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Abstract We study two notions of purity in categories of sheaves: the categorical and the geometric.
It is shown that pure injective envelopes exist in both cases under very general assumptions on the
scheme. Finally, we introduce the class of locally absolutely pure (quasi-coherent) sheaves with respect
to the geometrical purity, and characterize locally Noetherian closed subschemes of a projective scheme
in terms of the new class.
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1. Introduction

The history of purity goes back to the work of [23] for abelian groups. Later, the notion
was introduced into module categories by [1]. The notion, which is a problem of solving
equations with one variable in abelian groups, turned out to be that of solving equations in
several variables in module categories. The notion was developed further in [9,24,25,27].
More recently it was shown by Crawley-Boevey [3] that locally finitely presented additive
categories are the most general additive setup in which to define a good purity theory.
We recall that a short exact sequence in a locally finitely presented category is said to
be pure whenever it is projectively generated by the class of finitely presented objects.
Several problems in algebra and in relative homological algebra can be solved by purity
arguments. For example, to show that a class of objects of a class F in a locally finitely
presented category A allows us to define unique up to homotopy minimal resolutions, it
suffices to check that F is closed under direct limits and under pure subobjects or under
pure quotients (see [4,5]). In the case of the category of R-modules (R any commutative
ring with identity), it is well known that purity can also be defined in terms of the tensor
product, that is, a short exact sequence E = 0 → L → M → N → 0 of R-modules is pure
provided that the functor E ⊗ T leaves the sequence exact for each R-module T . But in
general, for an arbitrary monoidal locally finitely presented category, these two notions
need not be equivalent. For example, when X is a concentrated (i.e. quasi-compact and
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quasi-separated) scheme, the category Qcoh(X) of quasi-coherent sheaves on X is locally
finitely presented (see [12, Chapitre 1, § 6, Corollaire 6.9.12] or [11, Proposition 7] for a
precise formulation) and it comes equipped with a canonical tensor product, so one might
wonder about the relationship (if any) between the two possible definitions of purity: the
categorical one arising from the general fact that we are working with a locally finitely
presented category, or the second one, arising from the usual tensor product in Qcoh(X).
We shall denote by fp-pure the notion of purity in the first sense and just by pure in the
second. Thus, the first part of this paper is devoted to exploring the relationship between
the two notions on Qcoh(X). Actually, we will consider a slightly different notion of purity
in Qcoh(X). Namely, we say that a short exact sequence E in Qcoh(X) is pure exact
provided that E ⊗ M is exact for each sheaf of OX -modules M (so not just the quasi-
coherent ones). As we point out in Remark 3.5, this is equivalent to E ⊗ · being exact
in Qcoh(X) provided that X is quasi-separated. The reason for considering this more
general definition is that it is always equivalent to purity on the stalks (Proposition 3.2).
So this justifies its geometrical nature.

From this point of view, the present paper can be seen as a continuation of the ongoing
program initiated in [8] where a wide class of projective schemes was exhibited that do not
have non-trivial categorical flat quasi-coherent sheaves (that is, quasi-coherent sheaves
such that each short exact sequence ending on them is fp-pure). If we denote by Purefp

and by Pure the classes of fp-pure and pure short exact sequences in Qcoh(X), we prove
the following result (Proposition 3.9).

Proposition. If X is a concentrated scheme, Purefp ⊆ Pure.

In particular, this allows us to clarify the general relationship between categorical and
geometrical flatness for concentrated schemes (Corollary 3.12).

Proposition. Assume that X is quasi-compact and semi-separated. Then each cate-
gorical flat sheaf in Qcoh(X) is geometrical flat.

The converse is not true, in general, for non-affine schemes. This is one of the main
results of Estrada and Saoŕın [8, Theorem 4.4].

Section 4 of the paper is devoted to showing that pure injective envelopes do exist with
respect to both notions of purity. The first proof is a particular instance of a theorem
due to Herzog [15] (see also [10]) on the existence of pure injective envelopes in locally
finitely presented additive categories.

Theorem. Let X be a concentrated scheme. Then every quasi-coherent sheaf in
Qcoh(X) admits an fp-pure injective envelope, which is an fp-pure monomorphism.

However, we can show that pure injective envelopes with respect to the geometrical
purity always exist, without assuming any condition on the scheme (Theorem 4.10).

Theorem. Let X be any scheme. Each quasi-coherent sheaf in Qcoh(X) has a pure
injective envelope that is a pure monomorphism.

In § 5 we will focus on the geometrical pure notion in OX -Mod and Qcoh(X) and we
introduce the classes of (locally) absolutely pure sheaves of modules and quasi-coherent
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sheaves. Given an associative ring R with unit, a left R-module is absolutely pure if every
finite system of linear equations whose independent terms lie in M possesses a solution
in M . This is equivalent to saying that M is a pure submodule of any R-module that
contains it. In some aspects these behave like injective R-modules (see [9,17,18,21,26]
for a general treatment of absolutely pure modules and [20] for a revisited study). In fact,
Noetherian rings can be characterized in terms of properties of absolutely pure modules.
Namely, R is Noetherian if and only if the class of absolutely pure R-modules coincides
with the class of injective R-modules (see [18]). We will exhibit the main properties of
(locally) absolutely pure sheaves of modules, both in Qcoh(X) and in OX -Mod, for the
case in which X is a locally coherent scheme. For example, we show in Proposition 5.7 that
local absolutely purity in Qcoh(X) can be checked on a particular affine covering of X.
And we also see that locally absolutely quasi-coherent sheaves are precisely the absolutely
pure OX -modules that are quasi-coherent. This is analogous to the question posted in [14,
Chapter II, § 7, p. 135] for locally Noetherian schemes (see [2, Lemma 2.1.3]). We then
characterize locally Noetherian closed subschemes of the projective space Pn(A) in terms
of its class of absolutely pure quasi-coherent sheaves.

Theorem. A locally coherent closed subscheme X ⊆ Pn(A) is locally Noetherian if
and only if every locally absolutely pure quasi-coherent sheaf is locally injective.

If X is a Noetherian scheme, it is known that the class of locally injective quasi-coherent
sheaves is a covering class in Qcoh(X). We finish this section by extending this result to
the class of locally absolutely pure quasi-coherent sheaves on a locally coherent scheme
X.

Theorem. Let X be a locally coherent scheme. Then every quasi-coherent sheaf in
Qcoh(X) admits a locally absolutely pure cover.

2. Preliminaries

In this paper, all rings used will be commutative with identity.
Following [3], an additive category A with direct limits is said to be locally finitely

presented provided that the skeleton of the subcategory of finitely presented objects in
A is small, and each object of A is a direct limit of finitely presented objects. Here, an
object A in A is called finitely presented if the functor HomA(A, ·) preserves direct limits.

For example, for any ring S (not necessarily commutative and with unit) the category
S-Mod of left S-modules, is locally finitely presented [16]. If X has a basis of compact
open sets, then the category OX -Mod of all sheaves of OX -modules is locally finitely
presented (see, for example, [22, Theorem 5.6] or [21, Theorem 16.3.17]). If X is a con-
centrated scheme (i.e. quasi-compact and quasi-separated), then the category Qcoh(X)
of quasi-coherent sheaves of OX -modules is also locally finitely presented (see [11, Propo-
sition 7] for a proof based on [12, Chapitre 1, § 6, Corollaire 6.9.12]).

We recall that a short exact sequence of R-modules 0 → L → M → N → 0 is called
pure if T ⊗ L → T ⊗ M is a monomorphism for every R-module T . This is equivalent
to 0 → HomR(F, L) → HomR(F, M) → HomR(F, N) → 0 being exact for each finitely
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presented R-module M . The last condition can be adapted to give the usual definition of
a sequence 0 → L → M → N → 0 of morphisms to be pure exact in an arbitrary locally
finitely presented category A.

Definition 2.1. Let C be a Grothendieck category. A direct system of objects of
C, (Mα | α � λ), is said to be a continuous system of monomorphisms if M0 = 0,
Mβ = lim−→α<β

Mα for each limit ordinal β � λ and all the morphisms in the system
are monomorphisms.

Let S be a class of objects that is closed under isomorphisms. An object M of C is said
to be S-filtered if there is a continuous system (Mα | α � λ) of subobjects of M such
that M = Mλ and Mα+1/Mα is isomorphic to an object of S for each α < λ.

The class of S-filtered objects in C is denoted by Filt(S). The relation S ⊆ Filt(S)
always holds. In the case in which Filt(S) ⊆ S, the class S is said to be closed under
S-filtrations.

Definition 2.2. Let F be a class of objects of a Grothendieck category A. A morphism
φ : F → M of C is said to be an F-precover of M if F ∈ F and if Hom(F ′, F ) →
Hom(F ′, M) → 0 is exact for every F ′ ∈ F . If any morphism f : F → F is such that
φ ◦ f = φ is an isomorphism, then it is called an F-cover of M . If the class F is such
that every object has an F-cover, then F is called a precovering class. The dual notions
are those of F-envelope and enveloping class.

3. Purity in Qcoh(X)

Let X be a scheme and let F , G be OX -modules. The tensor product F ⊗G is defined as
the sheafification of the presheaf U → F (U) ⊗OX(U) G (U) for each open subset U ⊆ X.
There is also an internal Hom functor in OX -Mod, Hom(·, ·). The image Hom(F ,G )(U)
on an open subset U ⊆ X is Hom(F |U ,G |U ). It is known that the pair (· ⊗ ·,Hom(·, ·))
makes OX -Mod a closed symmetric monoidal category.

Definition 3.1. Let 0 → F
τ−→ G be an exact sequence in OX -Mod. This is called

pure exact if, for each M ∈ OX -Mod, the induced sequence

0 → M ⊗ F
id ⊗τ−−−→ M ⊗ G

is exact.

Proposition 3.2. Let 0 → F
τ−→ G be an exact sequence in OX -Mod. The following

conditions are equivalent:

(1) the sequence is pure exact,

(2) for each x ∈ X the monomorphism 0 → Fx
τ−→ Gx in OX,x-Mod is pure.

Proof. (1) =⇒ (2) Let M ∈ OX,x-Mod. Then ix,∗M (the skyscraper sheaf with
respect to M) is an OX -module such that (ix,∗M)x = M . Since 0 → F

τ−→ G is pure,

0 → ix,∗M ⊗ F → ix,∗M ⊗ G
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is exact, that is, for each x ∈ X,

0 → (ix,∗M ⊗ F )x → (ix,∗M ⊗ G )x

is exact in OX,x-Mod. But for each A ∈ OX,x-Mod, (ix,∗M ⊗ A )x
∼= M ⊗ Ax. Hence,

from the previous map, it follows that

0 → M ⊗ Fx → M ⊗ Gx

is exact in OX,x-Mod. So 0 → Fx
τ−→ Gx is pure.

(2) =⇒ (1) Let 0 → F
τ−→ G be an exact sequence in OX -Mod (so, for each x ∈ X, 0 →

Fx
τx−→ Gx is exact in OX,x-Mod). Given M ∈ OX -Mod, the induced M ⊗F

id ⊗τ−−−→ M ⊗G
will be a monomorphism if and only if for each x ∈ X the morphism of OX,x-modules
(M ⊗F )x

(id ⊗τ)x−−−−−→ (M ⊗G )x is a monomorphism. But, for each x ∈ X and A ∈ OX -Mod,
(M ⊗A )x

∼= Mx⊗Ax. So by (2) it follows that M ⊗F
id ⊗τ−−−→ M ⊗G is a monomorphism.

Therefore, 0 → F
τ−→ G is pure. �

Proposition 3.3. Let X be a scheme and let F ,G ∈ Qcoh(X). The following condi-
tions are equivalent:

(1) 0 → F
τ−→ G is pure exact,

(2) 0 → F (U) τU−−→ G (U) is pure in OX(U)-Mod for each open affine U ⊆ X.

Proof. (1) =⇒ (2) Let U be an affine open subset of X and let ı : U ↪→ X be the
inclusion. Let M ∈ OX(U)-Mod. Then ı∗(M̃) is an OX -module. Therefore,

0 → ı∗(M̃) ⊗ F → ı∗(M̃) ⊗ G

is exact. But then
0 → (ı∗(M̃) ⊗ F )(U) → (ı∗(M̃) ⊗ G )(U)

is exact in OX(U)-Mod, that is,

0 → ı∗(M̃)(U) ⊗ F (U) → ı∗(M̃)(U) ⊗ G (U)

is exact. Since, for each OX(U)-module A, ı∗(Ã)(U) = A, we obtain that 0 → M ⊗
F (U) → M ⊗ G (U) is exact. Thus, 0 → F (U) → G (U) is pure.

(2) =⇒ (1) This is immediate just by observing that, for each affine open set U ⊆ X,
(F ⊗ G )(U) ∼= F (U) ⊗ G (U), and that a morphism τ in OX -Mod is a monomorphism
if and only if τU is a monomorphism in OX(U)-Mod. �

Proposition 3.4. Let X be a scheme and let F ,G ∈ Qcoh(X). The following state-
ments are equivalent:

(1) 0 → F
τ−→ G is pure exact,

(2) there exists an open covering of X by affine open sets U = {Ui} such that 0 →
F (Ui)

τUi−−→ G (Ui) is pure in OX(Ui)-Mod,

(3) 0 → Fx
τx−→ Gx is pure in OX,x-Mod for each x ∈ X.
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Proof. (1) =⇒ (2) It follows from Proposition 3.3.

(2) =⇒ (3) Let x ∈ X. There then exists Ui ∈ U such that x ∈ Ui = Spec(Ai) for
some ring Ai. But then the claim follows by observing that

Fx = (F̃ (Ui))x
∼= F̃ (Ui)x

and noticing that if 0 → M → N is pure exact in Ai-Mod, then 0 → Mx → Nx is pure
exact in (Ai)x-Mod.

(3) =⇒ (1) By Proposition 3.2, we know that τ is pure in OX -Mod. �

Remark 3.5. Note that Qcoh(X) is a monoidal category with the tensor product
induced from OX -Mod. So we could also define a notion of purity in Qcoh(X) by using
this monoidal structure, that is, 0 → F → G is pure exact provided that it is M ⊗· exact
for each M ∈ Qcoh(X). For the case in which X is quasi-separated, this notion agrees
with the one we have considered (that is, 0 → F → G is pure in Qcoh(X) if it is pure
in OX -Mod). This is because the direct image functor ı∗(M̃) preserves quasi-coherence
when X is quasi-separated in the proof of Proposition 3.3.

Over an affine scheme X, the category of quasi-coherent sheaves on X is equivalent to
the category OX(X)-Mod. So the following lemma can be easily obtained.

Lemma 3.6. Let F ∈ Qcoh(X) and let U be an affine open subset of X. Then F |U
is finitely presented in Qcoh(U) if and only if F (U) is finitely presented.

Proposition 3.7. Assume that X is semi-separated or concentrated. Let F ∈
Qcoh(X) and consider the following assertions.

(1) F is a finitely presented object in Qcoh(X).

(2) F |U is finitely presented in Qcoh(U) for all affine open subsets U ⊆ X.

(3) Fx is finitely presented for each x ∈ X.

Then the implications (1) =⇒ (2) =⇒ (3) hold. If X is concentrated, then (1) ⇐⇒
(2) (see [19, Proposition 75]).

Proof. (1) =⇒ (2) We have to show that the canonical morphism

ψ : lim−→ Hom(F |U , B̃i) → Hom(F |U , lim−→ B̃i)

is an isomorphism for any direct system {B̃i, ϕij}I of quasi-coherent OX |U -modules. We
have the following commutative diagram:

Hom(F |U , B̃i) ��

��

lim−→ Hom(F |U , B̃i)

��

ψ �� Hom(F |U , lim−→ B̃i)

��

Hom(F , ı∗(B̃i)) �� lim−→ Hom(F , ı∗(B̃i))
ψ′

�� Hom(F , lim−→ ı∗(B̃i))
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Columns are isomorphisms because of the adjoint pair (resU , ı∗). For the third column
we also need to observe that, under the hypothesis on X, the direct image functor ı∗
preserves direct limits. Since F is finitely presented, the canonical morphism ψ′ is an
isomorphism. So ψ is an isomorphism.

(3) =⇒ (4) Fx
∼= Mp for some finitely presented R-module M and prime ideal p.

Then (4) follows because the localization of a finitely presented R-module is a finitely
presented Rp-module. �

Definition 3.8 (Crawley-Boevey [3, §3]). An exact sequence 0 → F → G → T →
0 in Qcoh(X) is called categorical pure if the functor Hom(H , ·) leaves the sequence exact
for every finitely presented quasi-coherent OX -module H .

We shall denote by Purefp the class of categorical pure short exact sequences in
Qcoh(X) and by Pure the class of pure short exact sequences in Qcoh(X), as in Propo-
sition 3.4.

Proposition 3.9. If Qcoh(X) is a locally finitely presented category, then categorical
pure short exact sequences are pure exact, that is, Purefp ⊆ Pure.

Proof. Let E ≡ 0 → F → G → H → 0 be an exact sequence in Purefp. By
assumption, H = lim−→ Hi, where Hi is a finitely presented object in Qcoh(X) for each i.
Now, for each i, the top row of the pullback diagram

Ei = 0 �� F ��

��

Gi
��

��

Hi

��

�� 0

0 �� F �� G �� H �� 0

is a categorical pure exact sequence ending with a finitely presented object Hi. Therefore,
each Ei splits for every i. That is, E = lim−→ Ei, where Ei is a splitting exact sequence for
every i. Now, taking the stalk at x ∈ X, we obtain Ex = lim−→ Ei

x. Then Ei
x is pure exact

in OX,x-Mod for each x ∈ X, and so is Ex. Hence, by Proposition 3.4, E is a pure exact
sequence in Qcoh(X). �

We recall that a quasi-coherent OX -module F is flat if F ⊗ · is exact in OX -Mod.
Equivalently, F (U) is flat as an OX(U)-module for each affine open subset U ⊆ X, or
Fx is flat as an OX,x-module for each x ∈ X. We will denote by F lat the class of all flat
quasi-coherent sheaves.

Definition 3.10. A quasi-coherent OX -module F is called tensor flat (respectively,
fp-flat) if every short exact sequence in Qcoh(X) ending in F is pure exact (respectively,
is categorical pure). We shall denote by F lat⊗ (respectively, by F latfp) the class of
all tensor flat quasi-coherent sheaves (respectively, the class of all fp-flat quasi-coherent
sheaves).

Proposition 3.11. Let F ∈ Qcoh(X). If F is flat, then it is also tensor flat. In the
case in which X is semi-separated, the converse also holds.
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Proof. Let 0 → T → G → F → 0 be an exact sequence in Qcoh(X). Given an affine
open U ⊆ X, 0 → T (U) → G (U) → F (U) → 0 is also exact. Since F (U) is a flat
OX(U)-module, we deduce from Proposition 3.3 that F is tensor flat.

If X is a semi-separated scheme, then the direct image functor ı∗ for the inclusion map
ı : U ↪→ X, where U is affine, is exact.

Let F ∈ Qcoh(X) be tensor flat. We need to show that F (U) is a flat OX(U)-module
for each affine open subset U ⊆ X. Let

0 �� A �� B �� F (U) �� 0

be an exact sequence of O(U)-modules. By the previous observation, we have an exact
sequence

0 �� ı∗(Ã) �� ı∗(B̃) �� ı∗(F̃ |U ) �� 0

If we take the pullback of the morphism ı∗(B̃) → ı∗(F̃ |U ) and the canonical morphism
F → ı∗(F̃ |U ), we obtain the commutative diagram with exact rows:

0 �� ı∗(Ã) ��

��

H ��

��

F

��

�� 0

0 �� ı∗(Ã) �� ı∗(B̃) �� ı∗(F̃ |U ) �� 0

Since ı∗(Ã) and F are quasi-coherent, H is quasi-coherent. By assumption, the first row
is pure exact, so by Proposition 3.3 each image under affine open subset is pure exact.
From this diagram, it can be deduced that H (U) ∼= ı∗(B̃)(U) = B. So the short exact
sequence 0 → A → B → F (U) → 0 is pure and then F (U) is a flat OX(U)-module. �

Corollary 3.12. Assume that Qcoh(X) is locally finitely presented (for instance if X

is concentrated). Then F latfp ⊆ F lat⊗. If X is semi-separated, then F latfp ⊆ F lat⊗ =
F lat.

Proof. This follows from Proposition 3.9 and Proposition 3.11. �

Remark 3.13. The inclusions in Corollary 3.12 are strict. Namely, in [8, Corollary 4.6]
it was shown that F latfp = 0 for the case in which X = P n(R). In general there is a large
class of projective schemes X such that F latfp = 0 in Qcoh(X) (see [8, Theorem 4.4]).

4. Pure injective envelopes

Definition 4.1. A quasi-coherent OX -module M is said to be fp-pure injective
(respectively, pure injective) if for every short exact sequence 0 → F → G → H → 0
in Purefp (respectively, in Pure) the sequence 0 → Hom(H ,M ) → Hom(G ,M ) →
Hom(F ,M ) → 0 is exact. We shall denote by Pinjfp (respectively, by Pinj) the class
of all fp-pure injective quasi-coherent sheaves (respectively, the class of all pure injective
quasi-coherent sheaves). In general, when we say that an OX -module is pure injective,
we mean that it is ‘injective’ with respect to all pure exact sequences in OX -Mod.
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Remark 4.2.

• If X is concentrated, then, by Proposition 3.9, Pinj ⊆ Pinjfp.

• Clearly, every injective quasi-coherent OX -module is both fp-pure injective and
pure injective.

Theorem 4.3. Let X be a concentrated scheme. Then every M ∈ Qcoh(X) admits
an fp-pure injective envelope η : M → PEfp(M ). That is, Pinjfp is enveloping.

Moreover, the induced short exact sequence

0 → M
η−→ PEfp(M ) → PEfp(M )

M
→ 0

is in Purefp.

Proof. Since X is concentrated, Qcoh(X) is a locally finitely presented Grothendieck
category. So the result follows from [15, Theorem 6] (see also [10]). �

Now we will recall the definition of an internal Hom functor in Qcoh(X) (X is an
arbitrary scheme). The category Qcoh(X) is Grothendieck abelian (see [6, Corollary 3.5]
for the existence of a generator for Qcoh(X)) and the inclusion functor Qcoh(X) →
OX -Mod has a right adjoint functor C by the special adjoint functor theorem. This right
adjoint functor is known in the literature as the coherator. The internal Hom functor is
thus defined as Homqc(F ,G ) = CHom(F ,G ), where Hom(·, ·) is the usual sheafhom
functor. Therefore, Qcoh(X) is a closed symmetric monoidal category with the usual
tensor product and the Homqc(·, ·) a bifunctor, and there is a natural isomorphism

Hom(F ⊗ G ,H ) ∼= Hom(F ,Homqc(G ,H )).

The unit object of the monoidal structure is given by OX . Thus, one gets a natural
equivalence Hom(OX ,Homqc(·, ·)) � Hom(·, ·), and so for each F ,G ∈ Qcoh(X) there
is a bijection Hom(F, G) ∼= Homqc(F ,G )(X).

Now, since OX -Mod is a Grothendieck category, it has injective envelopes. Let Λ =
{Si : i ∈ I} be a set of generators for OX -Mod (see, for example, [28, Corollary 6.8]).
We pick an injective embedding ⊕

Λ,T

Si/T → E ,

where E ∈ OX -Mod is injective and the sum also runs over all OX -submodules of each Si.
Then it is clear that such an E is an injective cogenerator for OX -Mod. This is an injective
OX -module with the property that for every non-zero G ∈ OX -Mod there exists a non-
zero morphism G → E . Note that C(E ) is an injective cogenerator in Qcoh(X). Indeed,
the inclusion functor Qcoh(X) → OX -Mod is an exact functor with right adjoint C.

We shall denote by M ∨ the character OX-module given by M ∨ = Hom(M ,E ). There
is a canonical map ev : M → M ∨∨.
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Proposition 4.4. Given M ∈ OX -Mod, the character OX -module M ∨ is pure injec-
tive in OX -Mod.

Proof. Let 0 → T → N → H → 0 be a pure exact sequence in OX -Mod. Then

Hom(N ,M ∨) → Hom(T ,M ∨) → 0

is exact if and only if

Hom(N ⊗ M ,E ) → Hom(T ⊗ M ,E ) → 0

is exact. But the latter follows since 0 → T ⊗M → N ⊗M is exact and E is an injective
cogenerator. �

Proposition 4.5. A short exact sequence in OX -Mod,

0 → F → G → T → 0,

is pure exact if and only if

0 → T ∨ → G ∨ → F∨ → 0

splits.

Proof. The proof is the same as that in categories of modules (see, for example, [7,
Proposition 5.3.8]). It is necessary to point out that in any Grothendieck category C,
with an injective cogenerator E, a sequence 0 → M → L → N → 0 is exact if and only
if 0 → Hom(N, E) → Hom(L, E) → Hom(M, E) → 0 is exact. �

Corollary 4.6. For any M ∈ OX -Mod the evaluation map ev : M → M ∨∨ is a pure
monomorphism.

Proof. First we will see that ev is injective. Let 0 �= x ∈ M (U) for some affine open
U . Then there exists a non-zero OX -module S /T ⊆ M , where S ∈ Λ, with x ∈ S /T .
By the definition of E , there is a monomorphism α : S /T → E with α(x) �= 0. Then
α extends to α′ : M → E . And ev(x)(α′) = α′(x) �= 0. So we are done. To show that
ev : M → M ∨∨ is pure exact we need to show, by Proposition 4.5, that M ∨∨∨ → M ∨

admits a section, but ev∨ : M ∨ → M ∨∨∨ is such a section. �

Lemma 4.7. Let M be a pure-injective OX -module. Then its coherator C(M ) is
pure injective in Qcoh(X) as well.

Proof. Let 0 → F → G be a pure exact sequence in Qcoh(X). This means that it is
pure exact in OX -Mod. So we have an exact sequence

HomOX -Mod(G ,M ) → HomOX -Mod(F ,M ) → 0.

Since (ι, C) is an adjoint pair, where ι : Qcoh(X) ↪→ OX -Mod, this implies that

HomQcoh(X)(G , C(M )) → HomQcoh(X)(F , C(M )) → 0

is exact. �
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Corollary 4.8. Every quasi-coherent sheaf M can be purely embedded into a pure
injective quasi-coherent sheaf. In particular, the class of pure injective quasi-coherent
sheaves is pre-enveloping.

Proof. Let M be a quasi-coherent sheaf. By Corollary 4.6, there is a pure monomor-
phism ev : M → M ∨∨, where M ∨∨ is a pure injective OX -module. So we apply the
coherator functor on M ∨∨, C(M ∨∨). By Lemma 4.7, it is a pure injective quasi-coherent
sheaf. The adjoint pair (ι, C) allows us to factorize ev over C(M ∨∨). Indeed, Qcoh(X) is a
coreflective subcategory of OX -Mod, and M is quasi-coherent. So there is a unique mor-
phism ϕ : M → C(M ∨∨) over which ev is factorized. Then ϕ is a pure monomorphism
as well. �

In order to show that the class Pure in Qcoh(X) is enveloping, we will apply [29,
Theorem 2.3.8] (this, in turn, uses [29, Theorem 2.2.6]). The arguments in these proofs
are categorical and can be easily extended to our setup in Qcoh(X) by taking into account
the following lemma.

Lemma 4.9. For a given M ∈ Qcoh(X), the class of sequences in Pure of the form

0 → M → L → T → 0

varying L ,T ∈ Qcoh(X) is closed under direct limits.

Proof. The argument is local and so it can be deduced from the corresponding result
on module categories (see, for example, [29, Proposition 2.3.7]). �

Combining Lemma 4.9 and Corollary 4.8, and applying the analogue to [29, Theo-
rem 2.3.8] for the category Qcoh(X), we obtain the following theorem.

Theorem 4.10. Every M ∈ Qcoh(X) admits a pure injective envelope η : M →
PE(M ). That is, Pinj is enveloping.

Moreover, the induced short exact sequence

0 → M
η−→ PE(M ) → PE(M )

M
→ 0

is in Pure.

5. Locally absolutely pure quasi-coherent sheaves and absolutely pure
sheaves

An R-module A is absolutely pure (see [17]) if it is pure in every module containing
it as a submodule. Absolutely pure modules are also studied with the terminology of
FP-injectives (see [26]). It follows immediately from the definition that A is absolutely
pure if and only if it is a pure submodule of some injective module. And therefore A is
absolutely pure if and only if Ext1R(M, A) = 0 for each finitely presented R-module M .

In this section we will study (locally) absolutely pure sheaves in both OX -Mod and
in Qcoh(X). Since we have pure exact sequences in categories of sheaves rather than
categorical ones, we deal with tensor purity to define absolutely pure sheaves in OX -Mod
and in Qcoh(X).
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Definition 5.1. Let (X, OX) be a scheme.

(1) Let F be in OX -Mod. F is absolutely pure in OX -Mod if every exact sequence
0 → F → G in OX -Mod is pure exact in OX -Mod.

(2) Let F be a quasi-coherent sheaf on X. F is called absolutely pure in Qcoh(X) if
every exact sequence 0 → F → G in Qcoh(X) is pure exact.

(3) Let F be a quasi-coherent sheaf on X. F is called locally absolutely pure if F (U)
is absolutely pure over OX(U) for every affine open U ⊆ X.

Lemma 5.2. All these notions of locally absolute purity of quasi-coherent sheaves and
absolute purity in OX -Mod and in Qcoh(X) are closed under taking pure subobjects.

Proof. It follows from the fact that if f ◦ g is a pure monomorphism with monomor-
phisms f and g, then g is a pure monomorphism. �

Lemma 5.3. Let F be an OX -module. The following are equivalent:

(1) F is absolutely pure in OX -Mod,

(2) F |Ui is absolutely pure in OX |Ui-Mod for a cover {Ui} of X.

Proof. (1) =⇒ (2) Let U ⊆ X be open. Then the extension of F |U to zero outside
U , j!(F |U ), is contained in F . Since the stalk of j!(F |U ) is Fx if x ∈ U and 0 otherwise,
j!(F |U ) is a pure subsheaf of F in OX -Mod. So j!(F |U ) is absolutely pure in OX -Mod,
too.

Now let G be any OX |U -module with an exact sequence 0 → F |U → G . Then 0 →
j!(F |U ) → j!(G ) is still exact in OX -Mod. So it is pure in OX . But this means that
0 → [j!(F |U )]x → [j!(G )]x is pure for all x ∈ X. For x ∈ U that exact sequence is equal
to the exact sequence 0 → (F |U )x → (G )x and j!(F |U )|U = F |U and (j!(G ))|U = G .
This proves the desired implication.

(2) =⇒ (1) Let 0 → F → G be an exact sequence in OX -Mod. In order to show that it
is pure exact, we need to show that the morphism induced on the stalk is pure exact for
every x ∈ X. But the restriction functor to open subsets is left exact and (F |U )x = Fx.
So the claim follows. �

Lemma 5.4. Let F be an OX -module. If Fx is absolutely pure for all x ∈ X, then
F is absolutely pure in OX -Mod.

Proof. Let 0 → F → G be an exact sequence in OX -Mod. To be pure in OX -Mod is
equivalent to being pure at the induced morphism on the stalk for every x ∈ X. So that
proves our implication. �

Let X = Spec(R) be an affine scheme. The next proposition shows that in order to
check that a quasi-coherent OX -module Ã is absolutely pure, it suffices that its restric-
tions Ã|D(si), i = 1, . . . , n, be absolutely pure, where

⋃n
i=1 D(si) = X, and s1, . . . , sn ∈ R.
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Proposition 5.5. Let R be a ring and let s1, s2, . . . , sn be a finite number of elements
of R that generate the unit ideal. Let A be an R-module. If Asi is absolutely pure over
Rsi for every i = 1, . . . , n, then A is absolutely pure over R.

Proof. Given A ⊆ B, we want to prove that the canonical morphism M ⊗ A →
M ⊗ B is injective for every module M . Let K = Ker(M ⊗ A → M ⊗ B). Then, by our
hypothesis, we obtain Ksi = 0 for each i = 1, . . . , n. So if x ∈ K, then si

hix = 0 for
some hi � 0. But the set {s1, s2, . . . , sn} generates R. So we have s1t1 + · · · + sntn = 1
for some t1, . . . , tn ∈ R. And also (s1t1 + · · · + sntn)hx = 0 if h > h1 + · · · + hn − 1,
i.e. x = 1 × x = 1hx = 0. �

Let X = Spec(R) be an affine scheme. Now we will see that in order to check that a
quasi-coherent OX -module Ã is absolutely pure, it suffices to check that for each P ∈ X

each stalk M̃P is an absolutely pure OX,P -module.

Proposition 5.6. If AP is absolutely pure over RP for every prime ideal P , then A

is absolutely pure over R.

Proof. Let M be a finitely presented R-module. We want to prove that Ext1R(M, A) =
0. Since M is finitely presented,

(Ext1R(M, A))P
∼= Ext1RP

(MP , AP ) = 0.

Since this is true for each prime ideal P , Ext1R(M, A) = 0. So A is absolutely pure. �

Neither Proposition 5.5 nor 5.6 assume any condition on the ring R. Their converses
are not true in general. However, they are if R is coherent (see [20, Theorem 3.21]). So
it makes sense to define a notion of locally absolutely pure quasi-coherent sheaves over
a locally coherent scheme. A scheme (X, OX) is locally coherent provided that OX(U)
is a coherent ring for each affine open subset U ⊆ X. Since coherence descends along
faithfully flat morphisms of rings (see [13, Corollary 2.1]), it follows that X is locally
coherent if and only if OX(Ui) is coherent for each i ∈ I of some affine open covering
{UI}i∈I of X. So, over a locally coherent scheme, the next proposition states that in
order to prove whether a quasi-coherent sheaf is locally absolutely pure, it is sufficient to
look at some cover by affine subsets of X. And these show that locally absolute purity
is a stalkwise property.

Proposition 5.7. Let (X, OX) be a locally coherent scheme. Then the following con-
ditions are equivalent for a quasi-coherent sheaf F :

(1) F (U) is absolutely pure for every affine U ,

(2) F (Ui) is absolutely pure for all i ∈ I for some cover {Ui}i∈I of affine open subsets,

(3) Fx is absolutely pure for all x ∈ X.
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Proof. We just need to prove the implications (2) =⇒ (3) and (3) =⇒ (1).
By [20, Theorem 3.21], the localization of an absolutely pure module over a coherent ring
is again absolutely pure, so the first implication follows. For the second, let F (U) ∼= M for
an OX(U)-module M . By assumption, F (U)P

∼= MP is absolutely pure for every prime
ideal P of OX(U). Hence, F (U) = M is also absolutely pure by Proposition 5.6. �

The next lemma shows that the locally absolutely pure objects in Qcoh(X) on a locally
coherent scheme X are exactly the absolutely pure OX -modules that are quasi-coherent.

Lemma 5.8. Let X be a locally coherent scheme and let F be a quasi-coherent sheaf.
Then F is locally absolutely pure if and only if F is absolutely pure in OX -Mod.

Proof. It follows by Lemma 5.3 and Proposition 5.7. �

At this point, we may consider the relation between absolutely pure quasi-coherent
sheaves and locally absolutely pure quasi-coherent sheaves.

Lemma 5.9. Let X be a locally coherent scheme. Every locally absolutely pure quasi-
coherent sheaf is absolutely pure in Qcoh(X).

Proof. This follows from Proposition 5.7 and Proposition 3.4. �

The converse of Lemma 5.9 is not clear in general. But it is true if X = Spec(R)
is affine and R is coherent, or if X is locally Noetherian. The first case is clear since
Qcoh(X) ∼= OX(X)-Mod. For the second, let F be absolutely pure in Qcoh(X) and let
E(F ) be its injective envelope in Qcoh(X). Then 0 → F → E(F ) is pure exact. So, for
each affine open subset U ⊆ X, 0 → F (U) → E(F )(U) is pure exact in OX(U)-Mod.
But E(F )(U) is an injective OX(U)-module and F (U) is a pure submodule of it. Hence,
F (U) is absolutely pure for each affine U ⊆ X. So, F is a locally absolutely pure quasi-
coherent sheaf.

Proposition 5.10. Let X be a locally coherent scheme. If the class of injective sheaves
in OX -Mod is equal to the class of absolutely pure sheaves in OX -Mod, then X is a locally
Noetherian scheme.

Proof. Suppose that these classes are equal. Let M be an absolutely pure OX(U)-
module, where U is an affine open subset. Then the sheaf j!(M̃) obtained by extending
M̃ to zero outside U is an absolutely pure OX -module by Lemma 5.4. By assumption,
it is injective in OX -Mod. So, its restriction (j!(M̃))|U = M̃ is injective in OX |U -Mod.
Since M̃ is quasi-coherent, it is injective in Qcoh(U), which implies that M is an injective
OX(U)-module. So OX(U) is a Noetherian ring and X is a locally Noetherian scheme. �

Now we will extend the known fact that a ring R is Noetherian if and only if each
absolutely pure R-module is injective (see [18, Theorem 3]) for closed subschemes of
Pn(R) that are locally coherent. Let R be a commutative ring and let X = Pn(R) be a
projective scheme over R, where n ∈ N. Then take a cover of X consisting of affine open
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subsets D+(xi) for all i = 0, . . . , n and all possible intersections. In this case, our cover
contains basic open subsets of the form

D+

( ∏
i∈v

xi

)
,

where v ⊆ {0, 1, . . . , n}. It is known that the category of quasi-coherent sheaves over
a scheme is equivalent to the class of certain module representations over some quiver
satisfying the cocycle condition (see [6]). In our case, the vertices of our quiver are all
subsets of {0, 1, . . . , n} and we have only one edge v → w for each v ⊆ w ⊆ {0, 1, . . . , n}
since D+(

∏
i∈w xi) ⊆ D+(

∏
i∈v xi). Its ring representation has

OPn(R)

(
D+

( ∏
i∈v

xi

))
= R[x0, . . . , xn](∏i∈v xi)

on each vertex v, which is the subring of the localization R[x0, . . . , xn]∏
i∈v xi

containing
its degree zero elements. It is isomorphic to the polynomial ring on the ring R with
the variables xj/xi, where j = 0, . . . , n and i ∈ v. We denote this polynomial ring by
R[v]. Then the representation R with respect to this quiver with relations is defined as
R(v) = R[v] for each vertex v, and there is an edge R(v) ↪→ R(w) provided that v ⊆ w.
Finally, a quasi-coherent sheaf M on Qcoh(X) is uniquely determined by a compatible
family of R(v)-modules M (v) satisfying that

S−1
vwfvw : S−1

vwM (v) → S−1
vwM (w) = M (w)

is an isomorphism as R[w]-modules for each fvw : M (v) → M (w), where Svw is the
multiplicative set generated by {xj/xi | j ∈ w \ v, i ∈ v} ∪ {1} and v ⊂ w.

Recall that a closed subscheme X of Pn(R) is given by a quasi-coherent sheaf of ideals,
i.e. we have an ideal Iv ⊆ R[v] for each v with R[w] ⊗R[v] Iv

∼= Iw when v ⊆ w. This
means that Iv → Iw is the localization by the same multiplicative set as above. But
then R[v]/Iv → R[w]/Iw is also a localization. So, by abusing the notation, we shall also
denote by R the structural sheaf of rings attached to X.

Proposition 5.11. A closed subscheme X ⊆ Pn(R) that is locally coherent (for
example, if X = Pn(R) and R is stably coherent) is locally Noetherian if and only if
locally absolutely pure quasi-coherent sheaves are locally injective.

Proof. The ‘if’ part is clear. Indeed, if a scheme is locally Noetherian, then all classes
of locally absolutely pure, absolutely pure, locally injective and injective quasi-coherent
sheaves are equal by [14, Chapter II, Proposition 7.17, Theorem 7.18].

For the ‘only if’ part, suppose that the class of locally injective and locally abso-
lutely pure quasi-coherent sheaves are equal. As explained above, we deal with a cover
{D+(

∏
i∈v xi)}v⊆{1,...,n} of basic affine open subsets of X since locally absolute purity

is independent of choice of the base by Proposition 5.7. Let M be an absolutely pure
R[v]-module for some v ⊆ {1, . . . , n}. By taking its direct image ι∗(M̃), we obtain a locally
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absolutely pure quasi-coherent sheaf on X. Indeed, ι∗(M̃)(D+(
∏

i∈w xi)) = S−1
vwM(v) for

v ⊆ w is an absolutely pure R[w]-module by [20, Theorem 3.21], and

ι∗(M̃)
(

D+

( ∏
i∈w

xi

))
= M̃

(
D+

( ∏
i∈w

xi

)
∩ D+

( ∏
i∈v

xi

))

as an R[w]-module for v � w. But

M̃

(
D+

( ∏
i∈w

xi

)
∩ D+

( ∏
i∈v

xi

))
= S−1

v(v∪w)M(v)

is absolutely pure as an R[(v ∪ w)]-module and, since R[(v ∪ w)] = S−1
v(v∪w)R[w], it is

also absolutely pure as an R[w]-module by [20, Theorem 3.20]. By assumption, ι∗(M̃) is
locally injective, that is, (ι∗(M̃))(D+(

∏
i∈v xi)) = M is injective. So, R[v] is Noetherian

by [18, Theorem 3]. This implies that X is locally Noetherian. �

Note that the class of locally absolutely pure quasi-coherent sheaves over a locally
coherent scheme is closed under direct limits and coproducts since absolutely pure mod-
ules over coherent rings are closed under direct limits [20, Proposition 2.4].

Theorem 5.12. Let X be a locally coherent scheme. The class of locally absolutely
pure quasi-coherent sheaves is a covering class.

Proof. First, note that over a coherent ring a quotient of an absolutely pure module
by a pure submodule is again absolutely pure [20, Proposition 4.2]. So, using that, we
can say that a quotient of a locally absolutely pure by a pure quasi-coherent subsheaf is
again locally absolutely pure.

Let λ be the cardinality of the scheme X, that is, the supremum of all cardinalities
of OX(U) for all affine open subsets U ⊆ X. By [6, Corollary 3.5], there is an infinite
cardinal κ such that every quasi-coherent sheaf can be written as a sum of quasi-coherent
subsheaves of type κ. In fact, every subsheaf with type κ of a quasi-coherent sheaf F

can be embedded in a quasi-coherent subsheaf of type κ that is pure in F . Let S be the
set of locally absolutely pure quasi-coherent sheaves of type κ. By combining this with
the fact that the class of locally absolutely pure quasi-coherent sheaves is closed under
taking a quotient by a pure quasi-coherent sheaf, it follows that each locally absolutely
pure quasi-coherent sheaf admits an S-filtration. So, every locally absolutely pure sheaf
is filtered by those of type κ.

On the other hand, since absolutely pure modules are closed under extensions and
direct limits over a coherent ring, every quasi-coherent sheaf on a locally coherent scheme
possessing an S-filtration is also locally absolutely pure quasi-coherent. So, the class of
locally absolutely pure quasi-coherent sheaves is equal to the class Filt(S) of all S-filtered
quasi-coherent sheaves. So, that class is precovering. Being closed under direct limits also
implies that the class of locally absolutely pure quasi-coherent sheaves is covering. �
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