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In flows where the ratio of inertia to gravity varies strongly, large variations in the
fluid thickness appear and hydraulic jumps arise, as depicted by Rayleigh. We report a
new family of hydraulic jumps, where the capillary effects dominate the gravitational
acceleration. The Bond number – which measures the importance of gravitational
body forces compared to surface tension – must be small in order to observe such
objects using capillarity as a driving force. For water, the typical length should be
smaller than 3 mm. Nevertheless, for such small scales, solid boundaries induce
viscous stresses, which dominate inertia, and capillary jumps should not be described
by the inertial shock wave theory that one would deduce from Bélanger or Rayleigh
for hydraulic jumps. In order to get rid of viscous shears, we consider Plateau
borders, which are the microchannels defined by the merging of three films inside
liquid foams, and we show that capillary jumps propagate along these deformable
conduits. We derive a simple model that predicts the velocity, geometry and shape of
such fronts. A strong analogy with Rayleigh’s description is pointed out. In addition,
we carried out experiments on a single Plateau border generated with soap films
to observe and characterize these capillary jumps. Our theoretical predictions agree
remarkably well with the experimental measurements.

Key words: capillary flows, foam, waves/free-surface flows

1. Introduction

Hydraulic jumps are waves that connect sections of strongly varying flows. They
have been observed by famous authors, including Leonardo da Vinci, Bidone (1819),
Savart (1833), Bélanger (1841) and Rayleigh (1914). The last two introduced the well-
known conservation laws at the jump for mass and momentum, Rayleigh being able
to derive these from a continuous description of the thickness profile. At the position
of the jump, the flow speed, v, decreases drastically from supersonic to subsonic
with respect to the local surface wave speed. In a thin layer of height h, the speed
of gravity waves is given by

√
gh, where g is the acceleration due to gravity. The

corresponding dimensionless number is the Froude number, Fr = v/√gh, where the
velocity v is defined with respect to the reference frame where the hydraulic jump is
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standing. The flow upstream of the jump, being more rapid than the surface waves,
is referred to as supercritical with Fr> 1, while the flow downstream of the jump is
referred to as subcritical with Fr< 1. This allows the vision of the hydraulic jump as
a shock wave, in analogy with compressible gas flows (Lighthill 1978), and in which
a hypothetical transition would be localized at a place where Fr= 1. The Mach cone,
which is a characteristic of supercritical flows, has been observed in radial hydraulic
jumps by Jannes et al. (2011), who suggested a possible transition governed by Fr= 1
at the jump position. In rivers, hydraulic jumps, whose position is almost stationary,
appear because of variations of the river bed (Chow 1959; Simpson 1997). Tidal bores,
which are wavefronts associated with a tide propagating in the opposite direction to
the river current, can also be interpreted as moving hydraulic jumps (Chanson 2011).
These natural objects, which share the same characteristic high Reynolds number, Re,
do exhibit turbulent flows that provide strong variations of the surface profile.

In order to probe flows with moderately high Reynolds number, hydraulic jumps
might be created by impacting a jet on a solid surface, as in the common operation
of opening the tap of a kitchen sink. The obtained hydraulic jump takes a circular
form whose radius depends on the viscosity (Watson 1964; Craik et al. 1981; Bohr,
Putkaradze & Watanabe 1993), and is not directly given by the Fr = 1 criterion
(applied to a hypothetical inertial flow that in fact never holds). At the centimetre
scale and in this geometry, the formation mechanism appears to be a coupling between
the boundary layer emerging from the solid substrate and the free surface (Watson
1964; Bowles & Smith 1992; Higuera 1994). Craik et al. (1981) partially observed
the existence of a reverse flow, which takes the form of a toroidal vortex and acts
like a springboard for the incoming fluid. This separation of the boundary layer
might be explained by the existence of an adverse pressure gradient, as proposed
by Kurihara (1946) and Tani (1949). Theoretical approaches (Watson 1964; Bohr,
Putkaradze & Watanabe 1997; Rojas et al. 2010) and numerical techniques (Yokoi
& Xiao 2002; Passandideh-Fard, Teymourtash & Khavari 2011) have also evidenced
this peculiar flow. Various scaling laws predict a viscosity dependence for the radius
position (Watson 1964; Bohr et al. 1997; Bush & Aristoff 2003; Rojas, Argentina
& Tirapegui 2013; Duchesne, Lebon & Limat 2014). In addition, the experimental
measurements of Duchesne et al. (2014) show the occurrence at the exit of circular
hydraulic jumps of a locked value of the Froude number, whose value is independent
of the flow rate imposed by the jet. One-dimensional hydraulic jumps, which have
been addressed by Bonn, Andersen & Bohr (2008), are slightly different, since the
upstream fluid thickness increases almost linearly in space. The hydraulic jumps
created by the impact jet present the advantage of being almost laminar, but the
formation mechanism appears to be also deeply linked to viscous effects.

We describe here a new kind of hydraulic jump, where the driving force has a
capillary origin, gravitational effects can be omitted, and viscosity does not play a
fundamental role in the formation mechanism. In a thin layer of thickness l, the
characteristic surface wave velocity behaves as

√
γ /ρl, where ρ is the density of the

fluid and γ its surface tension. In such a case, the Froude number introduced in the
Rayleigh theory is replaced by the Weber number We= ρv2l/γ . Consequently, there
exists a critical Weber number Wec below which surface waves cannot travel faster
than the fluid flow. A capillary-driven hydraulic jump is expected in flows for which
We−Wec changes its sign. This scenario should be potentially observed in thin films
falling down an inclined plane, as depicted by Kapitza (1948), in which capillary
effects might dominate gravity. Nevertheless, the small length scale also introduces
notable viscous shear, which affects the shock-wave criterion.
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Nodes

Plateau border

FIGURE 1. Optical photography of a liquid foam. The close-up shows a Plateau border.
The grey areas represent the liquid films shared by two adjacent bubbles.

In this article, we present capillary hydraulic jumps, analogous to hydraulic jumps,
formed in a Plateau border (PB). Plateau’s laws describe the geometric properties
of interacting soap films. At equilibrium, they always meet in threes, creating a
microchannel, called a Plateau border (see figure 1). PBs merge into nodes and
the PB–node network creates a porous medium that mediates the liquid flows.
Usually, drainage in a gravitational field can be described using low-Reynolds-number
flows in a Darcy-like approach (Weaire et al. 1993; Koehler, Hilgenfeldt & Stone
1999). In capillary suction experiments, flow is triggered by capillary effects due to
PB thickness inhomogeneities. In that case, the Ohnesorge number Oh = √We/Re
discriminates between different regimes for fluid flow (Cohen et al. 2014). We have
used here Re= ρvl/η, where the fluid viscosity is η. For Oh> 0.05, PB perturbations
disappear through viscous damping, whereas for Oh< 0.05, inertia dominates the flow
and a wave, similar to a hydraulic jump, propagates along the PB with an almost
constant velocity. This is the regime we address in this study.

This article is organized as follows. Section 2 describes a simple model for
capillary jumps in PBs. The comparison between our theoretical predictions and our
experimental measurements are presented in § 3. In § 4, we propose an energetic
argument providing a selection mechanism for capillary jumps.

2. Model
The model aims at computing the shape and velocity of the capillary jump. We

consider the Plateau border depicted in figure 2: the three holding films are attached
to a triangular prism frame; the liquid flows along the z axis; and Rext defines the
radius of the circum-circle of the equilateral triangles defining the holding frame.

The interior region delimited by the arcs ÂB, B̂C and ĈA defines the PB channel.
We assume a constant pressure Pext in the surrounding air. Laplace’s law predicts the
radius of curvature of the arcs as R= γ /(Pext − P), such that the cross-section of the
PB is symmetric, since all the surfaces of the channel share the same curvature. Here
γ is the surface tension and P the pressure inside the fluid. The channel thickness
e = (√3/2)R is defined as the height of the equilateral triangle ABC. The segments
AA′, BB′ and CC′ represent the three films composed of two interfaces separating the
fluid from the air.

We denote by P =πR the PB perimeter and by A = αR2 its cross-sectional area,
with α=√3− (π/2). The length L of the interfaces on the cross-section is the sum
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z

(b)(a)

FIGURE 2. (a) Three-dimensional representation of the system. The grey surfaces
represent the liquid–air interfaces. The dashed lines represent equilateral triangles with a
circum-circle of radius Rext. (b) Arbitrary cross-section of the system showing the Plateau
border with its three holding films. The thick curves represent liquid–air interfaces. The
thickness, e, of the PB is proportional to its radius of curvature, R.

of the perimeter P and six times the distance AA′ (the factor 2 arises because each
film is composed of two liquid–air interfaces):

L =−2αR+ 6Rext. (2.1)

As a consequence, the area of the liquid–air interfaces of the system decreases as
R increases, as pointed out by Géminard et al. (2004). The PB capillary energy,
proportional to L , decreases as the PB thickness e increases. From an energetic
point of view, the PB tends to increase its size e, which is a necessary condition for
the existence of a capillary jump.

The model derivation is based on the following assumptions.

(i) The flow is laminar and characterized by a high Reynolds number.
(ii) The pressure P and the longitudinal velocity u inside the channel depend only

on z.
(iii) The variations of all the physical variables are small in the z direction.

The jump propagates with a constant velocity of amplitude c towards a region where
the fluid velocity is zero and R= Ri. Experimentally, the injection of fluid inside the
PB, initially at rest with R=Ri, might create the jump as the fluid excess propagates
(see § 3).

The system is described in the reference frame of the capillary jump, where the
flow is steady, as shown in figure 3. With the variable Z attached to the reference
frame of the front (Z = z− ct, with z the variable in the laboratory frame), the mass
conservation is written as

∂Z(uA )= 0, (2.2)

where we have neglected the mass flow inside the films, since their area in the
cross-section is negligible compared to A . We write the longitudinal momentum
conservation in a slice of fluid between Z and Z + dZ as

∂Z[A (ρu2 + P− Pext − σzz)− γL ] = 0. (2.3)
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Air

Entrance

Exit Soap film

FIGURE 3. Longitudinal section of the capillary jump, in its reference frame. The jump
moves to the right with a velocity c in the laboratory frame.

The first term in the momentum flux arises from the flow inside the channel.
Surface tension exerts a longitudinal force proportional to L pointing outwards from
the infinitesimal cylinder. Longitudinal flows inside the films have been neglected
with respect to those inside the channel. The term σzz = 2η∂Zu is the viscous shear
stress applied to the cross-section oriented in the Z direction. The fluid pressure P,
evaluated at the fluid surface, obeys the dynamic boundary condition

P+ γ κ = Pext + σrr on ÂB, B̂C, ĈA, (2.4)

valid in the limit of small longitudinal deformations of the interfaces. Here σrr is the
normal fluid shear stress applied to the surface of the PB. The mean curvature κ can
be written as

κ = 1
R(Z)

+ β1R′′(Z)+ β2
R′(Z)2

R(Z)
, (2.5)

obtained in the small slope limit (see appendix A), where β1,2 are geometrical
coefficients. To close the model, we compute an approximation of the viscous stress
σrr = 2η∂rur, with ur defined as the radial velocity. The fluid is incompressible, and
we relate the radial velocity with the longitudinal velocity using the divergence-free
flow relation following an idea developed by Bogy (1979):

1
r
∂r(rur)+ ∂Zu= 0, (2.6)

where the angular dependence has been disregarded. Integrating this relation gives ur=
−(r/2)∂Zu. Consequently, the radial viscous stress approximates to

σrr =−η∂Zu. (2.7)

This rough approximation gives σrr that is similar to the radial shear stress in
cylindrical jets. Inserting (2.1), (2.4), (2.5) and (2.7) into (2.3) yields

∂Z

[
A

(
ρu2 + γ

(
1
R
− β1∂ZZR− β2

(∂ZR)2

R

)
− 3η∂Zu

)]
= 0. (2.8)

Note that the sign of the 1/R coefficient has changed with respect to the mean
curvature expression (2.5), owing to the tension induced by the holding films. These
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latter generate a homogeneous pressure as is the case for cylindrical jets. The equation
(2.8) is integrated to give

ρu2 + γ
(

1
R
− β1∂ZZR− β2

(∂ZR)2

R

)
− 3η∂Zu= d

R2
, (2.9)

where the integration constant d is determined by the boundary conditions.
Because of the Galilean invariance, we assume that, in the laboratory frame, the

capillary jump propagates with a velocity c towards z→+∞, at which R = Ri, as
shown in figure 3. The value of R at z→ −∞ is denoted Rj. We summarize the
boundary conditions as follows:

u(∞) = −c, (2.10)
R(−∞) = Rj, (2.11)

R(∞) = Ri. (2.12)

Using Ri and c as the characteristic length and velocity of the system, we rescale
the physical quantities as u= cv, R=Ria and Z=Ris. The set of equations (2.2) and
(2.9) becomes

v =− 1
a2
, (2.13)

1
a4
− d2

a2
+ 1

We

(
1
a
− β1∂ssa− β2

(∂sa)2

a

)
− 1

Re
6
a3
∂sa= 0, (2.14)

where d2 is the dimensionless integration constant arising from d. We have introduced
the Weber number We and the Reynolds number Re:

We= ρc2Ri

γ
, Re= ρcRi

η
. (2.15a,b)

The capillary jump velocity c is still an unknown. Two boundary conditions fix d2
and We. Imposing (2.12) on (2.14) settles d2 = 1 + (1/We). The boundary condition
(2.11) gives the following relation:

We= r̃2 1
1+ r̃

, (2.16)

where we have introduced the ratio r̃=Rj/Ri. The capillary jump velocity is deduced
from (2.15a,b) and (2.16):

c=
√

γ

ρRi
r̃

1√
1+ r̃

, (2.17)

such that the propagation velocity is proportional to the capillary wave velocity c0 =√
γ /ρRi, and a geometrical factor that depends only on the ratio r̃. The Reynolds

number defined in (2.15a,b) becomes

Re= 1
Oh

r̃√
1+ r̃

, (2.18)
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FIGURE 4. Dependence of the potential energy U on We: (a) We = 0.1; (b) We = 1/2;
(c) We= 1.

where Oh= η/√ργRi is the Ohnesorge number, which is the ratio of viscous stresses
induced by capillary waves to inertia.

Equation (2.14) presents a nice analogy with the differential equations of mechanical
nonlinear oscillators, since it may be written in the following form:

β1

We
∂ssa+ f (a, Re,We)∂sa+ ∂aU = 0. (2.19)

The dimensionless space variable s is analogous to the temporal variable t of
oscillators. As usual, the first term represents the acceleration. A dissipation function
appears in factor of ∂sa, i.e. f (a, Re, We) = 6/(a3Re) + β2(∂sa/aWe). This analogy
suggests that U = 1/(3a3)− (1+ 1/We)/a− ln(a)/We stands for an effective potential
energy, which is plotted in figure 4. The function U has one maximum and one
minimum, given the physical constraint a> 0.

2.1. Capillary jump
The capillary jump is the heteroclinic trajectory that connects two extrema of U ,
namely for a(−∞) = Rj/Ri and a(∞) = 1. As consequence, a = Rj/Ri must be the
position of the maximum of U, whereas a = 1 must be the position of the finite
minimum of U . This last condition, ∂aaU|a=1 > 0, turns into

We> 1
2 . (2.20)

The analogy with Rayleigh theory for hydraulic jumps becomes straightforward. A
capillary jump with Rj > Ri exists only if We > 1/2, which is equivalent to the
supercritical criterion Fr > 1 for hydraulic jumps. Owing to the oscillating nature
of (2.19), undulations are expected during the relaxation of a to 1. Two numerical
profiles are shown in figure 5(a). For low values of the Reynolds number, the viscous
forces dominate the inertia, and a becomes monotonic. The oscillation wavelength is
assessed from a linear analysis of (2.19) around a= 1 by studying the dynamics of
a perturbation b= a− 1:

β1

We
∂ssb+ 6

Re
∂sb+

(
2− 1

We

)
= 0. (2.21)

Since this equation is linear, imposing b∼ eqs yields

q=−3
We
β1Re

± i
1√
β1

√
2We− 1+ o

(
1

Re

)2

. (2.22)
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FIGURE 5. Plateau border profiles. (a) Capillary jumps numerically computed for We=
4/3 (equivalent to r̃ = 2). Solid and dashed curves have been obtained for Re = 60
and Re = 10, respectively. (b) Solitary wave profile, for very low viscosities, obtained
numerically from (2.24) with We= 1/6.

For small Reynolds number, viscosity damps oscillations, as the real part of q becomes
very high. The dimensional wavelength λ= 2πRi/Im(q) is

λ= Ri
2π
√
β1√

2We− 1
(2.23)

2.2. Solitary wave
In the case where viscous shear can be neglected, i.e. Re� 1, our model predicts
the existence of solitary waves, which are homoclinic orbits connected to a = 1. In
this parameter regime, (2.14) multiplied by a2∂sa and integrated with respect to the
variable s reduces to

a(s)2(1− βa′(s)2)
2We

− (We+ 1)a(s)
We

− 1
a(s)
= E. (2.24)

To derive the previous relation, we have assumed β1 = β2 = β, since β1 and β2 have
almost the same numerical value (see appendix A). The boundary conditions a(∞)=
1 and a′(∞) = 0 fix the value E = −(1+ 4We)/2We. Finally, the profile minimum
am= 2We is obtained by solving (2.24) with a′(s)= 0. A typical spatial profile of the
solitary wave is shown in figure 5(b); its velocity is deduced from (2.16) as

c= c0

√
am

2
. (2.25)

Physically, these waves take the form of a localized constriction of the Plateau
border, travelling with a constant speed. A localized perturbation yielding a localized
contraction might generate two of these solitary waves travelling in opposite directions.
These structures are not connected to an external reservoir, like the previously
described capillary jumps.

3. Experimental study
3.1. Materials and methods

In order to create the Plateau border, we constructed a 15 mm long triangular-prism
frame. After dipping it into a soapy solution, the PB appears in the longitudinal
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(a) (b)

FIGURE 6. (a) Cross-section of the unperturbed Plateau border. Here Ri = 0.261 mm.
(b) Longitudinal view of a propagating capillary jump on the Plateau border (solution I).

(a)

(b)

(c)

(d)

(e)

( f )

(g)

(h)

(i)
Capillary jump

FIGURE 7. Snapshots of a Plateau border with two propagating capillary jumps. The
pictures are recorded every 2.5 ms. (a) A droplet is released from above. (b) It coalesces
with the PB. (c) Two capillary jumps are formed, one on each side of the droplet.
(d–g) They propagate along the PB. (h,i) They reach the nodes. The two dashed lines
are for guidance only, to show that a steady regime is reached.

direction. The frame is positioned to settle the PB horizontally, and rotated around its
longitudinal axis such that the channel profile adopts the Y shape shown in figures 2
and 6(a). We can vary the radius of curvature of the PB, Ri (see figure 6a), by
injecting liquid at one upper corner of the frame. In this study, we have used
two liquid solutions leading to tangential-stress-free interfaces (Pitois, Fritz &
Vignes-Adler 2005; Raufaste, Foulon & Dollet 2009).

(i) Solution I was obtained by adding 5 % of a commercial dishwashing liquid (Dreft,
Procter & Gamble) to deionized water. The physical properties of solution I are
ρ = 980 kg m−3, γ = 26 mN m−1 and η= 1.08 mPa s.

(ii) Solution II was obtained by dissolving tetradecyl trimethyl ammonium bromide
(TTAB) in deionized water. The physical properties of solution II are ρ =
1030 kg m−3, γ = 36 mN m−1 and η= 1.04 mPa s.

For both solutions, the density ρ was measured by weighing a known volume of
solution (error of ±50 kg m−3), the dynamic viscosity η was determined using a
Ubbelohde viscometer (error of ±2 %) and the surface tension γ was measured using
the pendant drop method (error of ±1 mN m−1), as described in Hansen & Rødsrud
(1991).

Experiments are backlit and recorded from the side by means of a high-speed
camera (1000–2000 frames per second), in order to follow the temporal evolution
of the Plateau border (figure 7). A calibration step is performed before each set of
experiments, which consists in coupling cross-sectional and longitudinal views, in
order to deduce the radius of curvature R of the Plateau border from its apparent
thickness, e; this calibration gives Ri = (1.08± 0.02)ei.
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FIGURE 8. (a) Space–time diagram of the thickness of the capillary jump for solution I.
The darkest (lightest) grey represents 0.582 mm (0.216 mm) for the thickness of the PB.
(b) Comparison with the model of the capillary jump profile observed for solution I. Grey
discs represent the experimental thickness of the PB measured optically and renormalized
by the thickness ei of the PB at the entrance. The experimental radii of curvature of
the PB upstream and downstream of the jump are Ri = 0.30 mm and Rj = 0.57 mm,
respectively. Equation (2.16) gives We= 1.35 and Re= 95, when computed with a velocity
c= 0.28 m s−1 deduced from (2.17) and the physical values of solution I. This sets the
profile a(s) (black curve) predicted by (2.14).

3.2. Experimental results and comparison with the model
To create a capillary jump, we perturb the Plateau border by releasing a small droplet
of the same surfactant solution from above, as seen in figure 7(a). After a transient
time, a permanent regime sets in and two propagative capillary jumps are created
on the two sides of the droplet, as pictured in figure 7. The droplet radius, which
varies in our experiments from 0.2 to 1.8 mm, does not play a significant role in the
characteristics of the capillary jumps (see Cohen et al. 2014). As an example, we
show in supplementary movie 1 (available at http://dx.doi.org/10.1017/jfm.2014.717)
a jump formation following drop coalescence at one edge of the PB. After a short
transient regime, observed on a length scale given approximately by the perturbation
size, these structures propagate steadily with a constant velocity, c, and exhibit
small spatial oscillations near the jumps as shown in figure 6(b). This is illustrated
by supplementary movie 2. A space–time diagram of the apparent PB thickness
(figure 8a) demonstrates that c remains constant during the propagation. This diagram
was constructed as follows. The set of pictures (one example of which is shown in
figure 6b) extracted from a movie was binarized to discriminate the PB from the air.
For each binarized picture, the liquid thickness profile is computed (one example is
shown in figure 8b) and is associated to a grey scale. This settles the horizontal line
for this given time in the space–time diagram.

3.2.1. Capillary jump profile
The PB profile exhibits damped spatial undulations upstream (see figure 6b). These

wavy deformations are stationary in the reference frame of the capillary jump, as
shown in the space–time diagram of the PB thickness in figure 8(a). To compare
the experimental profile to our model, we use a Runge–Kutta method, precise at
fourth order, as numerical scheme (Press et al. 2007). In order to compute the spatial
evolution of a(s), we first use the experimental values of Ri and Rj to obtain We
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FIGURE 9. (a) Plot of Rj versus Ri, measured for solution I (black markers) and solution
II (grey markers). The black and grey curves represent Rj/Ri = 1.93 and Rj/Ri = 1.54,
respectively. (b) Velocity of the capillary jump as a function of Ri (logarithmic scales),
measured on solution I (black markers) and solution II (grey markers). The black and
grey solid lines are the velocity predictions using (2.17) for each data set.

through (2.16). The capillary jump velocity c is computed from (2.17), and used
to evaluate Re. The numerical profile is then computed via a shooting method with
the initial boundary conditions a(0) = Rj/Ri and a′(0) = −ε. The small parameter
ε controls the position of the capillary jump, but does not affect the shape of a(s)
since (2.14) is invariant under space translation. We choose ε in order to superimpose
the profile onto the experimental one, as can be seen in figure 8(b). The numerical
integration of (2.14) matches very well with the experimental observation, although
the model has been derived within a small slope approximation. The model nicely
captures the undulations together with the typical size of the jump. The dissipation
model does not accurately predict the maxima of the oscillations: a much more
precise description of the shear stresses including the angular dependence has to be
developed. Nevertheless, our present model already captures the fundamental physics
of the capillary jump.

3.2.2. Capillary jump aspect ratio
In figure 9(a), we show the measured radius Rj of curvature of the PB downstream

of the jump, for the two solutions I and II: Rj is plotted as a function of the measured
initial radius of curvature of the PB, Ri. For each liquid solution, the data points
coalesce onto a line. A linear regression gives Rj= (1.93± 0.03)Ri for solution I and
Rj= (1.54± 0.03)Ri for solution II. For each solution, the ratio Rj to Ri appears to be
constant within a good accuracy. This aspect ratio is the input parameter of our model
and sets the geometrical factor of (2.17) to 1.13 and 0.96, and the Weber number of
(2.16) to 1.27 and 0.92 for solutions I and II, respectively.

3.2.3. Capillary jump velocity
We measured the velocity of the jumps for solutions I and II. Figure 9(b) shows the

dependence of the jump velocity on Ri. For both solutions, a linear regression of the
experimental points yields a scaling with a power law −0.50 for the jump velocity.
Figure 9(b) shows the remarkable agreement between our model prediction and the
experimental measurements.
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FIGURE 10. Wavelength λ versus Ri, measured on capillary jumps observed for solution I.
The dashed line represents the best linear fit λ= (1.78± 0.1)Ri. The continuous line λ=
1.6Ri stands for the model prediction of equation (2.23).

3.2.4. Upstream undulations
As observed by Craik et al. (1981) in radial hydraulic jumps, capillary waves

might decorate the jump rim, in the supercritical regime. The capillary jump shares
this property. These steady undulations travel with the structure. We have measured
the wavelength, λ, in experiments with liquid solution I, and these are reported in
figure 10. The best linear fit gives λ = (1.8 ± 0.02)Ri whereas our model predicts
λ= 1.6Ri, and slightly underestimates the experimental wavelengths.

4. Selection mechanism of the capillary jump

In all the preceding sections, the capillary jump aspect ratio Rj/Ri was required
as an input parameter for the model to retrieve the experimental observations: jump
profile, front velocity and undulation wavelengths. Experimentally, this aspect ratio is
found to be independent of the size of the released droplet (data not shown), and
thus constant for a given liquid solution. In what follows, we assume that the jump is
self-adapting in shape independently of the perturbation that created it and we show
that a simple energetic argument predicts the value Rj/Ri chosen by the system. The
excess of energy injected at ±∞ is viscously dissipated within the whole channel.
Following Landau & Lifshitz (1987), the energy balance is written as[

A u
(
ρu2

2
+ (P− Pext)

)
+ γL u

]∞
−∞
=−

∫ ∞
−∞

∫
A

Φ dA dz, (4.1)

where Φ is the viscous dissipation per unit volume. For a Newtonian fluid, this
term in cylindrical coordinates is Φ = η[2(∂zu)2 + 2(ur/r)2 + 2(∂rur)

2 + (∂ru+ ∂zur)
2],

which becomes Φ = η[3(∂zu)2 + (R2(∂zzu)2)/4] within the approximation r ' R. In
dimensionless variables, (4.1) is written as[

1
2a4
+ 1

We
1
a

]∞
−∞
= 12

Re
I(Oh, r̃), (4.2)

I(Oh, r̃)=
∫ ∞
−∞

(
1
a2
∂sa
)2

+ 1
48

(
a2∂ss

1
a2

)2

ds. (4.3)
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FIGURE 11. (a) Graphical determination of the selected ratio r̃=Rj/Ri for Oh=10−3. The
thick solid curve and the dashed curve are the left-hand side and right-hand side functions
of (4.4), respectively. (b) Selected ratio r̃ as a function of the Ohnesorge number Oh.

For a given ratio Rj/Ri, the Weber number can be computed by use of (2.16), while
c is predicted through (2.17).

The differential equation (2.14) is then controlled through the ratio r̃ = Rj/Ri and
Oh. The same holds for the profile of the capillary jump and its associated integral
(4.3). We reduce (4.2) to an equation for the unknown r̃:

(1+ r̃)5/2(r̃− 1)
2r̃3

= 12Oh I(Oh, r̃). (4.4)

Solving the previous equation gives the curvature radius ratio Rj/Ri selected by the
droplet-mediated jump creation. The integral (4.3) can be evaluated numerically using
a simple trapezoidal integration of the profile computed with (2.14). In figure 11(a),
we plot the left-hand side and the right-hand side of (4.4).

In figure 11(b), we show the dependence of the numerically computed ratio r̃
with respect to Oh. The Rj/Ri value tends to 1.934 for small Oh values. For liquid
solutions I and II, we experimentally visited the ranges 0.01 < Oh < 0.02 and
0.005 < Oh < 0.008, respectively, and the values of Rj/Ri were measured to be
1.93 and 1.54, respectively. The small discrepancy can be explained by additional
dissipative sources. In our model, the surface shear has been disregarded and this
assumption might not be valid for all classes of surfactant, as described by Buzza,
Lu & Cates (1995). Given that the predicted value is obtained by integrating over
the whole PB profile, with no free parameter, the agreement is very satisfactory.

For the highest values of Oh, the selected Rj/Ri value tends to be very high.
Unfortunately this regime cannot be tested experimentally since no capillary jumps
were observed for Oh> 0.05 (Cohen et al. 2014). From that value of Oh, the capillary
jump geometry is broken and the comparison with the model is no longer possible.
We add that our model cannot predict this transition since the geometry is prescribed
to that of a capillary jump.

5. Conclusion

In this article, we have reported a new kind of hydraulic jump mediated by
capillary forces, instead of gravity. We have proposed a simple model for describing
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FIGURE 12. (a) Schematic of the cross-section of the Plateau border. The thick curves
represent the liquid–air interfaces. The thick black arc is the parametrized interface defined
by (A 1) and (A 2). (b) Three-dimensional sketch of the Plateau border defined with a
hyperbolic tangent function for R(z).

this hydraulic jump propagating along a Plateau border. The physics at play is
controlled through the Weber and Reynolds numbers. The analogy with hydraulic
jumps is evidenced by the existence condition We > 1/2. The propagation velocity
and the profile are predicted through an equation describing the dynamics of a damped
nonlinear oscillator. A simple and original experimental design has been proposed and
implemented, which made the observation of these capillary jumps possible. All the
measurements agree with the predictions of the theoretical approach, and confirm its
validity, although we have never observed the solitary wave predicted by the model
for We< 1/2, probably due to a too high viscosity of the liquid solutions.

Supplementary movies

Supplementary movies are available at http://dx.doi.org/10.1017/jfm.2014.717.

Appendix A

In this appendix, we compute the averaged mean curvature (i.e. the mean curvature
averaged over the azimuthal coordinate for a given cross-section) of the Plateau
border. In figure 12(a), we show the cross-section of the channel. The top interface
is parametrized as an arc of a circle of radius R(z),

x = R(z) cos φ, (A 1)
y = R(z)(ν − sin φ), (A 2)

where φ ∈ [π/3, 2π/3] and ν = 2/
√

3. The diagonalization of the Hessian matrix on
this surface yields the mean curvature

Hg =−R(z)(1− ν sin φ)R′′(z)− (−2ν sin φ + ν2 + 1)R′(z)2 − 1
R(z)[(ν sin φ − 1)2R′(z)2 + 1]3/2 . (A 3)
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Clearly, the variation of R(z) induces a dependence of the curvature on the angular
variable, as evidenced in figure 12(b). This expression simplifies to

Hg = 1
R(z)
+ 1

3
[(3+ 2

√
3) sin φ − 3]R′′(z) (A 4)

+ [−3(7+ 4
√

3) sin2 φ + (6+ 4
√

3) sin φ + 8
√

3+ 11]R′(z)2
6R(z)

+ h.o.t.,(A 5)

in the small slope limit. Since the model assumes no angular dependence, we average
this relation between φ = π/3 and φ = 2π/3 and we finally get the averaged mean
curvature within the small slope approximation:

κ = 1
R(z)
+ β1R′′(z)+ β2

R′(z)2

R(z)
, (A 6)

where β1 = (2
√

3−π)/π∼ 0.103 and β2 = (3
√

3−π)/6π∼ 0.109.
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