, the
mass-transfer evaporation rate is calculated based on physical prin-
ciples (Ponce 1989). The ‘full-form’ PM equation can be expressed
as follows:

ET = D(Rn − G) + racp (es − ea)/ra
(D+ y (1+ (rs/ra)))rwl

where ET is the evapotranspirative flux expressed as depth per unit
time, Δ is the slope of the saturation vapour pressure v. temperature
curve, Rn is the net radiation flux density at the surface, G is the sens-
ible heat flux density from the surface to the soil (positive if the soil
is warming), ρa is the air density, cp is the specific heat ofmoist air at
a constant pressure, es is the saturation vapour pressure at air tem-
perature, ea is the actual vapour pressure of the air, ra is theTa

b
le

2.
O
ve
rv
ie
w

of
ye
ar
s
an

d
st
ud

y
lo
ca
ti
on

s
fr
om

w
hi
ch

si
m
ul
at
io
n
ou

tp
ut
s
of

cr
op

m
od

el
s
w
er
e
us
ed

Ye
ar

Lo
ca
lit
y

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

Le
dn

ic
e

Vě
ro
va
ny

D
om

an
ín
ek

The Journal of Agricultural Science 631

https://doi.org/10.1017/S0021859618000060 Published online by Cambridge University Press

https://doi.org/10.1017/S0021859618000060


Fig. 2. A comparison of the observed and simulated onset of phenological phases and grain yields for the study locations and the years referenced in Table 1.
Boxplots delimit the inter-quartile range (25–75 percentiles) and show the minimum value, maximum value and median.

Fig. 3. Simulated components of evapotranspiration (ETa = actual evapotranspiration, ETo = reference evapotranspiration, Ta = actual transpiration) by five crop
models, accumulated from sowing to maturity, at three locations during the years given in X-axis.
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Fig. 4. Simulated and measured components of evapotranspiration (ETa = actual evapotranspiration, ETo = reference evapotranspiration, Ta = actual transpiration)
for the study location Domanínek from 2011 to 2014. Measured ETo was obtained from data of one meteorological station and measured ETa from data of both
stations. For 2012 and 2014, relevant seasonal data for both meteorological stations are not available. Therefore, measurement were performed for only one of the
stations. The measured ETa and ETo values for the turfgrass were used as reference data.

Fig. 5. Comparison between the simulated and measured actual evapotranspiration (ETa) and soil water balance (SWB) for spring barley from soil layer 0–0.3 m
between sowing and maturity at the study location Domanínek from 2011–2014. Values measured ETa were obtained from data of two meteorological stations. For
2012 and 2014, relevant seasonal data for both meteorological stations are not available. Therefore, measurements were performed for only one of the stations.
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aerodynamic resistance to turbulent heat or vapour transfer from
the surface to some height z above the surface, y is a pyschrometric
constant, rs is the bulk surface resistance describing the resistance to
flow of water vapour from inside the leaf, vegetation canopy or soil
to outside the surface, ρw is the density of water, and λ is the latent
heat of vaporization (Allen et al. 2006).

Depending on approaches for calculating ET, crop models
require different meteorological data (Palosuo et al. 2011).

Approaches for calculating soil water balance

Soil water balance is one of the most important parts of the models.
According to the models, the soil profile is divided into root zone
layers with different water supplies. Each layer has an associated
horizon, defining the unique physical properties of that layer
(Abrahamsen & Hansen 2000). Accordingly, the incoming and
outgoing water flows are simulated. WOFOST, CERES-Barley,
HERMES and AQUACROP calculate the water balance using the
capacity approach (Table 3). This works on the basis of estimated
water consumption by ETa, which depends on the course of the
meteorological elements, soil moisture availability and characteris-
tics of the vegetation cover or surface (Boogaard et al. 1998).

WOFOST has the simplest approach for calculating soil water
balance among the selected models. The model considers three
soil layers: the rooted zone between the soil surface and the actual
rooting depth, the lower zone between the actual rooting depth
and the maximum rooting depth, and the sub-soil below the max-
imum rooting depth. The available soil water contained in the
rooted zone, which is directly at the disposal of the crop, is

defined as the product of the rooting depth and the current avail-
able soil water content (van Diepen et al. 1988; Eitzinger et al.
2004). WOFOST does not consider the possible influence of
groundwater or its potential capillary rise and treats the soil as
a homogeneous layer (Supit et al. 1994; Eitzinger et al. 2004).

The most comprehensive approach among the selected models is
that of DAISY, which calculates the water balance between the sur-
face and the soil. DAISY determines the movement of water in soil
using a numerical solution of Richards’ equation (Abrahamsen &
Hansen 2000; van Dam & Feddes 2000), which can simulate the
water balance at the desired depth (Richards 1931). DAISY simu-
lates the movement of water in the soil based on potential theory.
The ability of a soil to supply water is determined by the simulated
potential infiltration rate, which is based on conditions in the soil.
Transpiration is determined by the water intake of roots, depending
on the depth of rooting and root density.

More details about model construction and functioning can be
found in the literature, e.g. Jones & Kiniry (1986); van Diepen
et al. (1988); Kersebaum (1995); Ritchie et al. (1998); Tsuji
et al. (1998) or Hsiao et al. (2009).

A comparative analysis was used to compare the simulations
ETa and SWB for Domanínek 2011–2014. Simulation results of
crop models were subjected to statistical analysis by means of
descriptive statistical indices and statistical parameters such as
maximum, minimum and mean value; standard deviation; coeffi-
cient of variation and variance; root mean square error (RMSE),
which describes the average absolute deviation between the
observed and modelled values; the mean bias error (MBE) as an
indicator of the average systematic error (Davies & McKay

Fig. 6. Comparison between the simulated and measured actual evapotranspiration (ETa) and soil water balance (SWB) for spring barley for the study location
Domanínek from 2011 to 2014. Boxplots delimit the inter-quartile range (25–75 percentiles) and show the minimum value, maximum value and median. EAM
is ensemble arithmetic mean, TE is total ensemble.

Table 3. Modelling approaches regarding the main processes determining crop growth and development

Model Version (a) (b) (c) (d) (e) (f)

WOFOST 7.1.3 T, DL PRT, B P C D P-R

CERES-Barley 4.6 T, DL HI(Gn), B PT C S RUE

HERMES 2.01.1 T, DL PRT PM C D P-R

DAISY 4.01 T, DL PRT PM R D P-R

AQUACROP 4.0 T HI PM C S TE

(a) Crop phenology as a function of: T = temperature, DL = photoperiod (daylength), (b) Yield formation depending on: B = above-ground biomass, Gn = number of grains, HI = harvest index,
PRT = partitioning during reproductive stages, (c) Approaches for calculating evapotranspiration: P = Penman approach, PM = Penman–Monteith approach, PT = Priestley–Taylor approach, (d)
Water dynamics approach: C = capacity approach, R = Richards approach, (e) Leaf area development and light interception: D = detailed approach (e.g. layers of canopy), S = simple approach
(e.g. LAI), (f) Light utilization: RUE = radiation use efficiency approach, P-R = gross photosynthesis–respiration), TE = transpiration efficiency biomass growth.
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1989) and index of agreement (IA), developed by Willmott
(1981), was used as a more general indicator of modelling effi-
ciency (Table 4). MBE, RMSE and IA can be calculated as follows:

MBE =
∑n

i=1(Si − Oi)
n

RMSE =
�����������������∑n

i=1(Oi − Si)2
n

√

IA = 1−
∑n

i=1(Si − Oi)2∑n
i=1(|Ṡ| + |Ȯ|)2

where Si is the simulated value of the variable, Oi is the measured
value of the variable, n is the number of pairs of observed and
estimated values, �S is the average simulated value of the variable,
�O is the average measured value of the variable and Ṡ =│Si− (Si
− �S)│ and Ȯ =│Oi− (Oi−O)│.

Calculation of water use efficiency

Water use efficiency can be defined and calculated in a variety of
different ways (Blum 2009; Medrano et al. 2015; Cammarano
et al. 2016). In the current work, calculation and comparison of
WUE used simulated outputs of Ta, ETa, dry matter of above-
ground biomass and grain yield of spring barley. An equation

for calculating WUE was determined as follows:

WUE (kgDM/m3H2O)

= Dry weight of yield (kg/ha)
Crop water supply (m3 H2O/ha) = ETa or Ta

Water use efficiency is represented in units of kg/m3, where crop
production is measured in kg/ha and water use is estimated as
mm of water applied or received as rainfall, converted to m3/ha
(1 mm = 10m3/ha) (Drechsel et al. 2015).

The combination of two separate processes whereby water is
lost from the soil surface by evaporation and from the crop by
Ta is referred to as ET (Allen et al. 1998). In a purely hydrological
context, WUE has been defined as the ratio of the volume of water
used productively (Stanhill 1986). Above-ground biomass accu-
mulation, and consequently grain yield, has been shown to be
inextricably linked to Ta (Sinclair et al. 1984). Water use effi-
ciency should therefore be calculated from Ta. However, evapor-
ation is the main factor affecting the total amount of water
consumed during the growing season. In the current study,
WUE has been calculated using both Ta (WUETa, Fig. 7) and
ETa (WUEETa, Fig. 8).

The percent deviation (Di) between measured and simulated
ETa and calculated WUEETa was determined as follows (Table 5)

Table 4. Descriptive statistics calculated for the ETa and SWB and results of models comparison with the measured values for Domanínek 2011–2014

MEASUREMENT WOFOST CERES-Barley HERMES DAISY AQUACROP EAM

ETa (mm)

Min 0.18 0.00 0.13 0.00 0.00 0.70 0.32

Max 6.38 4.65 5.97 6.00 5.41 7.30 5.42

Av 2.74 1.66 2.60 2.55 2.38 2.94 2.42

Median 2.68 1.53 2.27 2.50 2.18 2.70 2.23

SD 1.18 1.25 1.46 1.43 1.28 1.38 1.16

Var. 1.39 1.26 2.14 2.04 1.63 1.90 1.34

CV 0.43 0.75 0.56 0.56 0.53 0.47 0.48

MBE −1.11 −0.16 −0.26 −0.37 0.21 −0.33

RMSE 1.69 1.26 1.00 1.16 1.33 1.04

IA 0.62 0.78 0.84 0.78 0.71 0.81

SWB (%)

Min 11.19 17.90 10.68 13.76 15.86 5.08 14.77

Max 36.71 31.50 30.77 31.00 36.44 30.01 31.08

Av 21.64 24.04 18.77 22.71 22.85 16.08 21.38

Median 21.30 24.20 19.00 22.23 23.04 17.20 21.19

SD 6.56 1.68 4.56 5.55 4.46 7.89 4.10

Var. 42.95 10.24 20.71 30.66 19.85 26.79 13.99

CV 0.30 0.07 0.24 0.24 0.20 0.49 0.19

MBE 2.39 −2.86 1.07 1.21 −5.56 −0.75

RMSE 5.34 5.54 5.49 4.69 8.28 5.18

IA 0.72 0.75 0.78 0.81 0.76 0.73

EAM, ensemble arithmetic mean; Min, minimum; Max, maximum; Av, mean value; SD, standard deviation; Var, variance; CV, coefficient of variation.
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Fig. 7. Comparison of water use efficiency (WUE) values calculated from simulated transpiration (Ta) and grain yield (lower column) and above-ground biomass
(higher column) with colours as given in list of models, by four crop models at three study locations for 1998 and 2001–2006 at Lednice and Věrovany and for 1998
and 2000–2006 at Domanínek, and additional at Domanínek during 2011–2014.

Fig. 8. Comparison of water use efficiency (WUE) values calculated from simulated and measured actual evapotranspiration (ETa) and grain yield (lower column) and
above-ground biomass yield (higher column) with colours as given in list of models, by five crop models at three study locations for 1998 and 2001–2006 at Lednice and
Věrovany and for 1998 and 2000–2006 at Domanínek, and additional at Domanínek during 2011–2014. WUE of grain was calculated from the measured values. Graph
‘Domanínek 2011–2014’ show calculated results WUEEta frommeasured ETa. Values measured ETa were obtained from data of two meteorological stations. For 2012 and
2014, relevant seasonal data for both meteorological stations are not available. Therefore, measurements were performed for only one of the stations.
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(Bitri & Grazhdani 2015):

Di = (simulated value−measured value) × 100
measured value

The arithmetic mean of the crop models simulations as EAM
and the total range of crop models simulations as TE was shown
by the use of boxplots (Figs 6, 9 and 10).

Results

Flowering, maturity and grain yield

The crop models were calibrated and validated based on approx-
imations of the observed phenological phases (flowering and
maturity) and grain yields, to produce simulated phenological
phases and grain yields (Fig. 2).

The simulation results for spring barley with respect to the
phenological phase of flowering (GS 61) in the Czech Republic
showed a slight deviation from the observations, from −1 to +9
days. CERES-Barley simulated later flowering dates than the
other models. Phenological phase maturity (GS 90) was less vari-
able among the models, with differences of −7 to +5.5 days as
compared with the observations. These results indicate that the
simulated length of the growing season is different for each indi-
vidual model. The simulation results for grain yield showed devia-
tions from the real grain yield ranging from −1 to +1.28 t/ha.
Detailed calibration and validation results can be found in the
Supplementary Material.

Evapotranspiration and soil water balance

Evapotranspiration was calculated for all study years and study
locations (Tables 1 and 2) by the different approaches incorpo-
rated within the selected crop models (Table 3). The obtained
values of cumulative ET can be found in Figs 3 and 4.

In the current study, the sum of ETa during the growing sea-
sons ranged from 201.5 to 426.2 mm among the applied
approaches, while ETo ranged from 226.9 to 490 mm. The devi-
ation of ETa from ETo is evident. The crop matures and the can-
opy cover declines during the growing season, therefore, the ETa

is lower. Crop models using the PM approach to calculate the sum
of ET often produced higher values than models with a different
approach. With the exception of AQUACROP (PM approach),
which simulated the highest values, and WOFOST (P approach),
which simulated the lowest values, the results are within a rela-
tively small range. Transpiration, part of ETa, is an important fac-
tor for water balance. Different approaches can cause deviations
in the results, which are clearly shown in Figs 3 and 4, particularly
for AQUACROP.

The success of individual models can be compared on the basis
of ETa and SWB reference data from Domanínek 2011–2014 (Figs
4–6, Tables 4 and 5). The results of statistical parameters showed
that crop models HERMES (IAETa/SWB 0.84/0.78), DAISY (IAETa/

SWB 0.78/0.81) and CERES-Barley (IAETa/SWB 0.78/0.75) showed
the closest conformity. The crop model WOFOST (IAETa/SWB

0.62/0.72) showed the poorest conformity. The values of IAETa/

SWB for EAM were 0.81/0.73. When compared RMSEETa/SWB

and IAETa/SWB as indicators, it was found that several models,
such as HERMES, DAISY and CERES-Barley, do almost as well
as the EAM (Tables 5 and 6, Figs 6 and 9).

The largest DiETa between measured and simulated values was
in 2012. The maximum Di with value −45% was reached by
WOFOST (Table 5). The zero Di was achieved in one case in
2011 by DAISY and EAM.

Water use efficiency

The differences in the simulations of seasonal Ta, ETa, length of
growing season and yield of individual models resulted in differ-
ent WUE values for spring barley. The outputs of the HERMES
model did not include Ta.

The values of WUETa ranged from 3.9 to 10.5 kg/m3 for above-
ground biomass yield and from 2.0 to 5.9 kg/m3 for grain yield
(Fig. 7). The values of WUEETa were lower, ranging from 2.1 to
6.8 kg/m3 for above-ground biomass yield and from 1.0 to
3.8 kg/m3 for grain yield (Fig. 8).

Figure 8 also shows the WUEETa values calculated from mea-
surements for use as reference data. These values ranged from 1.9
to 2.4 kg/m3 for grain yield.

The highest WUE values were calculated from outputs of the
crop model WOFOST, which simulated the lowest Ta/ET
among all selected models. The lowest WUE values were calcu-
lated from outputs of the models CERES-Barley and
AQUACROP.

For the WUEETa values calculated from simulations and mea-
surements, the best agreements were shown by the HERMES
model, with an average Di −0.83%, and AQUACROP, with an
average Di 10.50%. The values of WUEETa calculated from simu-
lations of the WOFOST and CERES-Barley models showed the
poorest agreement (average Di of 67.33 and −33.16%, respectively;
Fig. 9 and Table 5).

Finally, Fig. 10 shows a comparison of the WUE values calcu-
lated from simulations of the crop models. The results confirm
that the WUE calculated from the outputs of the WOFOST
model is overestimated compared with that of other models,
often with the largest variation. The values of WUETa calculated
from the outputs of CERES-Barley and AQUACROP are nearly
the same. The values of WUEETa for CERES-Barley, HERMES,
DAISY and AQUACROP also show strong agreement with each
other.

Discussion

The results of the first part of the study show that the WOFOST
model, using the P approach, simulates low ETa sums compared
with the other models, which use the PM approach. Sums of
ETa values during the vegetative season were 240 mm, on average,
for WOFOST. For models using the PM approach, the sum values
of ETa were 340 mm on average. This finding is similar to those
reported by Eitzinger et al. (2002), where sums of ETa simulated
with WOFOST were low, at 205 mm on average, and the highest
sums of ETa, 330 mm on average, were simulated with models
using the PM approach, as in the current study. WOFOST was
also shown to underestimate ETa compared with other models
in a study by Rötter et al. (2012), where DAISY, HERMES and
CERES-Barley simulated the highest ETa values, with high simi-
larity among the values, as in the current study. AQUACROP
simulated the highest Ta of the models. The value of Ta was cal-
culated as 78% of ETa on average. A similar result was reported by
Zeleke et al. (2011), in which AQUACROP produced a Ta value
of 75% of ETa. The largest DiETa is from 2012 may be due to the
fact that the ETa reference value was measured at only one
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Table 5. Comparison between measured and simulated seasonal sums of actual evapotranspiration (ETa) and water use efficiency (WUEETa) for the study location Domanínek from 2011 to 2014. Measured ETa was
obtained from data of two meteorological stations. For 2012 and 2014, relevant seasonal data for both meteorological stations are not available. Therefore, comparison was performed for only one of the stations in
these years

MEASURED WOFOST CERES-Barley HERMES DAISY AQUACROP EAM

Year ETa ETa Di (%) ETa Di (%) ETa Di (%) ETa Di (%) ETa Di (%) ETa Di (%)

2011 307 235 −23 296 −4 322 5 307 0 378 22 308 0

2011 314 235 −25 296 −6 322 3 307 −2 378 20 308 −2

2012 389 213 −45 298 −23 299 −23 282 −27 362 −7 291 −25

2013 296 212 −28 333 12 315 6 301 2 369 24 306 3

2013 324 212 −34 333 3 315 −3 301 −7 369 13 306 −5

2014 341 216 −36 294 −14 305 −11 297 −13 354 4 293 −14

MEASURED WOFOST CERES-Barley HERMES DAISY AQUACROP EAM

Year WUE ETa WUE ETa Di (%) WUE ETa Di (%) WUE Eta Di (%) WUE ETa Di (%) WUE ETa Di (%) WUE ETa Di (%)

2011 2.11 3.25 53 1.27 −40 1.98 −6 1.88 −11 1.90 −10 2.06 −2

2011 2.07 3.25 57 1.27 −38 1.98 −5 1.88 −9 1.90 −8 2.06 −1

2012 1.89 3.33 75 1.50 −21 2.12 12 1.58 −16 1.89 0 2.08 10

2013 2.13 3.68 72 1.54 −27 2.14 0 1.87 −12 1.84 −13 2.21 3

2013 1.95 3.68 89 1.54 −20 2.14 9 1.87 −4 1.84 −5 2.21 13

2014 2.41 3.80 58 1.12 −53 2.02 −15 1.69 −29 1.75 −27 2.08 −13

EAM, ensemble arithmetic mean; Di, deviation, sums of ETa (mm), WUEETa (kg/m
3).
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Fig. 9. Comparison of the seasonal sums of ETa and water use efficiency (WUEETa) for grain yield of spring barley, calculated from simulated and measured ETa
values for selected crop models at the study location Domanínek from 2011 to 2014. Boxplots delimit the inter-quartile range (25–75 percentiles) and show the
minimum value, maximum value and median. EAM is ensemble arithmetic mean, TE is total ensemble.

Fig. 10. Comprehensive comparison of calculated WUETa values and WUEETa values for the study locations: Lednice for 1998 and 2001–2006, Věrovany for 1998 and
2001–2006, Domanínek for 1998, 2000–2006 and 2011–2014. Boxplots delimit the inter-quartile range (25–75 percentiles) and show the minimum value, maximum
value and median. EAM is ensemble arithmetic mean, TE is total ensemble.

Table 6. An overview of the range of water use efficiency (WUE) values calculated from the outputs of individual models (WUETa/WUEEta)

WUETa/ETa (m
3/ha)

Grain yield Biomass yield

Min Max Mean Min Max Mean

Reference 1.9 2.4 2.1

EAM 2.0/1.0 5.9/3.8 3.2/2.0 3.9/2.1 10.5/6.8 6.5/4.0

WOFOST 3.6/1.9 5.9/3.8 4.2/2.8 7.1/3.9 10.5/6.8 8.1/5.3

CERES 2.1/1.1 3.2/2.3 2.7/1.7 3.9/2.1 5.7/3.8 5.0/3.1

HERMES 1.0 2.3 2.0 4.6 2.7 3.7

DAISY 2.3/1.3 4.2/2.3 3.4/1.8 6.5/3.4 9.6/4.9 8.2/4.3

AQUACROP 2.0/1.5 2.6/2.1 2.3/1.8 4.0/2.9 5.3/4.3 4.6/3.6

EAM, ensemble arithmetic mean.
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meteorological station. There is no other reference value that
would allow for verification of measurement accuracy.

As in the studies of Federer et al. (1996), Eitzinger et al. (2002)
and Rácz et al. (2013), the differences between ET calculation

approaches (P, PT, PM) in the current study amounted to hun-
dreds of millimetres per growing season. The PM approach had
on average the highest match from measured ET. The PT
approach performed slightly poorer while the P approach had

Table 7. Overview of the range of water use efficiency (WUE) values for other important crops

WUE (kg/m3) Min Max Mean Location Reference

Barley 0.7 2.3 1.5 Catalonia Cossani et al. (2012)

1.5 2.8 1.7 Mediterranean Katerji et al. (2008)

3.0a 4.7a 3.4a Australia Kemanian et al. (2005)

1.0 2.3 1.7 Mediterranean Cantero-Martinez et al. (2003)

1.6 1.6 1.6 Merredin Siddique et al. (1990)

Mean 1.2 2.3 1.6

Cotton 0.8 1.3 1.1 Lebanon Karam et al. (2006)

0.5 0.7 0.6 Turkey Yazar et al. (1999)

Mean 0.7 1.0 0.9

Chickpea 0.5 1.1 0.8 Australia Fritsch & Wylie (2015)

Maize 1.8 2.8 2.3 Taiwan Greaves & Wang (2016)

1.6 3.9 2.7 lowland areas Drechsel et al. (2015)

1.7 2.2 1.9 Turkey Dağdelen et al. (2006)

1.4 2.0 1.7 North China Zhang et al. (2004)

1.4 1.9 1.7 Lebanon Karam et al. (2003)

1.4 1.8 1.6 Italy Nouna et al. (2000)

Mean 1.6 2.3 1.9

Oat 0.1 0.5 0.3 North China Zhang et al. (2015)

Potato 0.3 1.5 0.9 North China Zhang et al. (2015)

1.6 1.9 1.8 Italy Katerji et al. (2003)

Mean 1.0 1.7 1.4

Rape 0.5 0.9 0.7 Australia Sadras & McDonald (2012)

Rice 0.2 1.2 0.7 lowland areas Drechsel et al. (2015)

Sorghum 1.0 1.8 1.4 Australia Fritsch & Wylie (2015)

0.7 1.6 1.2 Italy Mastrorilli et al. (1995)

Mean 0.9 1.7 1.3

Soybean 0.5 0.7 0.6 Mediterranean Jaoudé et al. (2008)

0.4 0.5 0.5 Lebanon Karam et al. (2005)

0.5 0.8 0.7 Italy Katerji et al. (2003)

Mean 0.5 0.7 0.6

Sugar beet 6.6 7.0 6.8 Italy Katerji et al. (2003)

Wheat 0.9 1.5 1.2 Australia Fritsch & Wylie (2015)

0.8 1.6 1.2 lowland areas Drechsel et al. (2015)

1.0 2.3 1.6 Catalonia Cossani et al. (2012)

2.0 2.2 2.1 Mediterranean Sadras & Angus (2006)

1.1 1.6 1.4 Italy Katerji et al. (2005)

1.0 1.5 1.3 North China Zhang et al. (2004)

1.3 1.5 1.4 Turkey Sezen & Yazar (1996)

Mean 1.1 1.8 1.5

aWUE values were calculated from Ta.
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the highest discrepancy with the reference data, as was also the
case in the studies of Xu & Singh (2002) and Xing et al. (2008).
Weaknesses can be found in P, PT and PM approaches. The P
approach was mainly developed for a short crop, such as grass.
In semi-arid areas, simulated Ta may also be too low. Further,
wind velocity was solved empirically (Penman 1948; Wolf & De
Witt 2003; Subedi & Chávez 2015); therefore, the P approach
may not work properly under all climatic conditions. The PT
approach does not take account of saturation vapour pressure,
therefore is useful for mild and humid tropical climates but not
very suitable for arid and windy areas (Novák 1995; Schneider
et al. 2007; Fischer 2012; Rácz et al. 2013). The PM approach is
considered as one of the best methods for ET calculation. It con-
tains all the parameters included in the energy exchange process
that can be used globally without the need for special modifications.
However, the PM approach has the greatest data demands (Allen
et al. 1998; Ngongondo et al. 2013; Remesan & Holman 2015).

The accuracy of a given approach depends on the climatic and
soil conditions (SWB) of the study location (Nash 1989; Rácz
et al. 2013) and model parameterization. The variability among
simulations of crop models in ET and SWB indicates that there
are differences in the way the processes that affect water use are
modelled. Crop models use either a simpler capacity approach
or a more detailed Richards approach. Simulated SWB is not
dependent only on model approaches for calculating water bal-
ance. For example, individual crop models, which have different
approaches to simulating soil water extraction by roots (e.g. the
maximum rooting depth is important) deal also with the soil pro-
file at different degrees of resolution (De Wit & Van Keulen 1987;
Wu & Kersebaum 2008; Palosuo et al. 2011; Cammarano et al.
2016). The same methods of calculation can produce different
results, caused by different parameterizations in the various mod-
els (Eitzinger et al. 2002). The total range of crop model simula-
tions shows the range and variability of simulations.

Similar results are described with other studies such as
Eitzinger et al. (2004); Hlavinka et al. (2010); Andarzian et al.
(2011); Palosuo et al. (2011); Abrha et al. (2012); Rötter et al.
(2012) or Wang et al. (2013). The aforementioned studies dealt
with crop models and SWB modelling: values for the statistical
parameter IASWB were in the range 0.59 (WOFOST) to 0.93
(CERES-Barley) and for RMSESWB (%) were in the range 0.70
(CERES-Barley) to 13.05 (AQUACROP). In the current study,
the statistical parameter IASWB was in the range 0.72
(WOFOST) to 0.81 (DAISY) and RMSESWB (%) was in the
range 4.69 (DAISY) to 8.28 (AQUACROP), corresponding with
the range of the results for the aforementioned studies.

WOFOST was most distant to SWB measurements and closest
to the measured values were DAISY and HERMES, as well as in
the study by Rötter et al. (2012). Otherwise, it was in the study
of Palosuo et al. (2011) where measured values were the closest
to the WOFOST and HERMES simulations, while CERES and
DAISY simulated SWB overstated.

Some of the deviation within the SWB measurements could be
connected with the TDR sensors, which have shortcomings (e.g.
lower measured soil volume, limited use in soil with a high salinity
content and in soils with high electrical conductivity, sensitivity to
soil cracks or air pockets) (Hlavinka et al. 2010; Litschmann 2010).

The last part of the study concerns WUE. The values of WUE
have ranged from 0.7 to 2.8 kg/m3 in studies on spring barley: for
example, Katerji et al. (2008) reported variability in WUE, with
values for barley ranging from 1.5 to 2.8 kg/m3. Cossani et al.
(2012) reported lower WUE values for grain and biomass, ranging

from 0.7 to 2.3 kg/m3. Cantero-Martinez et al. (2003) found aver-
age WUE values for grain and biomass of 2.3 kg/m3 and 1.0 to
1.5 kg/m3, respectively, and Siddique et al. (1990) measured
WUE at a value of 1.6 kg/m3. In the current study, WUE reference
values in the range 1.9–2.4 kg/m3 were calculated for spring barley
and grain yield. These values correspond to a narrower range of
results than the aforementioned studies.

The values of WUE for spring barley, as calculated from simu-
lations, ranged from 2.1 to 10.5 kg/m3 for above-ground biomass
yield and 1.0–5.9 kg/m3 for grain yield.

The values of WUE were calculated in two ways, therefore, the
resulting values show greater deviation. The values of WUE based
on ETa were more accurate. The reference values were closest to
the WUE values obtained from the simulation models
HERMES, AQUACROP and DAISY, followed by and
CERES-Barley, with the poorest agreement for WOFOST.
Average WUEETa values of EAM would be with Di 1.6% included
after HERMES.

Table 7 shows WUE values from world studies with an average
WUE value of 1.6 kg/m3 for spring barley. This value is slightly
lower than the reference WUE value calculated for the study loca-
tion Domanínek, with an average of 2.1 kg/m3. This discrepancy
can be explained by the fact that the other studies on WUE were
often performed in semi-arid areas.

Conclusion

The aims of the current study were to compare values calculated
from simulations of selected process-based crop models with
observational results. Differences were observed between individ-
ual models. Some models predicted values that were closer to
recordings than others. No model was clearly superior or more
robust in terms of WUE accuracy. If average values are taken
into account, EAM proved to be the best predictor. However,
EAM reduces variability and the result is simplified. In the predic-
tions of the different scenarios, it is important to know the
extreme values and the range of uncertainty between different
approaches. The degree of variability of the simulated values
increases by incorporating the ‘less successful’ models into an
ensemble simulation. Simulations are not constant, due to the
variety of environmental conditions. For this purpose, it is good
to choose a TE approach, which provides a better estimation of
the uncertainty of simulation outputs. To lower the level of the
degree of uncertainty further research is needed, especially for
model inter-comparisons and site-specific model evaluation.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0021859618000060.
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