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The evolution of upper ocean currents involves a set of complex, poorly understood
interactions between submesoscale turbulence (e.g. density fronts and filaments and
coherent vortices) and smaller-scale boundary-layer turbulence. Here we simulate
the lifecycle of a cold (dense) filament undergoing frontogenesis in the presence
of turbulence generated by surface stress and/or buoyancy loss. This phenomenon
is examined in large-eddy simulations with resolved turbulent motions in large
horizontal domains using ∼1010 grid points. Steady winds are oriented in directions
perpendicular or parallel to the filament axis. Due to turbulent vertical momentum
mixing, cold filaments generate a potent two-celled secondary circulation in the
cross-filament plane that is frontogenetic, sharpens the cross-filament buoyancy and
horizontal velocity gradients and blocks Ekman buoyancy flux across the cold filament
core towards the warm filament edge. Within less than a day, the frontogenesis is
arrested at a small width, ≈100 m, primarily by an enhancement of the turbulence
through a small submesoscale, horizontal shear instability of the sharpened filament,
followed by a subsequent slow decay of the filament by further turbulent mixing.
The boundary-layer turbulence is inhomogeneous and non-stationary in relation to
the evolving submesoscale currents and density stratification. The occurrence of
frontogenesis and arrest are qualitatively similar with varying stress direction or with
convective cooling, but the detailed evolution and flow structure differ among the
cases. Thus submesoscale filament frontogenesis caused by boundary-layer turbulence,
frontal arrest by frontal instability and frontal decay by forward energy cascade, and
turbulent mixing are generic processes in the upper ocean.

Key words: ocean processes, turbulence simulation, turbulent boundary layers

1. Introduction
The upper ocean is a nexus of currents of many types, ranging from the general

circulation and tides at the basin scale, through mesoscale and submesoscale
eddies, inertia–gravity waves, boundary-layer turbulence and surface gravity waves.
Historically, both because of the technological limits of instruments and computers and
the desire for conceptual simplicity, these different phenomena have been investigated
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and understood somewhat independently of each other. The direction of the science,
however, is toward understanding this system holistically.

Boundary-layer turbulence is generated from vertical profile instabilities of the
currents and stratification forced by surface momentum and buoyancy fluxes. The
turbulent kinetic energy (TKE) is conspicuously more intense within this relatively
thin layer of thickness h, and it provides vertical eddy fluxes of momentum and
buoyancy to reshape the mean current u(z) and buoyancy b(z) (or, more simply,
temperature θ(z)) profiles throughout this layer, while also sometimes entraining more
quiescent fluid from below, thus increasing h. This is a well studied phenomenon,
both for the lower atmosphere and upper ocean, but it is perhaps best understood in
situations with a high degree of horizontal homogeneity over distances much larger
than h.

Submesoscale currents draw their energy from larger-scale, mostly geostrophic
flows (e.g. mesoscale eddies). They are particularly active in the weakly stratified
upper ocean (i.e. the mixed layer), thus overlapping vertically with the boundary-layer
turbulence. Their horizontal scale L spans a wide range between a typical mesoscale
length, the first baroclinic deformation radius Rd and the boundary-layer depth h.
Their dynamics is partly ageostrophic, though still strongly influenced by Earth’s
rotation and density stratification. In particular, they exhibit a forward cascade of
energy and thus provide a conduit to dissipation for larger-scale flows (we report
on this in § 5.4 and the conclusions). They also provide substantial vertical fluxes
of buoyancy and other material concentrations, connecting the interior profiles with
the surface values. The vertical buoyancy flux is usually positive, w′b′ > 0, implying
conversion of surface layer available potential energy to kinetic energy and an increase
in density stratification. This subject is reviewed in McWilliams (2016).

Frontogenesis is an active submesoscale process that rapidly sharpens the horizontal
density gradients at the surface, both for density steps (fronts) and for dense (cold)
density lines (filaments). The classical frontogenetic process is by an ambient strain
flow (Hoskins 1982), which in this context might usually be associated with regions
in between the cores of mesoscale eddies. However, frontogenesis is also induced
by vertical momentum mixing by the boundary-layer turbulence in the presence of
a submesoscale front or filament, through the secondary circulation (SC) established
by an approximate horizontal momentum balance called turbulent thermal wind
(TTW), involving the Coriolis force, baroclinic pressure gradient and vertical eddy
diffusion (Gula, Molemaker & McWilliams 2014). In a circulation model with
parameterized boundary-layer mixing (using the K-profile parameterization (KPP);
Large, McWilliams & Doney 1994), an initial dense filament in TTW balance
undergoes rapid frontogenesis with shrinking width and increasing cross-filament
velocity and buoyancy gradients until the width approaches the model grid resolution
scale and the model’s subgrid-scale regularization procedure artificially arrests further
frontogenesis (McWilliams et al. 2015).

Our focus is on cold filaments, essentially a pair of warm–cold and cold–warm
fronts separated by a finite horizontal distance. Cold filaments are more prevalent in
geophysical flows, compared to their rarer, less active warm counterparts, and they
exhibit super-exponential rates of sharpening (as do fronts in an ambient strain flow).
McWilliams, Colas & Molemaker (2009a) shows that the rate of sharpening for cold
filaments is faster than the rates for either warm filaments or single-sided fronts.
The reason is the favourable secondary circulation configuration of stronger surface
convergence along the filament axis than in the other two configurations.

The present article is an investigation of the evolution of cold filament frontogenesis
(CFF) induced by boundary-layer turbulence using large-eddy simulation (LES) at high
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Frontogenesis and frontal arrest 343

Reynolds number. It builds on the parameterized mixing solutions in McWilliams et al.
(2015) obtained using the regional oceanic modelling system (ROMS) (Shchepetkin &
McWilliams 2005). The LES model resolves both the submesoscale currents and the
dominant scales of the turbulence and fully encompasses their dynamical interaction.
The principal questions are the following: What is the final outcome of submesoscale
TTW frontogenesis? How is the boundary-layer turbulence altered while this is
happening? We present the results as a CFF lifecycle event: onset, arrest and decay.
The use of LES with fine grid resolution and near-unity aspect ratio grids resolves
the variance and energy transfers between horizontal and vertical motions, essentially
independent of the subgrid-scale parameterization scheme.

Previous studies using LES to study idealized submesoscale processes focus on
barotropic and baroclinic instabilities with much less attention paid to the dynamics of
frontogenesis, (e.g. Mahadevan & Tandon 2006; Özgökmen et al. 2011; Skyllingstad
& Samelson 2012; Hamlington et al. 2014; Cornejo & Sepúlveda 2016). An exception
is the work by Samelson & Skyllingstad (2016) who analyse their solutions in the
frontogenetic framework first described by Hoskins & Bretherton (1972), and find
Kelvin–Helmholtz instability is a main route leading to an unbalanced flow. Suzuki
et al. (2016) also target frontal dynamics and analyse the momentum and energy
budgets, including wave effects, using the solutions described by Hamlington et al.
(2014). For a late time single-sided front, likely generated by submesoscale mixed
layer eddies (Fox-Kemper, Ferrari & Hallberg 2008), they find submesoscale and
traditional frontogenesis differ in part because of Stokes shear, a wave effect. The
problem design in Skyllingstad & Samelson (2012) and Hamlington et al. (2014) is
approximately similar to ours, but they concentrate on the submesoscale instabilities
that develop at long times from initial conditions that are weak, broad, warm
fronts; their choice of frontal parameters are guided by the stability analysis of
Boccaletti, Ferrari & Fox-Kemper (2007) and Thomas, Ferrari & Joyce (2013). It is
important to note that these frontal simulations are initiated from a nearly quiescent
two-dimensional (2-D) state with the resulting instabilities first appearing at long
time, more than 10 days into the simulations. Near the end of the simulations
described by Hamlington et al. (2014), the initial 2-D front disintegrates and
numerous smaller-scale fronts populate the horizontal domain. Hamlington et al.
(2014) impose down-front winds and waves misaligned at an angle of 30◦ relative to
the down-front axis. Skyllingstad & Samelson (2012) only applies a slightly unstable
surface buoyancy flux with a small temperature jump of 0.04 K across the front, and
find instabilities develop at time t > 96 h. Skyllingstad & Samelson (2012) use a
domain size of (5.76, 10.5, 0.12) km, similar to that used here, but with a coarser
grid resolution. In these previous studies the arresting dynamics of frontogenesis
is only briefly touched on, and the development of boundary-layer turbulence often
occurs only after the frontal instability. One key difference is that the initial buoyancy
gradient used by Hamlington et al. (2014) is nearly 20 times lower than the initial
buoyancy gradient used here. However, Suzuki et al. (2016) finds that under the
action of submesoscale mixed layer eddies, intermittent fronts can appear that are
5 times stronger than the initial state. Another difference is that the frontogenetic
evolution described here is initialized with fully developed boundary-layer turbulence
and emphasizes the important role of secondary circulations.

This study differs from previous ones using LES in that we use even finer meshes
(e.g. nominally a factor of 3 finer in each coordinate direction near the water surface
compared to Hamlington et al. (2014)), include fully developed turbulence as an initial
state, apply alternatively either a wind stress in different directions relative to the
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filament axis or a surface cooling flux as the generators of turbulence and analyse the
solutions over a time period t< 20 h. Focusing on a single filament allows us to study
the impact of well-resolved turbulence on CFF and the ensuing frontal arrest within a
single (large) computational mesh. The outline of the manuscript is as follows: a brief
description of the LES equations and numerical algorithm is given in § 2, an outline
of the numerical experiments is in § 3, the analysis technique used to decompose
flow variables is described in § 4 and results are discussed in § 5. A summary of the
findings is given in § 6.

The perspective of this paper is primarily on the submesoscale phenomenology, and
a companion paper focuses more on the turbulent phenomena during CFF (Sullivan
& McWilliams 2017). Furthermore, as part of the idealization in posing this process
study, we exclude interactions with surface gravity waves (also known as Langmuir
turbulence in the boundary layer; Sullivan & McWilliams 2010) here, but we intend
to report on this generalization later.

2. Large-eddy simulation
The dynamics of the ocean boundary layer (OBL), including submesoscale and

boundary-layer motions, is assumed to be described by a conventional large-eddy
simulation model for a high Reynolds number Boussinesq flow with system rotation
(e.g. Moeng 1984) and initially no wave effects (McWilliams, Sullivan & Moeng
1997; Sullivan, McWilliams & Melville 2007):

Du
∂t
=−f × u−∇π+ ẑb−∇ · T, (2.1a)

Db
∂t
=−∇ ·B, (2.1b)

∇ · u= 0. (2.1c)

The important new dynamics incorporated in (2.1) is additional forcing from larger-
scale submesoscale density fronts. The LES model includes transport equations: (2.1a)
for momentum ρu and (2.1b) for buoyancy b. The divergence free (incompressible)
condition (2.1c) determines the elliptic pressure variable π. Variables that appear in
(2.1) are Cartesian coordinates x≡ xi= (x, y, z), velocity components u≡ ui= (u, v,w),
rotation vector f = (0, 0, f ) with f the Coriolis parameter and unit vector ẑ in the
vertical direction z. The buoyancy variable is defined in terms of water density: b=
g(ρo− ρ)/ρo where (ρ, ρo) are density and reference density, respectively. We assume
a linear equation of state that relates temperature θ and density: ρ = ρo[1 − β(θ −
θo)] with β the coefficient of expansion and θo a reference temperature. The pressure
variable

π=
p
ρo
+

2
3

e (2.2)

contains a Bernoulli head from the subgrid-scale (SGS) energy expressed as the trace
of the SGS momentum flux e= τii/2.

The LES equations contain unknown SGS momentum and buoyancy fluxes (T ≡
τij, B ≡ bi) and SGS energy e. Numerous recipes are available for parameterizing
these fluxes, and we use the standard eddy viscosity prescriptions τij =−νt(∂ui/∂xj +

∂uj/∂xi) and bi=−νh∂b/∂xi described by Moeng (1984) and Sullivan, McWilliams &
Moeng (1996). The turbulence eddy viscosities (νt, νh) are parameterized in terms of
e, (νt, νh)∼

√
e` where the length scale ` is proportional to the grid mesh spacing ∆,
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but is reduced for strong stratification. To account for non-equilibrium effects at small
scales we also solve an additional prognostic equation for e; this SGS energy equation
includes a standard suite of terms – production, buoyancy, diffusion and dissipation
(Moeng 1984) – and it also includes advection by Stokes drift and Stokes production
(McWilliams et al. 1997; Sullivan et al. 2007).

Periodic boundary conditions are used in horizontal x–y planes for all variables.
At the top of the water (z = 0) the fluid is driven by an imposed wind stress or
surface cooling (see § 3.1) with w= 0. At the lower boundary (z=H), we impose a
sponge layer to suppress reflections from the bottom boundary. A damping term of
the form σd(z)(〈χ〉 − χ) is added to the right-hand side of each transport equation
where 〈χ〉 denotes an average over a horizontal x–y plane: χ = (u, b) as appropriate.
The inverse time scale σd decays to zero quadratically from its maximum value at the
lower boundary over a distance of 0.2H. The maximum value σd(z = H) = cNo/2π
where N2

o = −(g/ρo)dρ/dz is the squared buoyancy frequency of the background
stratification well below the thermocline. For the design conditions of the LES with
stratification No = 5.86 s−3 (see appendix A) we set the empirical constant c = 0.22
and the time scale Td = 1/σd ∼ 81 min. Flow visualization and statistics show that
this damping term has the desired feature of smothering the fluctuations to near zero
in the damping layer near the bottom boundary.

Our algorithms for integrating the LES equations (2.1) are well tested. The
equations are advanced in time using an explicit fractional step method that
enforces incompressibility at every stage of the third-order Runge–Kutta (RK3)
scheme. Dynamic time stepping with a fixed Courant–Fredrichs–Lewy number is
employed, which naturally adapts to a wide range of dynamical processes. The
spatial discretization is second-order finite differences in the vertical direction and
pseudospectral in the horizontal planes. For the present application, the advective
terms in the momentum equations are written in rotational form, while a flux
conserving form is used for the advective terms in the scalar (temperature) equation.
The flow variables are explicitly filtered at each time step, i.e. dealiased, using the
‘2/3’ rule (Moeng & Wyngaard 1988). Further algorithmic details are given by Moeng
(1984), Sullivan, McWilliams & Moeng (1994), Sullivan et al. (1996), McWilliams,
Moeng & Sullivan (1999), Sullivan & Patton (2011), Moeng & Sullivan (2015) and
the references cited therein.

3. Experiments
3.1. Cases

The LES experiments are not crafted as a case study of a specific submesoscale
regime, but rather as an idealization designed to expose the generic dynamics of
cold filament frontogenesis and arrest. In nature, filaments are spatially anisotropic
structures with length-to-width ratios �10, especially during the sharpening phase of
frontogenesis. At the same time, filaments are active in the OBL where the energy
containing scales of turbulence ` are of the order of the boundary-layer depth h
and less 1 < ` < 100 m. The wide scale separation between turbulence and fronts,
1 m–10 km, poses a severe computational challenge as the LES horizontal domain
and resolution need to be simultaneously large enough and fine enough to resolve
crucial scale interactions. The computational box needs to be sufficiently wide so that
the geostrophic currents generated by the density filament are realistic in scale and
magnitude with the resulting low wavenumber turbulent motions unconstrained by the
periodic boundary conditions. At high wavenumbers the resolution needs to be fine
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Case Wind Cooling u∗ w∗ 〈ζ 〉p/f tm xp/L TKE
direction (m s−1) (m s−1) (h)

E East Off 0.01 0 26.1 4.50 0.177 20.9
N North Off 0.01 0 88.0 5.02 0.422 29.4
C No winds On 0 0.0137 114.6 6.13 0.004 48.7

TABLE 1. Simulations and bulk properties. In the table, (tm, xp/L, TKE) are the (time
stamp, cross-front location, TKE) where 〈ζ 〉p reaches its maximum value. Turbulent kinetic
energy (TKE) for (E,N,C) is normalized by (u2

∗
, u2
∗
,w2
∗
), respectively.

enough so that most of the OBL turbulence is resolved with only a small fraction of
the flux carried by the SGS model near the water surface.

Thus, given the goals of the simulations and the large aspect ratio of typical
filaments we adopt a 2-D (x–z) model of a filament for our LES modelling. The
choice of domain size is initially guided by the results in McWilliams et al. (2015)
and finally by extensive flow visualization and analysis of LES solutions in boxes
of varying horizontal dimensions (Lx, Ly). The down-front domain width Ly proves
to be an important choice as we find Ly needs to be large enough to support
surprising large-scale anisotropic turbulence (see § 5 and the linear stability analysis
of McWilliams, Molemaker & Olafsdottir (2009b)). Our explorations, although not
exhaustive, lead us to pick the domain (Lx, Ly, H) = (12, 4.5, −0.25) km with
discretization (Nx,Ny,Nz)= (8192,3072,256)∼6.5×109 grid points. This corresponds
to a uniform horizontal spacing 1x = 1y = 1.46 m. The vertical grid is smoothly
stretched with finer resolution near the water surface 1z = [0.5 − 1.68] m; the
vertical spacing between neighbouring cells is increased by a constant stretching
factor K = 1zk+1/1zk = 1.0048, for k = 1, Nz. Given the filament alignment in
the computational box, the coordinates (x, y, z) are also referred to as (cross-front,
down-front, vertical) directions.

The expectation is that CFF will depend on the wind magnitude and direction
based on the LES results for warm fronts described by Hamlington et al. (2014) and
Suzuki et al. (2016). In the present work with cold filaments, the external forcing
of the OBL is by surface winds or by surface cooling. Wind stress is applied in
either the west-to-east or south-to-north directions with a water side friction velocity
u∗ = 0.01 m s−1 with zero surface cooling Q∗. This corresponds to surface winds of
U= 8.5 m s−1 with a drag coefficient Cd∼ 1.2× 10−3 based on the relationship given
by Large & Pond (1981). To examine the robustness of our findings, we consider a
third simulation with u∗=0 and a finite surface cooling of 100 W m−2, which equates
to a kinematic surface flux Q∗ = 2.38× 10−5 K m−1 s−1. Later, turbulence quantities
are normalized by (u∗, w∗) in the non-zero (wind, cooling) cases, respectively. The
Deardorff (1972a) convective velocity scale is w∗= (β|hi|Q∗)1/3, where hi=−66.5 m
is the initial OBL depth before the submesoscale filament is introduced (§ 3.3). The
velocity scales of the external forcing are used to normalize the velocities since
the properties of the imposed filament are identical across the simulations. In all
simulations the Coriolis parameter f = 7.81× 10−5 s−1. To streamline the discussion
the following acronyms are introduced: E denotes the simulation with west-to-east
(or cross-front) winds, N denotes the simulation with south-to-north (or down-front)
winds and C denotes the simulation driven by surface cooling. Table 1 provides a
summary of the simulations and selected bulk statistics.
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Among the possible instabilities for submesoscale fronts and filaments is the so-
called mixed layer instability (MLI; Boccaletti et al. 2007; Fox-Kemper et al. 2008).
MLI is a variant of Eady’s classical baroclinic instability problem with uniform mean
stratification NML and mean vertical shear dV/dz, and its most unstable eigenmodes
have a horizontal scale near the mixed layer deformation radius, RML=NMLHML/f . In
interpreting its relevance to a continuously stratified fluid with vertical profile N(z),
the estimation of NML is somewhat ambiguous. In our far-field initial conditions at
t= 2 h (§ 5.1), HML= 66 m, and the N values in the middle of the mixed layer or at
the bottom in the upper pycnocline are less than 0.3 or 7× 10−3 s−1, respectively; the
corresponding RML estimates are less than 0.2 or 6 km, respectively. Also the fastest
growing MLI time scale using equation (3) of Fox-Kemper et al. (2008) gives an
e-folding scale of 14.6 h which is long compared to the 15 h of simulation considered
here. Thus, the posing of our problems here with (Lx, Ly)= (12, 4.5) km is at least
marginally large enough to resolve an active MLI mode if one were to arise in the
more complicated filament flow field and active boundary-layer turbulent mixing in
our simulations; yet we see no evidence of MLI in our solutions with its signature of
〈w′b′〉> 0, see §§ 5.3 and 5.4.

3.2. Thermal wind
The structure of the mean buoyancy field and the resulting geostrophic pressure
gradients (thermal wind) used in the LES follow the design outlined by McWilliams
et al. (2015). Given a 2-D buoyancy field b(x, z), the interior companion mean
geostrophic shear profile is (e.g. Gill 1982)

sg(x, z)=
1
f

ẑ×∇⊥b, (3.1)

where the subscript ⊥ denotes a horizontal vector in the (x, y) plane. Then the
geostrophic current ug = (0, vg) is

ug(x, z)=
∫ z

H
sg dz′ (3.2)

taking the current deep in the water ug(z=H)= 0.
In our prescription of the buoyancy, its cross-front variation at the water surface

z = 0 is the smooth function bs(x) = bo − δbo exp[−(x/L)2], where bo is a constant
background value, δbo is the buoyancy jump, L is the front scale and x = 0 is
the location of the front centreline. Given the cross-front length Lx = 12 km of
our computational box, we choose (δbo, L) = (0.785 × 10−3 m s−2, 2 km) as a
compromise between realism and computational cost. These values result in a
temperature jump of 0.48 K across a symmetric front of width 2L = 4 km with
maximum and minimum geostrophic currents ±0.25 m s−1. Further details of the
buoyancy field specification in the OBL interior are given in the appendix A.

3.3. Turbulent filament initialization
A multi-step recipe is used to initialize the filament simulations. First, simulations
are started with the frontal parameters set to zero with turbulence triggered by small
random perturbations to the buoyancy and current fields. Essentially, these pre-front
LES are simulations of a spatially homogeneous OBL in a very large horizontal
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FIGURE 1. Average currents from the homogeneous (pre-front) runs used to initialize
the simulations with cold filaments. (u, v)/u∗ are indicated by (red, black) colours. The
(solid lines, open circles) are current profiles obtained for (E,N) winds, respectively. The
mixed layer depth hi =−66.5 m. Because of the rotational symmetry of the horizontally
homogeneous problem, (u, v) from E equals (v,−u) from N. These profiles are obtained
by averaging over complete horizontal x–y planes and by averaging over five hours. For
clarity the open circles are shown at every second grid level for case N. The horizontal
currents for the cooling simulation C are zero (not shown).

domain with wind stress or cooling either on or off from the outset depending on the
desired attributes of the final frontal simulation. The simulations are integrated for
more than 30 physical hours, in terms of a non-dimensional time T = tu∗/|h| > 20,
which leads to well-developed turbulence. Statistics from the pre-front simulations
are in good agreement with previous results, e.g. McWilliams et al. (1997), Sullivan
et al. (2012). Vertical profiles of the average horizontal currents (u, v) are shown
in figure 1. Here the averaging is over horizontal planes and over the time interval
25 < t < 30 h; this averaging differs from that used in the presence of a filament
(§ 4).

Next, the last volume from the pre-front simulations serves as the restart volume
for the frontal calculations with the following modifications. First, the mean buoyancy
field in the restart volume is replaced with the three-layer horizontal and mean vertical
frontal structure b(x, z) given by (A 1). A three-dimensional buoyancy field is then
generated by adding the turbulent buoyancy fluctuations from the restart volume to
b(x, z). This modified restart volume contains realistic turbulent fields plus the desired
mean buoyancy field, however, it is lacking secondary circulations and in particular
the central downwelling current, which is a key feature initiating frontogenesis. To
stimulate secondary circulations, the simulations are next integrated forward in time
holding the frontal buoyancy field fixed until a downwelling jet develops, this avoids
slumping of the buoyancy field. We monitor the motions near the thermocline and find
a vigorous downwelling jet and secondary circulations develop after approximately
1.8 h. Finally, at this point in the initialization all fields are allowed to evolve freely
in time. The subsequent analysis references this special time as t = 0 h. Thus the
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initial conditions for our frontal calculations are more complete than the thermal wind
(geostrophic) balance used by Skyllingstad & Samelson (2012) and Hamlington et al.
(2014) who superimpose frontal structures on top of an initially laminar flow. In the
mixed layer, the initial state of our LES is an unsteady analogue to the TTW balance
described by McWilliams et al. (2015) as the fields contain fully developed resolved
turbulence and secondary circulations (e.g. figure 3 and the discussion in § 5.1). The
simulations are integrated for more than 20 h past the start time t= 0.

In terms of the turbulent velocity scales (u∗, w∗) based on the surface wind and
buoyancy forcing that we use for normalizing the simulation results (as conventional
in boundary-layer turbulence), the initial geostrophic velocity maximum is 15–20 times
larger.

4. Flow decomposition
The spatial inhomogeneity and temporal evolution of a two-dimensional density

front add complexity to the analysis of the submesoscale circulations and turbulence
in the OBL: the filaments are both temporally transient and inhomogeneous in x–z
directions. Thus, we choose the down-front domain Ly � |h| to capture large scales
of motion and ensure flow homogeneity in the down-front direction. This has the
added benefit of reducing random errors in computation of statistics. To diagnose
mean and turbulence fields in our statistics and flow visualization we project the flow
fields onto an x–z plane by spatial averaging in the down-front direction; Skyllingstad
& Samelson (2012) also use this type of averaging. Hereafter this projection is
referred to as a the ‘down-front average’ or ‘y’ average and is indicated by 〈·〉. Note
down-front averaging is a clean technique for simply separating the fields into mean
and turbulence components without adding assumptions about scale separation. It does
not explicitly separate submesoscale turbulence from boundary-layer turbulence, and
the projection does not track possible down-front meandering of the front. However,
we find the front meandering is relatively modest for large Ly. The LES code is
specially instrumented to compute down-front average statistics (defined below) on
the fly with x–z planes of statistics archived at much finer time resolution compared
to the archiving of complete 3-D volumes.

The down-front projection of the velocity and buoyancy fields onto an x–z plane
naturally leads to the flow field decompositions

u(x, t)= 〈u〉(x, z, t)+ u′(x, t), b(x, t)= 〈b〉(x, z, t)+ b′(x, t), (4.1a,b)

where means and fluctuations are denoted by 〈·〉 and (·)′, respectively. Also 〈u〉,
similarly for 〈b〉, can be further decomposed into a background value that varies only
with z and a SC that varies with (x, z). Application of y averaging to products of
flow variables, of course, leads to products of average fields and, most importantly,
non-zero average co-variances between the instantaneous turbulence fields, e.g.

〈uv〉 = 〈u〉〈v〉 + 〈u′v′〉, 〈ub〉 = 〈u〉〈b〉 + 〈u′b′〉, (4.2a,b)

where 〈〈 f 〉〈g〉〉 ≡ 〈 f 〉〈g〉 for arbitrary ( f , g). The correlations between mean fields
are 〈 f 〉〈g〉 6= 0. A main motivation for decomposing the flow fields into means and
turbulent fluctuations is to identify the crucial velocity–velocity and velocity–buoyancy
correlations that couple the turbulence, from a statistical perspective, to the equations
for the average circulations. Furthermore, the information contained in the average
equations provides a guide as to which turbulence fields, and thus which turbulence
dynamics, lead to frontal onset, arrest and decay. The flow decomposition employed
here is essentially the technique of ‘phase averaging’ first proposed by Hussain &
Reynolds (1970) for the analysis of turbulent shear flows containing an organized
wavy perturbation.
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4.1. Down-front average equations
Applying y averaging to the momentum and buoyancy equations (2.1a) and (2.1b),
decomposing the flow fields according to the prescription (4.1), and invoking the
averaging rule given by (4.2) leads to the equation set:

∂

∂t
〈u〉 = −

∂

∂x
(〈u〉〈u〉 + 〈u′u′〉 +

〈p〉
ρo
+

2〈e〉
3
+ 〈τ11〉)

−
∂

∂z
(〈u〉〈w〉 + 〈u′w′〉 + 〈τ13〉)+ f 〈v〉, (4.3a)

∂

∂t
〈v〉 = −

∂

∂x
(〈u〉〈v〉 + 〈u′v′〉 + 〈τ12〉)

−
∂

∂z
(〈v〉〈w〉 + 〈v′w′〉 + 〈τ23〉)− f 〈u〉, (4.3b)

∂

∂t
〈w〉 = −

∂

∂x
(〈u〉〈w〉 + 〈u′w′〉 + 〈τ13〉)

−
∂

∂z

(
〈w〉〈w〉 + 〈w′w′〉 + 〈τ33〉 +

〈p〉
ρo
+

2〈e〉
3

)
+ 〈b〉, (4.3c)

∂

∂t
〈b〉 = −

∂

∂x
(〈u〉〈b〉 + 〈u′b′〉 + 〈τ1b〉)

−
∂

∂z
(〈w〉〈b〉 + 〈w′b′〉 + 〈τ3b〉). (4.3d)

We emphasize that these expressions for the average currents and buoyancy are not
completely general but are specific to our problem posing; they are obtained by
assuming a 2-D front varying only in the x and z directions. The right-hand side of
the equations are written in flux conserving form which readily allows identification
of the bulk effects that lead to frontogenesis and frontolysis. For an x–y horizontally
homogeneous flow (i.e. no front), cross-front derivatives disappear in (4.3), 〈w〉 = 0,
and then (4.3) collapses to the standard 1-D Ekman layer equations for currents
and buoyancy (e.g. McWilliams et al. 1997). In general, the standard 1-D Ekman
momentum and volume transport balances are disrupted locally by the streamwise
divergence of mean and turbulent fluxes in (4.3).

5. Interpretation of results
To provide a roadmap of the lifecycle of frontogenesis we show bulk statistics

from simulations (E, N, C) near the water surface over the time period 0< t < 15 h
in figure 2. In each simulation the time variation can be roughly divided into an
initialization or onset period, an arrest period and a decay period. We organize the
narrative based on these three time periods. We also refer to specific time stamps
in figure 2: t = 2 h is slightly past the filament initialization, t = tm is the time of
arrest where the vertical vorticity 〈ζ 〉p reaches its maximum value and t= 9 h is well
into the decay period. Sample statistics collected at time stamp tm are summarized in
table 1. An in-depth interpretation of figure 2 is postponed to § 5.2.

5.1. Initial mean circulations and TTW
Our interpretation of the LES solutions begins with a discussion of the average flow
fields at t= 2 h. Adopting a TTW approximation (Gula et al. 2014; McWilliams et al.
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FIGURE 2. Peak average vertical vorticity 〈ζ 〉p as a function of time for the different
external forcings in table 1: (E, N, C) correspond to (blue, black, red) lines, respectively
(a). Cross-front location xp/L of 〈ζ 〉p (b), xp tracks the movement of the cold filament
centre. Turbulent kinetic energy TKE (c) normalized by (u2

∗
, u2
∗
, w2

∗
) in (E, N, C),

respectively. The open circle on the ζ -curves marks the time stamp t= tm of the maximum
vertical vorticity.

2015), the x–z spatial distribution of horizontal and vertical currents in our LES is
approximately described by the balance between pressure gradients, Coriolis force and
divergence of turbulent momentum fluxes:

f 〈v〉 ≈
∂

∂x
〈p〉
ρo
+
∂

∂z
(〈u′w′〉 + 〈τ13〉), (5.1a)

f 〈u〉 ≈−
∂

∂z
(〈v′w′〉 + 〈τ23〉), (5.1b)

∂〈w〉
∂z
≈−

∂〈u〉
∂x

. (5.1c)

The above TTW balance follows from (4.3) by neglecting time tendency and
cross-front gradients of velocity fields and by utilizing the divergence-free condition
to determine the average vertical velocity. Turbulent mixing in the OBL, specifically
vertical turbulent momentum flux, is a first-order effect that disrupts classical thermal
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FIGURE 3. Average fields at t = 2 h for simulation E. The fields displayed from top to
bottom are temperature 〈θ − θo〉 with the colour bar in K, followed by down-front velocity
〈v〉, cross-front velocity 〈u〉 and vertical velocity 〈w〉. In the far field the 〈u(x, z), v(x, z)〉
currents are equivalent to the homogeneous currents for the east wind shown in figure 1.
Colour bars for the velocity fields are in units of m s−1. The averaging operator 〈·〉 is
defined in § 5, and the θ nudging, described in § 3.3, has been applied for 1.8 h before
t= 2. For clarity, contour lines of 〈w〉 are not shown in figures 3(d), 4(d) and 5(d).

wind balance in (3.1). Turbulence is thus a pivotal ingredient that couples horizontal
and vertical currents and kick starts a secondary circulation in the OBL.

Snapshots of the average flow fields in an x–z plane for simulations (E, N, C) are
shown in figures 3–5, respectively. The visualization depicts the main features of the
initialization: a cold dense filament of total width 2L∼ 4 km fills the boundary layer
to a depth of ∼−66 m. The density anomaly is partly balanced by down-front currents
〈v〉 with large (negative, positive) side lobes (left, right) of the front centreline x= 0.
Secondary currents 〈u, w〉 develop in the boundary layer that feature a broad central
downwelling jet with weaker upwelling in the far field with opposing cross-front
branches left and right of the front centreline in the surface layer. Also, figures 3
and 4 show significant asymmetry in the horizontal currents and temperature field
about the filament centreline because of wind forcing. The vertical velocity w is
well resolved in the LES but its fluctuations w′ vary rapidly over small scales with
amplitude nearly 10 times 〈w〉. Thus the apparent ‘noise’ in figures 3(d), 4(d), 5(d) is
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FIGURE 4. Average fields at t= 2 h for simulation N. The fields displayed from top to
bottom are temperature 〈θ − θo〉 with the colour bar in K, followed by down-front velocity
〈v〉, cross-front velocity 〈u〉 and vertical velocity 〈w〉. In the far field the 〈u(x, z), v(x, z)〉
currents are equivalent to the homogeneous currents for the north wind shown in figure 1.
Colour bars for the velocity fields are in units of m s−1.

simply random error resulting from limited down-front y averaging. These small-scale
fluctuations are damped by averaging over an even wider y domain.

Secondary circulations (or cells) are a key staple of TTW and significantly influence
our interpretation of frontogenetic evolution with OBL turbulence. They can be
inferred from the secondary currents 〈u,w〉, but to identify them more clearly in our
simulations we present contours of the non-divergent ageostrophic two-dimensional
streamfunction ψ computed from 〈u〉 for the different simulations at t = 2 h in
figures 6(a), 7(a), and 8(a). Here

ψ(x, z)=
∫ z

H
〈u〉(x, z′) dz′, (5.2)

with the lower boundary condition ψ(x,H)= 0. It is now readily apparent that as part
of the turbulent filament initialization a pair of coherent SC emerge (left, right) of the
filament centreline at t = 2 h independent of the external forcing. Because the cross-
front 〈u〉 current is an order of magnitude larger than the downwelling 〈w〉 current,
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FIGURE 5. Average fields at t= 2 h for simulation C. The fields displayed from top to
bottom are temperature 〈θ − θo〉 with the colour bar in K, followed by down-front velocity
〈v〉, cross-front velocity 〈u〉 and vertical velocity 〈w〉. The fields are symmetric about x=0
within sampling error. In the far field the currents 〈u(x, z), v(x, z)〉 = 0 match the average
currents for a homogeneous OBL driven by surface cooling. Colour bars for the velocity
fields are in units of m s−1.

combined with the wide horizontal and thin vertical scales, the rotational pattern of
the secondary circulations take on a vertically thin elliptical shape.

It is important to notice that the amplitude and streamline pattern of the secondary
circulations with surface cooling (no wind stress), shown in figures 5 and 8, are
qualitatively similar to those in (E, N). Remarkably, starting from fully developed
(convective) turbulence with no net vertical momentum flux in C, a coherent secondary
circulation and non-zero resolved turbulent vertical momentum fluxes 〈u′w′, v′w′〉 are
generated by turbulence–filament interactions as shown in figure 9. With no wind
stress, these fluxes approach zero at z= 0 and are odd-symmetric about the filament
centreline. The maximum absolute values occur in the upper OBL, near z ∼ −20 m
and are noticeably offset left and right of x = 0. For z > −20 m the divergence
−∂z〈v

′w′〉 generates (positive, negative) secondary u currents on the (left, right) sides
of the filament centreline according to (5.1b); also see figures 5 and 9. Thus, near
the water surface turbulent momentum fluxes generate converging u currents at the
filament centreline. For z < −20 m, the divergence −∂z〈v

′w′〉 changes sign causing
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FIGURE 6. Contours of the two-dimensional ageostrophic overturning streamfunction ψ
in the x–z plane computed from the average velocity 〈u〉 at three different time stamps
for the simulation with cross-front winds E. t = 2 h (a), tm = 4.50 h time of maximum
vertical vorticity (b), t= 9 h a late time past the peak vorticity (c). In (a) the horizontal
vectors indicate the flow direction at the top of the secondary circulation. The colour bar
is in units of m2s−1.

the cross-front currents to flow away from the filament centreline. The cross-front
flux 〈u′w′〉 is smaller in amplitude compared to its down-front counterpart, and the
flux divergence ∂z〈u′w′〉 tends to oppose the geostrophic current vg on either side of
the filament; hence turbulence re-enforces the imbalance 〈v〉 6= vg. The spatial pattern
of 〈w〉(x, z) follows from (5.1c). At t= 2 h, the spatial distribution of 〈u′w′, v′w′〉 for
(E,N) are qualitatively similar to those in C (not shown).

Within sampling error, the 〈u, θ〉 fields in the cooling simulation C display
appropriate odd–even symmetries about x = 0, i.e. 〈u, v〉 are odd functions while
〈w, θ〉 are even functions. In contrast, in the simulations with cross-front and
down-front winds (E, N) the magnitudes and patterns of the 〈u, v〉 currents are
noticeably asymmetrical, exhibiting a wind direction dependence about the filament
centreline. To a first approximation this broken symmetry can be understood as a
superposition of secondary circulations, as in C, and Ekman boundary-layer currents
(see also McWilliams et al. 2015). To expand on this idea, consider the horizontal
mean currents (u, v) in figure 1 from our spatially homogeneous boundary layers
used to initiate the frontal simulations. Inspection of these curves shows the expected
results for a homogeneous OBL (e.g. McWilliams et al. 1997). With cross-front
winds the Ekman v current is negative, rotated to the right of the wind and decays
monotonically with depth. Meanwhile, its companion Ekman u current spirals with
depth; u is positive and surface intensified for 0 > z > 0.25h but crosses over to
negative values near z∼ 0.25h so that the bulk integral

∫
u dz= 0. Both (u, v) decay

to zero near h. Because of symmetries in the forcing, (v,−u) for N = (u, v) for E.
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FIGURE 7. Contours of the two-dimensional ageostrophic overturning streamfunction ψ
in the x–z plane as in figure 6 but for the simulation with down-front winds N. t= 2 h
(a), tm = 5.02 h time of maximum vertical vorticity (b), t= 9 h a late time past the peak
vorticity (c). The colour bar is in units of m2s−1.
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FIGURE 8. Contours of the two-dimensional ageostrophic overturning streamfunction ψ
in the x–z plane as in figure 6 but for the simulation driven by surface cooling C. t= 2 h
(a), tm = 6.13 h time of maximum vertical vorticity (b), t= 9 h a late time past the peak
vorticity. The colour bar is in units of m2s−1.
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FIGURE 9. Resolved turbulent fluxes 〈u′w′〉 (a) and 〈v′w′〉 (b) from simulation C at t=2 h.
Fluxes are normalized by w2

∗
, and the colour bar is in non-dimensional units. A vertical

profile of the turbulent flux averaged between −250< x<−600 m (solid lines) and 250>
x> 600 m (dashed lines) is shown in the right frame. The fluxes on the right side of the
front are multiplied by −1 to better compare with the left side.

Further comparison of the streamfunction patterns in figures 6 and 7 shows
cross-front Ekman transport in the far field away from the filament in (E, N)
especially in the down-front wind simulation. However, near the filament the coherent
cells significantly modify the Ekman flow. In N, the secondary circulations are slightly
offset vertically with the cell centre on the right-hand side lying closer to the water
surface. Apparently the boundary-layer Ekman flow and secondary circulations work
constructively/destructively on the left-/right-hand side of the filament. It is interesting
to trace the complex trajectory of near-surface streamlines in the down-front wind
simulation. For example, on the far left-hand side of the domain near z ∼ −25 m
the streamlines are initially squeezed in the vertical direction as they approach the
filament centre, a consequence of the enhanced u current in the secondary circulations.
Then the streamlines smoothly cross the filament axis, dive deep into the boundary
layer tracking out a trajectory below the secondary circulations on the right-hand side
and finally re-surface well to the east of the secondary circulation. Notice that in the
region 0 < x < 3000 m, the cross-front flow is near zero or slightly negative in the
upper boundary layer, i.e. the return current from the secondary circulation blocks
the cross-front Ekman boundary-layer transport, also see figure 10. In the E case,
the boundary-layer v current favours/opposes the geostrophic current vg left/right of
x = 0 over the entire mixed layer. At the same time, the boundary-layer u current
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FIGURE 10. Average currents 〈u, v〉 indicated by (red, blue) lines (a–c), and average
temperature 〈θ − θo〉 (d–f ) near the water surface 0 < −z < 5 m. Profiles are shown at
t = 0 h (dotted lines) and time tm where the peak vertical vorticity 〈ζ 〉p is a maximum
(solid lines). The currents in simulations (E, N, C) are normalized by (u∗, u∗, w∗),
respectively, and the temperature is normalized by the temperature jump between the far
field and the filament centre |δθo| = 0.48 K (see appendix A).

acts in a differential manner, it (strengthens, weakens) the secondary u circulation in
the surface layer, but has an opposite effect below z< 0.25h.

The mean currents 〈u, v〉 and their momentum fluxes in a near-surface layer of depth
−5 < z < 0 m at t = 0 are presented as line plots in figures 10 and 11; they add
further support to our interpretation of the streamfunction patterns. Because 〈u〉〈u〉
and 〈u〉〈v〉 are nonlinear products the mean current fluxes are even more strongly
asymmetrical functions about x = 0 with notably bigger amplitude compared to the
currents; consequently the cross-front x divergence and time tendencies in (4.3) are
also larger on the left side of the filament. The imbalances between the left and right
sides at t= 0 hold, independent of the wind direction E or N, because each involves
some Ekman flow from west to east. The asymmetry, of course, would be shifted to
the right side of a filament for an east-to-west cross-front wind or a north-to-south
down-front wind.

The constructive–destructive superposition of the Ekman flow and secondary
circulations has important consequences. Because of the competing effects, the
horizontal buoyancy flux is asymmetrical but directed inwards from both filament
edges towards the cool filament centre, i.e. the boundary layer re-stratifies from both
edges. The mean transport of warm water is strong/weak from the left/right filament
edges. This is an opposite result compared to the findings reported by Thomas &
Lee (2005), Skyllingstad & Samelson (2012), Thomas et al. (2013), Hamlington et al.
(2014) and others who find that their filament edges are stable and unstable because
of Ekman buoyancy flux for weak warm filaments. From a stratification perspective,
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FIGURE 11. Average fluxes 〈u〉〈u〉 (a,b) and 〈u〉〈v〉 (c,d) for simulations (E, N, C),
indicated by (blue, black, red) lines, respectively. (a,c) Compare results at t = 0 and
(b,d) at the time of maximum 〈ζ 〉p. Fluxes in simulations (E, N, C) are normalized by
(u2
∗
, u2
∗
,w2
∗
), respectively.

the turbulent flow near the water surface is in a weakly stable (left side) or marginally
stable (right side) regime because of the vigorous secondary circulations induced by
turbulence at t = 0. Potent SC inhibit convective overturning at a filament edge and
thus fundamentally alter the type of instability that leads to arrest and decay in cold
filament frontogenesis driven by cross-front or down-front winds or surface cooling,
see §§ 5.2 and 5.3.

A scaling estimate of the competition between Ekman buoyancy flux and the TTW
SC can be made based on the estimates in McWilliams (2017). For an Ekman layer
depth comparable to the mixed layer depth (figure 1), the cross-front Ekman velocity
∼u2
∗
/f |h|, while the linear TTW balance velocity is ∼νvvg/fh2, where h is the mixed

layer depth, vg is the geostrophic down-front velocity, and νv is the diagnosed vertical
eddy viscosity, −〈u′w′〉 · ∂z〈u〉/(∂z〈u〉)2. With characteristic values of u∗= 0.01 m s−1,
f = 0.9 × 10−4 s−1, h = −70 m, vg = 0.25 m s−1 and νv = 0.1 m2 s−1, the Ekman
velocity estimate is ≈0.02 m s−1, while the TTW velocity estimate is a larger value
of ≈0.06 m s−1. Thus, for stronger frontal velocity and turbulent mixing and weaker
wind stress, the SC can block Ekman buoyancy flux, as in the cases here (figures 6–8),
even when the wind is down-front (case N) and the Ekman transport is nominally
across the front (case N). In general because of SC the standard (far-field) 1-D Ekman
momentum and volume transport balances do not hold near the filament.

Another widely discussed feature of a down-front wind is an extraction of potential
vorticity by the surface stress and vertical momentum mixing, leading to negative
potential vorticity, symmetric (or centrifugal) instability and enhanced turbulence
(Thomas 2005; Taylor & Ferrari 2009). Figure 12 shows the Ertel potential vorticity
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FIGURE 12. Average potential vorticity (PV) estimated from (5.3) at t = 2 h for cases
(E, N, C) shown in panels (a–c), respectively. The colour bar for PV is in units of
s−3
× 108.

associated with the y-averaged fields,

〈q〉 =
(

f +
∂〈v〉

∂x

)
∂〈b〉
∂z
−
∂〈v〉

∂z
∂〈b〉
∂x

, (5.3)

at t = 2 h for all three cases. As expected 〈q〉 is smaller in the boundary layer than
in the pycnocline below. The action of turbulent overturning motions and entrainment
is also evident at the base of the boundary layer. Case N is distinguished by a
modestly negative region near the surface under the northward jet (i.e. the one with
a down-front wind). This confirms the expected potential vorticity extraction and sets
up a sufficient condition for linear, inviscid symmetric instability. However, the latter
is not clearly evident in our case N simulation, implying that the other sources of
turbulence are dominant here and perhaps that strong mixing inhibits its occurrence.
As frontogenesis proceeds even this degree of 〈q〉< 0 abates in all three cases.

5.2. Frontogenetic progression
Section 5.1 shows that in the onset phase a coherent secondary circulation develops
and persists in the LES against a background of fully developed OBL turbulence. A
next step is then to examine the impact of fully resolved turbulent momentum and
buoyancy fluxes on the sharpening of the cross-filament buoyancy and horizontal
velocity gradients and the evolution of secondary circulations. To describe the
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dynamics of frontogenesis beyond t > 2 h we need to include time tendency and
cross-front divergences in (4.3) in our discussion. Assuming fine grids and hence
small SGS contributions, the important new terms to consider are then the following:

∂

∂t
〈u〉 ∼−

∂

∂x
(〈u〉〈u〉 + 〈u′u′〉)+ · · · , (5.4a)

∂

∂t
〈v〉 ∼−

∂

∂x
(〈u〉〈v〉 + 〈u′v′〉)+ · · · , (5.4b)

∂

∂t
〈w〉 ∼−

∂

∂x
(〈u〉〈w〉 + 〈u′w′〉)+ · · · , (5.4c)

∂

∂t
〈b〉 ∼−

∂

∂x
(〈u〉〈b〉 + 〈u′b′〉)+ · · · . (5.4d)

The lifecycle of frontal onset, arrest and decay in our simulations (E, N, C) is
demonstrated in figure 2. Here we follow Capet et al. (2008), Gula et al. (2014)
and McWilliams et al. (2015) and use vertical vorticity as an informative metric
for frontal tendency. Figure 2 compares the temporal variation of the peak vertical
vorticity 〈ζ 〉p(t)= ∂x〈v〉/f (or peak local Rossby number), its cross-front location xp(t)
and the resolved turbulent kinetic energy (TKE = 〈u′iu

′

i〉/2) at the time and location
of 〈ζ 〉p over the time period 0< t< 15 h. These are surface layer statistics obtained
by y-averaging along with spatial averaging over a shallow layer −5 < z < 0 m. To
illustrate changes to the OBL properties away from the surface we also track the
temporal evolution of the minimum downwelling amplitude 〈w〉min at 〈ζ 〉p near the
mid-OBL depth z∼−30 m in figure 13.

During the onset phase 0 < t < 2 h, 〈ζ 〉p(t) is relatively flat or shows a modest
rise, it then undergoes rapid intensification reaching maximum values >80 in the time
period 2 < t < 6.0 h for (N, C). A much longer quasi-steady arrest and decay over
the next 10 h follows the onset phase. The explosive growth of 〈ζ 〉p demonstrates
that frontogenesis occurs in each simulation, but the time tm of the maximum vertical
vorticity and its location xp(tm) depend on the external forcing. In the onset phase,
xp(t) is nearly constant and shifted to the east in (E, N) compared to the no-wind
simulation C; this cross-front drift of the upper OBL is also apparent in figures 14–16.
As time advances t > tm, xp(t) continues to drift eastward in simulation N and is
evidence of bulk mixed layer cross-front transport during frontogenesis.

Broadly, the lifecycles of TKE(t) and 〈w〉min(t), statistics evaluated at xp(t), are
similar for each simulation. Notice that −〈w〉min and 〈ζ 〉p are positively correlated
over the entire lifecycle hinting that amplification of vertical vorticity is closely linked
to the strength and coherence of the downwelling in the secondary circulation. TKE
and 〈ζ 〉p are temporally well correlated up to tm, but with the maximum TKE slightly
time delayed compared to 〈ζ 〉p. Quantitatively, the statistics in figure 2 are, however,
dependent on the particular external forcing, and thus implicitly on the turbulence.

The four panel plots of the average flow fields 〈u, θ〉 in figures 14–16, and also the
line plots in figure 10, highlight the rapid changes to the flow fields that occur during
frontogenesis for the different simulations at t = tm. First, when the filament width
narrows to ` < 100 m, the frontal dynamics, secondary circulations and turbulence
act as a closely coupled system. The left and right secondary circulations feedback
on each other as they both enhance the central downwelling jet which then further
intensifies the surface return currents. The temperature and velocity fields in C
retain their even–odd symmetry about x = 0, but now the secondary circulations
are amplified while separated by sharp gradients over a narrow horizontal distance.
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FIGURE 13. Minimum average vertical velocity 〈w〉min in the middle of the OBL z ∼
−30 m at the time and spatial location of 〈ζ 〉p in figure 2. Results for simulations
(E,N,C) are indicated by (blue, black, red) lines, and the vertical velocity is normalized
by (u∗, u∗, w∗), respectively. The open circle on each line marks the time of maximum
vertical vorticity tm in figure 2.

Steep vertical gradients in the temperature and velocity fields are also observed
at the thermocline. Based on figures 14 and 15, (and also 10) we can infer the
increasing importance of secondary circulations in CFF with surface winds. Since
the wind stress, and hence the far-field Ekman flow, is held constant in time the
increased amplitude of the currents left and right of the filament must result from an
intensification of the secondary currents. On the right-hand side of the filament the
u currents in all simulations become more negative under the action of frontogenesis.
Thus, the cross-front Ekman flow at t= tm is further inhibited compared to the results
at t= 2 h. The streamfunctions at t= tm, shown in figure 6(b), 7(b) and 8(b), support
our hypothesis of boundary-layer-induced horizontal frontogenesis. The secondary
cells remain very coherent and elongated in the x direction, and are now confined
entirely within the OBL −z < |h|; their cross-front separation has also noticeably
narrowed. Observe that in simulation N, the cross-front flow from the secondary
circulation on the right-hand side of the filament xp < x< 3000 m opposes and blocks
the far-field Ekman flow. Overall these changes in the secondary circulations mimic
the intensification in 〈ζ 〉p and furthermore imply an intensification of turbulence
according to a TTW balance (5.1), also see § 5.3.

The secondary circulations also impact the buoyancy (temperature) in the cold
filament. Figure 10(d–f ) shows that during frontogenesis the cold centre warms from
both filament edges, but the amount of warming is asymmetrical for cases driven by
surface winds. As might be expected based on the cross-front current profiles, the
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FIGURE 14. Average fields at tm = 4.5 h for simulation E (cf. figure 3). The fields
displayed from top to bottom are temperature 〈θ − θo〉 with the colour bar in K, followed
by down-front current 〈v〉, cross-front current 〈u〉 and vertical velocity 〈w〉. Colour bars
for the velocity fields are in units of m s−1.

warming of the left filament edge in E and N is greater than the warming from the
right-hand side. Again this implies that the filament edges are primarily in a regime
of (weak) stable stratification for (E,N,C). Also, one clearly observes how turbulent
mixing has weakened the initial buoyancy anomaly both in terms of its width and
strength at t= tm.

McWilliams et al. (2015) (see (13)) shows that the time tendency of 〈ζ 〉p depends
on horizontal advection, and thus we next examine the cross-front variation of the
mean horizontal currents and their fluxes in our solutions at time tm, see figures 10
and 11. As expected, the amplitudes of both horizontal currents undergo amplification
left and right of the filament centreline, but the most outstanding feature is the
significant sharpening of their cross-front gradients during the onset phase 0< t< tm.
In horizontally induced frontogenesis the cross-front phase relationship between 〈u〉
and 〈v〉 is critical as the currents and secondary circulations contribute to nonlinear
horizontal fluxes 〈u〉〈u〉 and 〈u〉〈v〉 in (5.4a), (5.4b). For example, at time tm the
currents are in phase such that the fluxes 〈u〉〈u〉 and 〈u〉〈v〉 have steep (negative,
positive) slopes, respectively, just left of the filament centreline in all three simulations,
i.e. the divergences −∂x〈u〉〈u〉 and −∂x〈u〉〈v〉 are frontogenetic inducing (positive,
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FIGURE 15. Average fields at tm = 5.02 h for simulation N (cf. figure 4). The fields
displayed from (a) to (d) are temperature 〈θ − θo〉 with the colour bar in K, followed
by down-front current 〈v〉, cross-front current 〈u〉 and vertical velocity 〈w〉. Colour bars
for the velocity fields are in units of m s−1.

negative) time tendencies ∂t〈u〉 and ∂t〈v〉 on the left-hand side of the filament. These
time tendencies result in positive feedback to the mean currents re-enforcing the
frontogenesis. Also observe that the mean co-variance flux 〈u〉〈v〉 in simulation C is
lower in amplitude than in simulation E, which at first blush seems counterintuitive
given the higher values of 〈ζ 〉p for C shown in figure 2. However, the cross-front
distribution of 〈u〉〈v〉 is identically symmetric in C; this same flux for simulation
E is very asymmetrical. Recall ∂x〈u〉〈v〉 impacts ∂t〈v〉 and hence indirectly 〈ζ 〉p. As
supporting evidence for our conjecture that mean current flux symmetry is important,
we analysed the spatial distribution of the down-front vorticity 〈ξ〉= (∂z〈u〉− ∂x〈w〉)/f .
We find regions where the magnitude of |ξ | ∼ 〈ζ 〉, and with cross-front winds ξ has
a larger amplitude on the left side of the filament compared to the right-hand side
especially near the water surface. This leads to the speculation that a pair of closely
matched secondary circulations of similar amplitude in a warm–cold cold–warm
filament is more effective in creating a coherent downwelling jet thus leading to
enhanced frontogenetic amplification. In a cold filament, mismatched SC cells of
different strength, as created by a cross-front wind, leads to lower values of 〈ζ 〉p.
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FIGURE 16. Average fields at tm = 6.13 h for simulation C (cf. figure 5). The fields
displayed from top to bottom are temperature 〈θ − θo〉 with the colour bar in K, followed
by down-front current 〈v〉, cross-front current 〈u〉 and vertical velocity 〈w〉. Colour bars
for the velocity fields are in units of m s−1.

5.3. Frontal arrest, decay and instability
What is the frontal arrest dynamics? The classic work by Hoskins & Bretherton (1972)
proposes strain-induced frontogenesis must ultimately be arrested by a spontaneous
transition to a Kelvin–Helmholtz (K–H) instability at small scales. The analysis of an
LES solution of an unforced growing baroclinic wave by Samelson & Skyllingstad
(2016) tends to support this idea, although the authors state the frontal collapse in
their solution likely occurs through a combination of explicitly resolved turbulence,
enhanced SGS diffusivities and numerical filtering. Taylor & Ferrari (2009) also
conclude a secondary spontaneous K–H instability forms in a symmetrically unstable
front. Thomas et al. (2013) and Hamlington et al. (2014) are less clear about arrest
mechanics, but their analysis seems to implicate convective overturning and symmetric
instabilities as the primary mechanisms for arrest. In all these calculations the
authors adopt geostrophic balance at leading order, i.e. implicitly they assume weak
(negligible) turbulence and downplay the role of the OBL and TTW at the onset.
At larger scales, Capet et al. (2008) and Gula et al. (2014) analyse several case
studies of one-sided fronts and filaments, respectively, and identify submesoscale
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spatial meandering and vortex fragmentation in the down-front direction. They also
quantify the energy transfer dynamics during the frontogenetic arrest and decay,
but rely on the KPP boundary-layer mixing scheme. For single-sided fronts (Capet
et al. 2008) the dominant source of submesoscale perturbation kinetic energy is
the conversion of perturbation potential to kinetic energy 〈w′b′〉, i.e. a baroclinic
instability. Gula et al. (2014) analyse cold filament dynamics, similar to our study,
and finds that submesoscale perturbations grow primarily because of horizontal shear,
i.e. a barotropic instability. Gula et al. (2014) conclude that the barotropic instability
is dominant over the baroclinic instability because of the stronger horizontal gradients
induced by a filament compared to a one-sided front.

In general terms we do not know what controls the arrest scale. It occurs when
the frontal instability growth rate exceeds the frontogenetic sharpening rate, as shown
for an idealized linear instability problem in McWilliams et al. (2009b) where the
dominant instability type was baroclinic. Both frontogenesis and inviscid horizontal
shear instability are scale-free dynamics.

Our analysis shows turbulence is important for boundary-layer-induced frontogenesis.
At early times turbulence appears to stabilize baroclinic wave development at the
filament edges, and it initiates potent secondary circulations that lead to frontogenetic
sharpening of the horizontal momentum and buoyancy gradients, which continues until
an arrest occurs in the OBL in finite time. At t= tm, the magnitude of the normalized
TKE can exceed 50 times the surface (wind stress, cooling), the downwelling jet
near the filament centre reaches its maximum value, and visualization of the flow
fields shows the cross-front scale at the time of arrest shrinks to O(100 m) or less.
The results also show the growth of the TKE does not appear space–time episodic
as might occur in a K–H instability. Admittedly averaging can disguise local events,
but the TKE in figure 2 appears to grow rapidly but continuously in time from its
initial state. Recall, the turbulence dynamics at 100 m scale is well resolved in our
simulations as the horizontal and vertical resolutions are fine 1x=1y= 1.46 m and
1z∼O(0.5 m).

In our computations, the arresting turbulence appears to originate with the
fluctuating down-front current v′. As examples, the space–time evolution of v′ at
z = −1.25 m over the time period 2 < t < 9 h for simulations (E, N, C) is depicted
in figures 17–19, respectively. Each panel shows contours over the entire y domain,
but in a narrow x strip centred on the front location xp; recall xp drifts to the east
with increasing time for (E, N) as shown in figure 2. Inspection of the images
shows the expected boundary-layer turbulence at an early time t= 2 h. For example,
in (E, N) the fluctuation extremes relative to u∗ are modest, |v′|/u∗ 6 3 and the
west–east (E) and south–north (N) elongated patterns of scale `y 6 100 m are the
signatures of coherent low-speed streaks typical of a wall-bounded turbulent flow
(Sullivan, McWilliams & Melville 2004; Adrian 2007). In C, convective plumes
are the dominant coherent structure similar to the atmospheric boundary layer (e.g.
Schmidt & Schumann 1989; Sullivan & Patton 2011) and near the surface they are
arranged in a spoke-like pattern (not shown) with the amplitude of the horizontal
velocity components |u′, v′|/w∗ 6 1.

At t > tm, the amplitude and patterns in all simulations are dramatically changed
under the vigorous action of sharpening horizontal gradients ∂x〈u, v〉. The fluctuation
extremes in (E, N) relative to u∗ are large |v′|/u∗ > 5, and in C |v′|/w∗ > 5. The
orientation of the fluctuations in N is clearly in the down-front direction, but
surprisingly the scale of the fluctuations differs noticeably left and right of the
filament centreline. For all simulations the horizontal scales of the fluctuations
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FIGURE 17. Space–time evolution of turbulent down-front velocity v′/u∗ from simulation
E with cross-front winds at z = −1.25 m. Time increases from (a) to (d), t =
(2, 4.50, 7, 9) h with the time of maximum vertical vorticity tm = 4.50 h shown in (b).
The images are centred on the cross-front location xp of the peak vertical vorticity, which
drifts to the east with increasing time. The range of the colour bar and the extent of the x
axis are chosen to highlight the turbulent boundary-layer streaks that are present left and
right of the cold filament axis. The aspect ratio of the images is not unity as the y scale
is greater than the x scale. Notice at x= xp the scale of the down-front fluctuations grows
for t> tm in figures 17–19.

near the filament centreline are strongly anisotropic with `y > `x; note the scales in
figures 17–19 are distorted by the non-unity vertical–horizontal aspect ratio. Extensive
visualization and analysis of the flow fields shows that for t> tm, v′ exhibits a similar
spatially growing down-front instability irrespective of the surface wind direction
and forcing type. This is confirmed by 1-D power spectra computed for varying
down-front wavenumber ky. As the images show, in the early period 0 < t < tm the
development of CFF is dependent on the state of the incoming turbulence, and the
orientation of the coherent structures relative to the secondary circulations. Further
analysis of frontal turbulence and its interaction with the down-front instability and
homogeneous OBL turbulence is reported in Sullivan & McWilliams (2017). The
developing down-front instability in the LES solutions is similar to that observed
by Gula et al. (2014) and predicted using a linear model by McWilliams et al.
(2009b) (note that whether the frontogenetic instability is primarily due to vertical or
horizontal shear depends on the frontal shape).

Our interpretation of the arresting dynamics is guided by flow visualization, as
in figures 17–19 and the down-front average equations. Examination of (5.4) shows
the candidate terms responsible for arresting the frontogenetic tendencies ∂t〈u, v〉
are horizontal turbulent currents (u′, v′), and specifically the cross-front divergences
of horizontal turbulent variances and co-variances −∂x〈u′u′〉 and −∂x〈u′v′〉. Selected
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FIGURE 18. Space–time evolution of turbulent down-front velocity v′/u∗ from simulation
N with down-front winds at z = −1.25 m. Time increases from (a) to (d), t =
(2, 5.08, 7, 9) h with the time of maximum vertical vorticity tm = 5.08 h shown in (b).
The images are centred on the cross-front location xp of the peak vertical vorticity, which
drifts to the east with increasing time. The range of the colour bar and the extent of the x
axis are chosen to highlight the turbulent boundary-layer streaks that are present left and
right of the cold filament axis. The aspect ratio of the images is not unity as the y scale
is greater than the x scale.

low-order statistics of the horizontal and vertical fluctuations for the time period
t> tm for (E,N,C) are compared in figures 20–22.

The amplitude and x–z spatial patterns of 〈u′u′, u′v′〉 at the time of maximum
vertical vorticity are shown in figure 20; each contour plot is a zoom centred on x− xp

over the mixed layer. The horizontal variances and co-variances are spatially coherent
in the x–z plane spanning the depth of the mixed layer but with a cross-front width
dependent on the forcing. The maximum values near the water surface are more than
an order of magnitude larger than u2

∗
(for E and N) or w2

∗
(for C). Visual comparison

of the contours shows that the magnitude and spatial distribution of the horizontal
variances and co-variances for simulations N and C are much more similar compared
to E; noticeable differences are the cross-front extent of the arrest is 100 m or less
for (N,C) while it is greater than 300 m for E. Also 〈u′u′〉 is noticeably larger in E
compared to (N, C), whereas the co-variance 〈u′v′〉 is more important for (N, C) at
t= tm. These differences are a consequence of the mismatched secondary circulations
in E and the state of the incoming turbulence. The secondary circulations and Ekman
currents are additive on the left side of the filament in E with a maximum left of xp,
which leads to enhanced 〈u′u′〉, see § 5.4.

Figures 21 and 22, which are companions to figure 2, compare time series of the
three component variances 〈u′2, v′2, w′2〉 of the TKE, and the horizontal and vertical
co-variances 〈u′v′, u′w′, v′w′〉. The time series are collected near the water surface
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FIGURE 19. Space–time evolution of turbulent down-front velocity v′/u∗ from simulation
C driven by cooling at z=−1.25 m. Time increases from (a) to (d), t= (2, 6.25, 7, 9) h
with the time of maximum vertical vorticity tm = 6.25 h shown in (b). The images are
centred on the cross-front location xp ∼ 0 of the peak vertical vorticity for simulation
C. The range of the colour bar and the extent of the x axis are chosen to highlight the
development of the lateral instability. The aspect ratio of the images is not unity as the
y scale is greater than the x scale.

z=−2.5 and in the mid-OBL z=−30 m; in addition to y averaging the statistics are
further smoothed by averaging over a 5 m depth. At t= tm and beyond, the elevated
TKE shown in figure 2 is clearly dominated by horizontal variances, especially near
the water surface where the vertical variance 〈w′2〉 is at least one order of magnitude
smaller than 〈v′2〉 and 〈u′2〉. The horizontal variances are nearly 50 times larger than
the wind stress in (E, N). There are important time trend differences between the
horizontal and vertical variances. Notice that 〈w′w′〉, near the water surface and at
mid-depth, tends to closely track the variation of the vertical vorticity reaching a
maximum value at tm followed by a steady decay for t > tm. This is anticipated
based on the variation of the minimum vertical velocity shown in figure 13 as the
central downwelling jet of the secondary circulations reaches its maximum strength at
t = tm and subsequently decays. Meanwhile, the horizontal variances increase rapidly
during the frontogenetic onset, reach a maximum near tm, and then v′2 decays slowly.
These trends follow the growing instability in the down-front current (figures 17–19),
which emerges from the arrest process. The (increased, decreased) levels of (vertical,
horizontal) variance in the mid-OBL compared to their counterparts near the surface
suggest that there is energy transfer from horizontal to vertical components in the
interior of the mixed layer.

Time traces of the co-variance fluxes near the water surface and also in mid-OBL
are shown in figure 22. At t= 0 and during the early period of the frontogenetic onset,
the normalized vertical momentum fluxes 〈u′w′, v′w′〉 are order unity (e.g. figure 9)
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FIGURE 20. Average horizontal turbulent variance 〈u′u′〉 (a,c,e) and co-variance 〈u′v′〉
(b,d, f ) for simulations (E, N, C) at the time of maximum vertical vorticity in figure 2.
The variances are normalized by (u2

∗
,u2
∗
,w2
∗
), respectively. The horizontal axis is referenced

to the location of maximum vertical vorticity xp(tm) for each simulation. Note a wider x
range is used for simulation E.

while the horizontal co-variance 〈u′v′〉 ∼ 0. These values are typical for a spatially
horizontally homogeneous OBL where the uniform surface forcing largely dictates
the vertical transport (e.g. McWilliams et al. 1997). As t→ tm, the co-variance 〈u′v′〉
grows appreciably, and at t = tm it is clearly the dominant momentum flux with a
normalized value ∼10 in all simulations. Meanwhile, the vertical momentum fluxes
〈u′w′, v′w′〉, remain nearly an order of magnitude smaller depending on the vertical
location in the mixed layer.

Flow visualization confirms that in the decay period the co-variance 〈u′v′〉 is
spatially coherent, filling the upper 1/3 of the mixed layer. The large net negative
values of horizontal flux at t > tm result from well-organized anti-correlated turbulent
fluctuations between u′ and v′, i.e. the large-scale fluctuations in figures 17–19 are
not signatures of horizontal wave disturbances.

5.4. Eddy mean energetics
For the range of scales considered in our simulations, the turbulence is three-
dimensional and the energy cascade is forward, i.e. downscale. This is supported
by the computation of 1-D power spectra (not shown). To further investigate the
energy cascade in physical space and uncover the source of the elevated turbulence
in figures 21 and 22 we next examine terms in the mean kinetic energy and TKE
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FIGURE 21. Variances 〈u′u′, v′v′,w′w′〉/u2
∗

denoted by (red, blue, black) lines, respectively,
at the time and location of peak average vertical vorticity in figure 2. The thin vertical line
in each panel marks the time of maximum vertical vorticity. The variances are normalized
by (u2

∗
, u2
∗
,w2
∗
) for simulations (E,N,C), respectively. ((a–c), (d–f )) Correspond to vertical

averages over 5 m centred on z=−(2.5, 30) m, respectively.

equations (e.g. Tennekes & Lumley 1972, p. 59). The mean kinetic energy equation
is constructed using standard steps by expanding the dot product 〈u〉 · ∂t〈u〉; here
the time tendency of the mean flow is given by (4.3). Neglecting SGS terms but
including buoyancy, the LES resolved-scale mean kinetic energy equation is

∂

∂t
〈ui〉〈ui〉

2
=−〈uj〉

∂

∂xj

〈ui〉〈ui〉

2
+

∂

∂xj
〈ui〉σij − σijSij + 〈w〉〈b〉, (5.5)

where the total stress and strain tensors are, respectively,

σij =−
〈p〉
ρo
δij − 〈u′iu

′

j〉 and Sij =
1
2

(
∂〈ui〉

∂xj
+
∂〈uj〉

∂xi

)
. (5.6a,b)

In (5.5),
Bm = 〈w〉〈b〉 (5.7)

represents the conversion between filament mean potential energy and mean kinetic
energy while the transfer of mean kinetic energy to turbulence is accomplished
by resolved turbulent shear stresses acting on mean gradients, i.e. by turbulence
production

P =−〈u′iu′j〉Sij. (5.8)
P , of course, is a sink in (5.5) but a source in the TKE equation.
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FIGURE 22. Co-variances −〈u′v′, u′w′, v′w′〉 denoted by (black, red, blue) lines,
respectively, at the time and location of peak average vertical vorticity in figure 2. The thin
vertical line in each panel marks the time of maximum vertical vorticity. The co-variances
are normalized by (u2

∗
, u2
∗
, w2
∗
) for simulations (E, N, C), respectively. ((a–c), (d–f ))

Correspond to vertical averages over 5 m centred on z=−(2.5, 30) m, respectively. Note
the different scale range of the vertical axis in the upper and lower panels.

Because our mean flow is spatially inhomogeneous in (x, z), the production given by
(5.8) can be further partitioned into horizontal (vertical) shear contributions P⊥(P‖),
respectively:

P⊥ =−(〈u′u′〉∂x〈u〉 + 〈u′v′〉∂x〈v〉 + 〈u′w′〉∂x〈w〉), (5.9a)
P‖ =−(〈u′w′〉∂z〈u〉 + 〈v′w′〉∂z〈v〉 + 〈w′w′〉∂z〈w〉). (5.9b)

In the TKE equation, buoyant production (e.g. Tennekes & Lumley 1972, p. 97)

Bt = 〈w′b′〉 (5.10)

represents the conversion of fluctuating potential energy to TKE and can be either a
source or sink for TKE in stratified flows. Viscous dissipation, which is parameterized
in high Reynolds number LES (e.g. Deardorff 1972b; Moeng & Wyngaard 1988), is
the final sink of TKE. Gula et al. (2014) analyses the energy conversion terms in
(5.7), (5.9) and (5.10) using the KKP mixing scheme but neglects the contributions
from the spatial gradients of 〈w〉 in (5.9) consistent with the hydrostatic assumption
used in ROMS.

Selected kinetic energy conversion terms are shown in figure 23 for simulations
(E, N, C) at t= tm near the filament centreline xp. These bulk statistics are averaged
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FIGURE 23. Mean kinetic energy and TKE conversion terms averaged over the upper
40 m of the OBL at t= tm for cases (E,N,C). In each panel, P⊥ is the black line, P‖ is
the blue line, Bm is the orange line and Bt is the green line. In N, the maximum value of
Bm × 0.005∼ 4.54. Terms are normalized in (E, N) by u3

∗
/|hi| and in C by w3

∗
/|hi|. The

location of peak vertical vorticity xp ∼ (354, 845, 0) m for (E,N,C), respectively.

over the upper 40 m of the OBL where turbulence is mainly produced as shown
in figure 20. In all simulations, the filament gains mean kinetic energy from the
conversion term Bm. And mean kinetic energy is converted into TKE primarily
through shear production P . Turbulent buoyant production Bt is both small and
generally negative, i.e. turbulence does not appear to grow because of baroclinic
instabilities.

Detailed inspection of the spatial x–z distribution of all six production terms in
(5.9) shows that in (N, C) TKE is mainly produced by horizontal shear production
P⊥ ≈ −〈u′v′〉∂x〈v〉, i.e. by a barotropic instability. A similar result is reported by
Gula et al. (2014). In our simulations, P⊥ is concentrated in a narrow horizontal
zone centred on xp, is a maximum at the water surface, and smoothly decays with
depth tending towards zero for z<−30 m. Also, P⊥ tends to be symmetric about the
filament centreline. Large horizontal shear production −〈u′v′〉∂x〈v〉 is a consequence of
the high amplitude vertical vorticity shown in figure 2 combined with the substantial
horizontal momentum flux −〈u′v′〉 shown in figure 22. The latter has roots in the
growing lateral instability depicted in figures 17–19.

However, uniform surface winds in (E, N) couple with the secondary circulations
leading to mean currents 〈u, v〉 that are spatially asymmetrical about the filament
axis. This asymmetry enhances vertical shear production P‖, and in particular
the production terms (−〈u′w′〉∂z〈u〉, −〈v′w′〉∂z〈v〉). In contrast to horizontal shear
production P‖ is asymmetrical about the filament axis. In E, −〈u′w′〉∂z〈u〉 is dominant
but with a maximum clearly shifted to the left of the filament centre. Recall the
cross-front Ekman current and secondary circulation are additive on the left side of
the filament resulting in a local surface maximum situated near x ≈ −600 m, see
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figures 10 and 14. Also 〈u〉 ≈ 0 at the filament centre. As a result, ∂z〈u〉 and vertical
shear production of turbulence P‖ are maximized near the water surface in a region
left of the filament centre, i.e. not at xp. In N, −〈v′w′〉∂z〈v〉 is the dominant term in
P‖, with a maximum slightly left of the filament axis but located deep in the water,
z − [20, 30] m. The vertical gradient ∂z〈v〉 attains a maximum in this region, which
can be inferred from figure 15, and thus P‖ has a maximum in mid-OBL with a
smaller contribution near the water surface.

Detailed flow visualization of the (u′, v′) fields also shows that the growth of
the shear production terms left of the filament centreline results from an interaction
between coherent structures in the boundary layer and secondary circulations (Sullivan
& McWilliams 2017). It is well documented that persistent low-speed streaks roughly
aligned with the mean flow direction are one of the building blocks of shear
dominated boundary layers (e.g. Moeng & Sullivan 1994; Sullivan et al. 2004;
Adrian 2007; Hutchins & Marusic 2007). Low-speed streaks near the water surface
are observed in the wind driven simulations (E,N).

6. Summary and conclusions
The lifecycle of a submesoscale dense (cold) filament undergoing cold filament

frontogenesis (CFF) in the upper OBL is examined using fine mesh, turbulence
resolving, three-dimensional LES. The initially imposed filament is two-dimensional
(spatial variations in the x–z directions) with buoyancy b and geostrophic current
vg fields typical of cold filaments found in larger-scale submesoscale calculations.
Large horizontal spatial domains with fine grid resolution are used to capture the
interaction between submesoscale and boundary-layer turbulence: the grid mesh is
6.4× 109 grid points and the computational domain is (Lx,Ly,Lz)= (12, 4.5, 0.25) km.
The ratios of (Lx, Ly, Lz) to the initial boundary-layer depth hi = −66.5 m are
(Lx, Ly, Lz)/|hi| = (180, 68, 3.76); near the water surface the grid spacing is
(1x, 1y, 1z)/|hi| ∼ (0.02, 0.02, 0.0075). All simulations are initiated from fully
developed homogeneous boundary-layer turbulence generated by uniform and
constant surface forcing. Three types of forcing are considered: cross-front winds
(viz. west–east winds E), down-front winds (viz. south–north winds N) and surface
cooling C (no winds): in the wind driven cases the friction velocity u∗ = 0.01 m s−1

and in the cooling simulation the convective velocity scale w∗ = 0.0137 m s−1. The
initial conditions for the simulations approximately satisfy turbulent thermal wind
(TTW), i.e. a balance between Coriolis force, pressure gradients and vertical turbulent
mixing in the OBL. The simulations are carried forward for more than 20 h which
spans the onset, arrest, and partial decay of CFF. Time varying mean and turbulence
statistics are computed in the x–z plane by decomposing flow variables into a mean
〈·〉 and fluctuation (·)′ using down-front averaging. Major findings from the study are
as follows:

(i) The lifecycle of CFF is captured by all simulations. For the amplitude and
scale of the cold filaments considered, the horizontal velocity and buoyancy
gradients sharpen quickly with the average peak vertical vorticity 〈ζ 〉p reaching
a maximum in less than 6 h. The amplitude, time tm, and cross-front location
xp of the maximum 〈ζ 〉p and the quantitative lifecycle path of CFF are all
surface-forcing dependent. Post arrest 〈ζ 〉p and the near-surface turbulent kinetic
energy (TKE) decay slowly with time.

(ii) Turbulence is a key ingredient of TTW and kick starts frontogenesis by creating
vertical momentum fluxes 〈u′w′, v′w′〉 that couple the horizontal currents 〈u, v〉
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resulting in net secondary circulations 〈u, w〉 in an x–z plane. Secondary
circulations (SC) are robust structures and develop with either cross-front
or down-front winds or surface cooling. The SC in the surface boundary
layer are frontogenetic and remain coherent against a background of fully
developed turbulence for both wind and surface cooling. With surface cooling
C the strength of the SC left and right of the filament centreline at t = tm are
approximately equal and they combine to create maximum 〈ζ 〉p. With cross-front
and down-front winds the SC are asymmetric, with the secondary cell on the
left side of the filament stronger resulting in weaker 〈ζ 〉p.

(iii) The combination of SC and Ekman boundary-layer currents is constructive
(destructive) on the left (right) side of the filament for cross-front and down-front
wind forcing. The SC intensify under frontogenesis and in E and N are
sufficiently powerful to block the near-surface Ekman currents and spoil the
usual Ekman balances found in a homogeneous OBL. Secondary circulations
are crucial as they alter the filament stratification. Near the water surface, the
left and right edges of the cold filament are stably stratified, because of SC, and
as frontogenesis progresses the core of the cold filament re-stratifies (warms)
from both filament edges. SC inhibit the Ekman buoyancy flux of cold core
water towards the filament warm edge, and thus convective instabilities, reported
in previous studies, are not readily found.

(iv) Turbulence plays a dual role in CFF: it initiates frontogenesis through SC but
under intense sharpening of the horizontal velocity gradients it also amplifies
and ultimately arrests the frontogenetic tendency. The arresting turbulence
does not appear space–time episodic as in a Kelvin–Helmholtz instability, but
primarily develops from a down-front horizontal shear instability resulting in
submesoscale meandering in the down-front y direction. The instability, which
develops on a background of OBL turbulence, first appears vigorously in
the down-front fluctuating velocity component v′ at the time of arrest and
generates large horizontal co-variance −〈u′v′〉, horizontal variances 〈u′u′, v′v′〉
and TKE = 〈u′u′〉/2; TKE is nearly 40 (50) times (u2

∗
, w2
∗
) in N(C). At t = tm,

the cross-front scale of the arresting turbulence is less than 100 m for N and
C, but of larger horizontal scale with an amplitude bias towards the left side
of the filament for E. The down-front scale of the turbulence `y is much larger
than |hi|.

(v) In the arrest–decay phase t > tm, the horizontal variances and co-variances are
depth coherent, filling the upper 2/3 of the OBL, and decay slowly with time.
At the end of the simulations the down-front variances still exceed 20 times the
wind stress and the horizontal scales of the turbulence continue to grow. (We
have not yet integrated long enough in time to see the final disappearance of
the frontal anomaly and its circulation.)

(vi) Potential energy stored in the cold filament is converted to mean kinetic energy
and drives CFF. At the time of arrest t= tm, the energetics show large amplitude
TKE in (N,C) is generated mainly by horizontal shear production −〈u′v′〉∂x〈v〉,
i.e. a barotropic shear instability. Compared to N,C, the TKE generation in E is
lower, shifted to the left of the filament axis, and is largely produced by vertical
shear production −〈u′w′〉∂z〈u〉. This is a consequence of constructive coupling
between cross-front currents and secondary circulations near the water surface.
The perturbation potential to TKE conversion 〈w′b′〉 is small for all cases, thus
the arresting turbulence does not result from baroclinic instabilities.
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(vii) Down-front fluctuations resulting from lateral shear instabilities gradually evolve
into large-scale anisotropic turbulence with horizontal scales `y > `x and `y �

|hi|. The energy cascade is forward, and the turbulence is broadband, not two-
dimensional, with no clear scale separation between submesoscale turbulence and
boundary-layer turbulence for t> tm.

The C case seems particularly simple and consistent with our prior ideas and
expectations about frontogenesis and arrest associated with TTW and frontal
instability, although the enhanced boundary-layer turbulence is not yet captured in
current mixing parameterizations. The N and E cases, while still showing essentially
similar behaviours, go beyond our present fluid dynamical understanding about the
interactions of frontal dynamics and turbulence; but neither do they match in a simple
way the extant ideas about the effects of down-front winds, symmetric instability and
Ekman buoyancy flux. This is new territory needing further exploration.

Oceanic science is going through a prolific stage of discovery about submesoscale
currents, their effects on material distributions in the upper ocean, their unique
dynamics with intermediate values of Rossby (V/fL) and Froude (V/Nh) numbers,
and their interaction with boundary-layer turbulence as well as internal and surface
gravity waves (McWilliams 2016). This paper provides evidence for the strong
relations among the frontogenesis that shrinks the (transverse) scale of submesoscale
currents, the boundary-layer turbulence that foments the frontogenesis, and the frontal
instability, arrest and decay processes that further strongly couple the submesoscale
and boundary layer. This suggests the diagram in figure 24, a sketch of the relations
of the kinetic energy and its horizontal spectral fluxes among mesoscale eddies (ME),
submesoscale currents (SM), and boundary layer turbulence (BL). It is deliberately not
drawn as an energy wavenumber spectrum because we want to blur the distinctions
between what is happening locally in a front or filament (this study) and what is
happening in a broader spatial view over many eddies and fronts (the usual spectral
view).

The transfer of energy from ME to SM is well documented (e.g. by baroclinic
instability and frontogenesis), as are the tendencies both for inverse energy cascade
within the ME and larger SM ranges for flows close to geostrophic balance and for
at least some instances of forward energy cascade in the smaller-scale end of the
SM range. What is less well known are the processes terminating the SM range at
its small-scale end and the fate of its forward-cascaded energy. In this paper the
forward cascade is caused by frontogenesis by the secondary circulation supported
by the boundary-layer turbulence through TTW balance, and by the frontal instability
arrest and subsequent frontal decay cause a strong enhancement of both SM energy
at scales comparable to the front and a further energization of BL. The simulations
focus on the downscale energy transfers regime shown in the far left of figure 24.
Further work is needed to appropriately quantify these processes and assess their
generality in the ocean.
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TKE

L

ME

SM

BL

FA

h

FIGURE 24. Schematic diagram of the distribution with horizontal length scale L
of the TKE associated with non-wave currents in the upper ocean. The dashed line
denotes a historical conceptual straw man with peaks only for mesoscale eddies (ME)
at L & Rd (the first baroclinic deformation radius, ∼40 km) and for boundary-layer (BL)
turbulence at L . h (the boundary-layer depth, ∼50 m). In between the peaks there is a
conspicuous scale gap with little non-wave TKE. Thick arrows denote the directions of
energy flux (cascade): inverse for ME and forward for BL, down to dissipation at the
Kolmogorov scale η (∼0.01 m). The solid line is an expanded conception both with the
submesoscale range (SM), due to extraction of energy from ME by various instabilities
and frontogenesis, and with enhanced energization of BL by frontal instability, arrest (FA),
and decay in the intermittent places where they occur. The energy flux directions are
inverse at large L and forward at small L, with a reversal somewhere within the SM range.
SM and BL energy exchanges with surface and internal waves may also occur.
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Appendix A
The specific formulas and constants used to define the horizontal and vertical

structure of the two-dimensional dense filament in the LES are based on those outlined
by McWilliams et al. (2015). In this recipe the initial state of the filament consists
of two vertically separated layers with an intermediate blended layer connecting the
upper and lower layers. The (upper, lower) layers are nominally defined as the regions
(z>−ho, z<−h3), respectively. The mean buoyancy field in an x–z plane is then

b(x, z)= [bs(x)− b3]F(ξ)+ b3, (A 1)

where bs(x)(b3) are the buoyancy distributions in the upper (lower) layers, respectively.
The blending function F(ξ) is defined below. In the upper (surface) layer z>−ho, the
surface buoyancy and mixed layer depth are given by the formulas

bs(x)= bso − δbo exp[−(x/L)2],
h(x)= ho + δho exp[−(x/L)2],

}
(A 2)

where δbo is the amplitude of the dense water anomaly relative to the background state
bso. Similarly, δho is the increase in mixed layer depth relative to the background value
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ho directly below the central front region. The horizontal width of the dense filament
is determined by the scale L, and x= 0 is taken to be the centreline of the front. Note
these definitions generate an initially symmetric front. In the lower layer z<−h3, the
buoyancy is

b3 = b(−h3)=N2
o(H − h3), (A 3)

where the background stratification is N2
o and the depth of the computational domain

is H.
The smooth blending function between the upper and lower layers is

F(ξ)=
ea(1−ξµ)

− 1
ea − 1

, ξ =
−z− h(x)
h3 − h(x)

. (A 4a,b)

The function a(x) that appears in (A 4) satisfies a derivative continuity condition at
the bottom of the intermediate layer

µa
ea − 1

=N2
o

h3 − h(x)
bs(x)− b3

. (A 5)

Once parameters are picked in (A 5), a(x) is found by iteration. The parameter µ
regulates how strongly the pycnocline is concentrated just below the boundary layer
(see McWilliams et al. 2015). The constants used in the above formulas are

H = 250 m, N2
o = 3.44× 10−5 s−2, h3 = 130 m,

b3 = 4.13× 10−3 m s−2, bso = 8.51× 10−3 m s−2,

δbo = 0.785× 10−3 m s−2, L= 2.0 km, ho = 60 m,
δho = 10 m, µ= 1.1.

 (A 6)

Because of the smaller horizontal domain used in the LES, Lx= 12 km, the magnitude
of the cool anomaly δbo, the frontal width scale L, and the perturbation to the
mixed layer depth δho are reduced compared to the values used by McWilliams
et al. (2015) which used L = 3.5 km. For reference, our values of (bso, δbo) =
(8.51, 0.785) × 10−3 m s−2 correspond to a surface temperature difference and a
temperature jump (θso − θo, δθo) = (5.2, −0.48) K based on an expansion coefficient
β = 1.668× 10−4 K−1. The reference temperature θo = 10 ◦C.
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