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Motivated by our interest in understanding collective behaviour and self-organization
resulting from hydrodynamic interactions, we investigate the two-dimensional
dynamics of horizontal arrays of settling cylinders at intermediate Reynolds numbers.
To simulate these dynamics, we develop a direct numerical simulation based on the
immersed interface method. A novel aspect of our method is its ability to efficiently
and accurately couple the dynamics of the freely moving objects with the fluid. We
report the falling configuration and the wake pattern of the array, and investigate
their dependence on the number of particles, n, as well as the initial inter-particle
spacing, d0. We find that, in the case of odd-numbered arrays, the middle cylinder is
always leading, whereas in the case of even-numbered arrays, the steady-state shape
is concave-down. In large arrays n > 5, the outer pairs tend to cluster. In addition,
we analyse detailed kinematics, wakes and forces of three settling cylinders. We find
that the middle one experiences a higher drag force in the presence of neighbouring
cylinders, compared to an isolated settling cylinder, resulting in a decrease in its
settling velocity. For a small initial spacing d0, the middle cylinder experiences a
strong sideway repulsive force, the magnitude of which increases with decreasing
d0. During the fall, the left and right cylinders rotate outwards and shed vortices in
anti-phase.

Key words: computational methods, particle/fluid flow

1. Introduction
Collective behaviour and self-organization of particles subject to hydrodynamic

interactions are common among a wide range of biological systems and organisms,
such as swarming, schooling or flocking (Niwa 1994; Couzin & Krause 2003).
Hydrodynamic interactions play an important role in micro-organism colony growth
through clustering mechanisms (Pedley & Kessler 1992; Czirók & Vicsek 2006;
Cisneros et al. 2007; Darnton et al. 2010; Gregor et al. 2010) and in diffusive mixing
(Kim & Breuer 2004; Hernandez-Ortiz, Stoltz & Graham 2005; Saintillan & Shelley
2008; Katija & Dabiri 2009; Thiffeault & Childress 2010). Collective dynamics of
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Interaction of freely moving particles in fluids 135

particles is also central to physical phenomena such as cloud formation, particle
suspension and particle sedimentation (Warhaft 2009; Guazzelli & Hinch 2011).

At low Reynolds numbers, where the flow is governed by Stokes equations, there
have been extensive theoretical, numerical and experimental studies of hydrodynamic
interactions of large collections of particles (Hocking 1963; Jayaweera & Mason
1963, 1965; Crowley 1971; Ekiel-Jeżewska, Metzger & Guazzelli 2006; Koch &
Subramanian 2011). The linearity of Stokes equations permits the use of the
superposition of fundamental solutions (Stokeslets) (Happel & Brenner 1973). For
instance, recent work has shown that a spherical cloud of particles settling in a viscous
fluid spreads, and eventually evolves into a toroidal shape and separates into a cascade
of smaller clumps (Ekiel-Jeżewska et al. 2006).

In contrast, at intermediate Reynolds numbers, the dynamics of the particles are
further complicated by the fluid inertia, which introduces unsteadiness to these
problems. There have been relatively few studies on particle interactions and clustering
(Jenny, Dušek & Bouchet 2004; Ardekani & Rangel 2006; Daniel et al. 2009) and
there appears to be a need to explore the rich dynamics of collections of particles in
this regime.

In the present work, we carry out a numerical investigation of multiple interacting
particles in the intermediate-Reynolds-number range. The goal of this paper is
twofold. First, we introduce a new numerical method for solving the two-dimensional
Navier–Stokes equation in the presence of freely moving particles of arbitrary shapes
and arbitrary density. The method is a further development of our previous immersed
interface method (Xu & Wang 2006a, 2007; Xu 2008) and allows simultaneous
solution of the dynamics of the particles and the fluid. The method for coupling
the fluid and solid dynamics does not introduce additional constraints on the
integration time step, hence allowing an efficient simulation of multiple, arbitrarily
moving particles. The second goal is to discover a rich set of new dynamics of
multiple particles, interacting in a fluid, in the intermediate-Reynolds-number range. In
particular, we will focus on the dynamics of arrays of falling cylinders, starting from
different initial conditions.

2. Method
To simulate the dynamics of cylinders settling under gravity, we further develop

the immersed interface method to simulate the interaction of a fluid with free moving
particles. In our previous work (Xu & Wang 2006a; Xu 2008), the rigid objects
followed a prescribed motion. Here, the dynamics of the freely moving rigid objects
are coupled with the surrounding fluid. Below, we introduce an iterative scheme in the
immersed interface method to handle this coupling without reducing the accuracy and
stability of the method.

2.1. Equations of motion
The equations of motion for the fluid are governed by the Navier–Stokes equations
subject to boundary conditions on the surfaces of the objects. The dynamics of the
immersed objects are governed by Newton’s equations. The motions of the fluid
and the objects are coupled through the boundary conditions at the objects. In the
formulation of the immersed interface method, the fluid velocity v and pressure p
outside an object (multiple objects are considered similarly) satisfy:

∂v
∂t
+ v ·∇v=−∇p+ 1

Re
∇2v+

∫
Γ

f (α, t) δ(x− X(α, t)) dα, (2.1a)
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FIGURE 1. (Colour online) Computational domain of an object immersed in a fluid.

∇ ·v= 0, (2.1b)

where f is the density of a singular force which enforces the boundary condition
on the boundary Γ of the object, the boundary Γ is parameterized by α as
shown in figure 1, δ(·) is the two-dimensional Dirac delta function, x is the
Cartesian coordinates of the Eulerian fluid, and X(α, t) is the Cartesian coordinates
of Lagrangian points on the boundary.

The rigid object is modelled as a rigid fluid. Thus, the velocity of a fluid particle
inside is v = vc + Ω × r, where Ω is the angular rotation of the object (in two
dimensions, ‖Ω‖2 = θ̇ ) and r = x − xc is the position of the fluid particle relative to
the centre of mass xc of the object. Hence, the acceleration of the fluid particle is

dv
dt
= dvc

dt
+Ω × (Ω × r)︸ ︷︷ ︸

−∇p

+ dΩ
dt
× r︸ ︷︷ ︸

fb

. (2.2)

The first two terms can be expressed as gradient of pressure and the last term is an
additional body force fb associated with the angular acceleration of the object. Inside
the object, ∇2v= 0, and the pressure is

p=−d2xc

dt2
x− d2yc

dt2
y+ 1

2
Ω2((x− xc)

2− (y− yc)
2). (2.3)

Finally, the equations of motion for the object are

msv̇c = Fext + Ff , (2.4a)

I∗θ̈ = Tf , (2.4b)

where ms is its mass, I∗ its moment of inertia with respect to its centre of mass, Fext is
the external non-fluid force on the object, Ff is the fluid force on the object, and Tf is
the fluid torque on the object with respect to its centre of mass.

Equations (2.1)–(2.4) constitute the coupled equations for the fluid and the solid that
we will solve.
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Interaction of freely moving particles in fluids 137

The singular force distribution in (2.1a) is related to the jumps in the fluid variables
and their derivatives across the fluid–object interface (Xu & Wang 2006a,b; Xu 2008).
The tangential and normal components of the singular force in (2.1a) are given by

fτ = f · τ =− 1
Re

(
τ ·

∂v
∂n

∣∣∣∣
Γ+
− dθ

dt

)
, (2.5a)

fn = f ·n=
∫ (

1
Re

∂ω

∂n

∣∣∣∣
Γ+
+ [fb] · τ

)
J dα, (2.5b)

where ω = (∂v/∂x) − (∂u/∂y) is the vorticity, τ = (∂X/J∂α) (J = ‖∂X/∂α‖2) and
n are the unit tangent and unit normal vectors to the boundary Γ , the brackets
[·] = (·)Γ+ − (·)Γ− are used to denote a jump across the interface, and the jump in the
tangential component of the body force in (2.5b) is

[fb] · τ =−d2θ

dt2
((X − xc)τy − (Y − yc)τx). (2.6)

The fluid force and torque acting on the object can be expressed through the
integrals of the singular force

Ff =−
∫
Γ

(fττ + p+n) J dα, (2.7a)

Tf =−
∫
Γ

(X − xc)× (fττ + p+n) J dα. (2.7b)

2.2. Dimensionless parameters
In the computations presented here, we non-dimensionalize the equations by ρf , the
fluid density, L, a reference length of the object (diameter of the cylinder, width of the
plate), V , a reference velocity (terminal velocity of a falling object, associated with a
unit-coefficient drag force), and T = L/V , the corresponding time scale. The Reynolds
number Re is defined as Re = ρf VL/µ, where µ is the dynamic fluid viscosity. The
non-dimensional mass of the object is ms = γA , where γ = ρs/ρf is the density ratio
between the object and the fluid, and A is the non-dimensional area of the object. In
the cases we will study, Fext = mg. The non-dimensional gravity is g = gL/V2, where
g is the gravitational constant. Because the reference velocity is obtained by equating
the buoyancy-corrected weight of the object with a unit-coefficient drag force acting
on it, V =√2(γ − 1)gLA , g depends only on the density ratio and the geometry of
the object, g= 1/(2(γ −1)A ). The gravitational force (the buoyancy-corrected weight)
on the object is Fg = (γ − 1)A g. In summary, there is a total of five non-dimensional
parameters, Re, g, γ, n, d0, where n is the number of objects and d0 is the initial
spacing between them. In this paper, we focus on the effect of n and d0 on the
dynamics.

2.3. Numerical implementation
In the immersed interface method, (2.1) are solved on a fixed grid by incorporating
into a numerical scheme jump conditions across fluid–object interfaces (Xu & Wang
2006b). The jump conditions are induced by and related to singular forces. A main
difficulty in the numerical treatment of a freely moving object, compared to an object
under prescribed motion (Xu & Wang 2006a; Xu 2008), is the coupling of the
dynamics of the fluid with the object. The pressure external to the object depends
explicitly on the normal component of the singular force, and thus on the angular
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138 A. El Yacoubi, S. Xu and Z. J. Wang

acceleration of the object, as implied by (2.5b) and (2.6). The angular acceleration, in
turn, depends on the pressure.

The pair of unknown variables, the pressure p in the fluid and the angular
acceleration q of the freely moving objects in the fluid, are governed by two coupled
linear systems:

Lp+ Cq= r, q= Sp+ d, (2.8)

where p is the pressure defined on a discrete lattice, q is the vector formed by the
angular acceleration of all the objects, L is a discrete Laplacian, C and S are coupling
matrices, and r and d are known vectors. To solve the coupled systems efficiently,
we apply an augmented variable approach (Li et al. 2006) using the generalized
minimal residual method (GMRES). By eliminating p from (2.8), we obtain the Schur-
complement system for q:

(E + SL−1C)q= d + SL−1r (2.9)

where E is the identity matrix. q can be solved for iteratively using GMRES, and
consequently, p can be determined from (2.8).

We note that the GMRES iteration does not require the explicit form of L, C, S
and E + SL−1C. Instead, it only needs the matrix–vector product (E + SL−1C)q(k),
where q(k) is a guess solution at the kth step. In the kth step, we use the guess
solution q(k) to solve for p(k), and use p(k) to compute q(k+1). It can be shown that the
right-hand-side vector d + SL−1r in the Schur-complement system is Q0, where Q0 is
the value of q after the first iteration with zero initial guess. The matrix–vector product
(E + SL−1C)q(k) in the kth step is

(E + SL−1C)q(k) = Q0 − q(k+1) + q(k). (2.10)

The GMRES iteration converges when q(k+1) = q(k).
With the exception of the handling of the coupling between the fluid and the objects,

the remainder of the numerical implementation in the present study is similar to that
in Xu & Wang (2006a) and Xu (2008). The momentum equations, (2.1a), are solved
using finite differences on a MAC grid. The time integration is an explicit fourth-order
Runge–Kutta scheme, and the discrete pressure Poisson equation is solved via fast
Fourier transform.

We carried out a grid-resolution analysis to test the convergence of our current
implementation. The results show that it is second-order accurate, including along the
boundaries of the objects. In addition, we observe that GMRES used in solving the
Schur-complement system converges in only a few iterations, even for a large number
of freely moving objects.

3. Code validation
The novel aspect of our current implementation of the immersed interface method is

the ability to handle freely moving objects in a fluid. To validate the new features of
our code, we compare our results with experiments on freely fluttering and tumbling
plates.

Andersen, Pesavento & Wang (2005a,b) and Pesavento & Wang (2004)
experimentally and numerically investigated the dynamics of falling rectangular plates.
Their study provides qualitative and quantitative data on different falling modes,
including fluttering, tumbling and chaotic motion, which we use to test the current
code.
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FIGURE 2. (Colour online) Comparison between experiments in Andersen et al. (2005a)
(dashed, red online) and the current simulations (solid, blue online) on (a) a fluttering plate
with I∗ = 0.16, Re = 1147 and β = 1/14 and (b) a tumbling plate with I∗ = 0.48, Re = 737
and β = 1/5. From top to bottom: x-velocity, y-velocity and angular velocity θ̇ of the plate.

Parameters Fluttering Tumbling

(β, I∗, Re) (1/14, 0.16, 1147) (1/5, 0.48, 737)
θ0 20◦ 45◦

(ẋc, ẏc, θ̇ )t=0 (0, 0, 0.5) (0, 0, 0.5)

TABLE 1. Simulation parameters for the fluttering and tumbling motion of a
rounded-rectangular plate, using the immersed interface method.

In our simulations, we use rounded-rectangular plates, similar to the experimental
geometry, as opposed to ellipses (Pesavento & Wang 2004). The rounded plate has a
smaller curvature at the tips and can be resolved numerically with fewer grid points.
Given the difference in the plate geometries, and in order to match both the thickness-
to-width ratio β and the non-dimensional moment of inertia I∗ = I/ρf L4, the density
of the plates in the current study is slightly different from that in the experiments.
The length scale is the width of the plate, the velocity scale is defined as the terminal
velocity of the plate falling with unit drag coefficient, V =√2(γ − 1)gLA , and the
time scale is T = L/V . We reproduce the fluttering and tumbling cases in Andersen
et al. (2005a) and summarize our comparisons on figure 2 and table 2. In these
computations, the grid resolution is 1600×3200, for domain size 10×20, and the time
step is 1t = 5 × 10−3, with the initial conditions specified in table 1. In both cases, at
steady state, the results match very well and the small difference may be attributed to
the plate geometry.

4. The dynamics of interacting cylinders in two-dimensional flow
In this section, we simulate horizontal arrays of settling cylinders at Reynolds

number 200 and investigate the falling pattern and the connection between the
dynamics of the particles and of the flow.

At zero Reynolds number, an array of settling spheres can exhibit a rich set
of dynamics due to instabilities when the number of particles is sufficiently large
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Parameters Andersen et al. (2005a) Current

(〈ẋc〉, 〈ẏc〉, 〈θ̇〉) (0.60,−0.34, 0.88) (0.58,−0.37, 0.99)
Descent slope 29.2◦ 29.6◦

Period: (short glide, long glide) (1.1, 3.2) (1.2, 3.5)

TABLE 2. Comparison between experimental results in Andersen et al. (2005a) and the
current numerical results for a tumbling plate. 〈ẋc〉, 〈ẏc〉 and 〈θ̇〉 are the average horizontal,
vertical and angular velocities, respectively.

(Jayaweera & Mason 1963, 1965; Crowley 1971; Metzger, Nicolas & Guazzelli 2007).
For example, Jayaweera & Mason (1963) observed that clusters of less than seven
spheres remain in a horizontal plane during the fall, spread out and tend to arrange
themselves into regular polygonal shapes. More recently, Metzger et al. (2007) found
that a spherical cluster of spheres settling under gravity in a viscous flow is unstable
and evolves into a torus before breaking up into smaller clusters.

At intermediate Reynolds numbers, the interactions between particles are
complicated by the inertial effects. In our case, each cylinder will create a wake
that extends for many diameter lengths and leads to non-local and time-dependent
interactions. The forces experienced by each cylinder will be unsteady. It is therefore
unclear, for a given set of initial conditions, whether the cylinders will approach
a steady state, and how the steady-state configuration might depend on the initial
arrangement. The steady state of a single particle is attained when the mean velocity,
averaged over each period, is constant.

Finally, our current study is restricted to the cases where there is no collision and
where the distance between particles can be well-resolved by the immersed interface
method. For cases where the initial spacing is sufficiently small, we observe that the
particles are likely to collide in close encounter. To resolve the collision dynamics, we
are currently developing a method to handle particle collisions.

4.1. Falling pattern at steady state
In what follows, we study the dynamics of a horizontal array of n falling cylinders.
We present a qualitative comparison of the falling patterns of the array. First, we
fix the initial spacing, d0, and vary the number of cylinders n ∈ {3, 4, 5, 6, 7, 8}.
At a given time, the spacing d is defined as the distance between the centres of
two adjacent cylinders, hence d = D + l where D is the diameter and l is the
closest distance between their surfaces. The grid size and the time step are fixed
at 1x = 1y = 1/40 and 1t = 5 × 10−3, respectively. The domain varies between
40× 96 and 48× 72, depending on the number of objects. We choose no-slip boundary
conditions on all four fixed walls of the domain. This avoids specifying the far-field
boundary conditions on a finite computational domain, in an unbounded fluid, which
would involve modelling the wake of the objects.

Figure 3(a) shows trajectories of the settling cylinders. When n is odd, the middle
cylinder is always leading. Conversely, when it is even, the falling shape of the array
at steady state is concave-down, provided that the initial spacing is not too small and
no collisions occur. Regardless of the value of n, at steady state the array displays
a left and right mirror symmetry in the vortex shedding pattern and correspondingly,
a mirror symmetry in the particle rotation. In other words, two particles symmetric
about the centreline rotate in opposite directions and shed counter-rotating vortices
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(a)

(b)

FIGURE 3. (Colour online) Effect on the array falling pattern of (a) the number of cylinders,
n, with d0 = 2 fixed, and (b) the initial spacing, d0, with n = 5 fixed. Snapshots are taken
every δt = 2.

FIGURE 4. (Colour online) Vorticity contours for n = 7 falling cylinders with initial spacing
d0 = 2. Clustering of the outermost pairs. Black dots on each cylinder are used to visually
track their rotation.

(see figure 5 below). This is consistent with the conservation of the total angular
momentum, noting that particles are initially dropped with zero angular momentum
and the flow field is antisymmetric.

When n > 5, the two outermost cylinders tend to cluster. For example, when n = 7
(figures 3a, 4), the two leftmost cylinders form a pair and tumble counter-clockwise.
Similarly, the rightmost pair tumbles clockwise. The particles do not come into contact
and their dynamics are reminiscent of the ‘drafting, kissing and tumbling’ in fluidized

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

22
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.227


142 A. El Yacoubi, S. Xu and Z. J. Wang

FIGURE 5. (Colour online) Vorticity contours for n= 3 falling cylinders with initial spacing
d0 = 2. Black dots on each cylinder are used to visually track their rotation.

beds of spheres (Fortes, Joseph & Lundgren 1987). The long-term dynamics of these
clusters, t > 77.5 on figure 4, will be further investigated in our future work.

We now allow the initial spacing d0 to vary, while fixing the number of cylinders to
n = 5. We summarize the effects of d0 on the falling pattern in figure 3(b). We notice
that the steady-state configuration depends on the initial spacing. In particular, for the
smallest d0 that was simulated (d0 = 1.2), the immediate neighbours of the middle
cylinder approach the centreline, unlike in the other cases. In addition, the spread (or
lateral drift) of the array is larger for smaller d0 owing to the strong interaction force
during the early stages of the fall.

Together, these results suggest that arrays of falling cylinders, in an initial horizontal
arrangement, can reach a steady state, the final configuration of which depends on d0

and n. There has been relatively little study on falling cylinders at a similar Reynolds
number to compare our results with. One previous study (Singh et al. 1989) suggested
that an infinite array of cylinders is initially unstable subject to a perturbation to its
horizontal configuration. Our results further show that the array will eventually reach a
stable configuration. The final configuration deviates significantly from the horizontal.

4.2. Dynamics of the falling array
We now provide quantitative data and analyse the dynamics of three settling cylinders.
In particular, we quantify the settling velocity, the flow history, the onset of vortex
shedding, and the direction and rate of rotation of the cylinders. We will compare
these dynamics for different initial spacings, as well as with the dynamics of an
isolated settling cylinder. In addition, we will compare our results with those in Stokes
flow.

Figure 5 shows the vorticity field of the fall of three cylinders with initial spacing
d0 = 2. As they settle, the array spreads out, the middle cylinder leads as it approaches
a steady state, the left and right cylinders rotate in opposite directions and their wakes
are symmetric about the centreline of the domain. The lateral expansion of the array is
due to the strong initial repulsive force, as shown in figure 6(a) at t ≈ 7.5. In this case,
the cylinders reach a steady state at t ∼ 100, as shown in figure 6(b).

To gain more insight into the dynamics of the middle cylinder, we first compare
it to those of an isolated settling cylinder, under the same flow conditions. Then, we
investigate the effect of the initial spacing d0 on its kinematics and forces. Figure 7
shows the time series of the settling velocity, v, the drag coefficient, CD, and the
lateral force Cx, for the middle cylinder. The effective drag coefficient is larger than
for an isolated one, due the presence of co-moving neighbours, and this leads to a
decrease in the settling speed. The increase in drag is consistent with the previous
computation of two cylinders moving in parallel at similar Reynolds numbers (Wang
& Russell 2007). In contrast, in Stokes flow, the presence of neighbouring particles
causes a decrease in the drag force. This, in turn, results in an increase in the settling
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FIGURE 6. (Colour online) Time series of the lateral (Cx) and vertical (Cy) fluid force on
three settling cylinders. The blue solid line with triangles is for the middle cylinder, the
red dashed line for the right cylinder, and the green dotted line for the left cylinder. The
shaded regions in the top figure correspond to the initial weak attraction, followed by a strong
repulsion, and a subsequent transition to steady state. The bottom figure shows that the three
cylinders attain a dynamic steady state at t ∼ 95. Re= 200 and the initial spacing d0 = 2.

velocity (Happel & Brenner 1973). The drag coefficient CD for d0 = 1.1 is smaller
than for d0 = 1.5 and d0 = 2 initially, but becomes greater than the other two after the
onset of shedding. This is consistent with the cross-over in the fluid force. The net
force on a particle is shown in figure 8(h) (ÿ versus t). We can read the fluid force
by shifting the curve up by a constant gravitational force. The fluid force for the case
d0 = 1.1 shows a cross-over similar to that seen in figure 7, although occurring at a
different time because the drag coefficient is drag normalized by ρf U2(t)L/2.

At steady state, the drag force does not differ much from the isolated cylinder case,
and it differs mainly during the initial and transient stages where it is higher for the
other three cases, resulting in a smaller settling velocity.

The settling velocity of an isolated cylinder reaches a maximum at t ≈ 57. A closer
look at figure 7 shows that this corresponds to the onset of vortex shedding. On the
other hand, in the presence of its neighbours, the middle cylinder experiences wake
instabilities much earlier during the fall, around t ≈ 18 for small d0. As a comparison,
for flow past a fixed cylinder at Re = 200, tvs ≈ 20, where tvs is the time marking
the onset of vortex shedding. The difference in tvs underscores the difference between
flow past a fixed cylinder and flow around a cylinder settling at steady state in a
quiescent flow, due to the effect of the flow history. Given these results, we quantify
the dynamics of the middle cylinder by varying d0 from 1.1 to 3 and choose to present
three representative values d0 = 1.1, 1.5, 2, and summarize the results in figure 8.

As mentioned above, the smaller d0 is (d0 = 1.1), the faster the middle cylinder
settles initially, the sooner its wake symmetry is broken due to early vortex
shedding and the sooner it reaches a steady state (tvs ≈ 18, 50, 57 for d0 = 1.1, 1.5, 2,
respectively). At steady state, and independently of the value of d0, the middle cylinder
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FIGURE 7. (Colour online) Effect of the initial spacing on (a) the settling velocity, (b) the
drag coefficient, and (c) the onset of vortex shedding, for the middle cylinder. Comparison
with an isolated falling cylinder.

sheds vortices which are in phase with those of either the left or the right cylinder.
The non-dimensional shedding frequency in the horizontal direction is the same for
all d0 and is St,x = fD/V ≈ 0.157–0.158. This can be seen in the time series of
the lateral force, Cx, on figure 7(c) , or the acceleration, ẍ, and the velocity, ẋ, on
figure 8(d,g) .

Similar to fluttering plates or flow-induced vibrations over a fixed cylinder, the
oscillation frequency of the middle cylinder along the flow is twice that across it. This
can be explained through figure 9. The fluid force vector on the cylinder oscillates
between points A and B. When it goes from A to B, its y-component Cy undergoes a
full cycle and comes back to the starting value, but its x-component Cx undergoes only
a half-cycle and changes sign.

Finally, figure 5 shows that the left and right cylinders rotate outwards, i.e.
clockwise for the left one and counter-clockwise for the right one. Correspondingly,
their shed vortices have mirror symmetry with respect to the centreline of the domain.

For arbitrary n, the outer pair rotates outwards. The inner cylinders, however, rotate
inwards as shown on figure 10. When the inter-particle gap is below half a diameter, it
is noticeable that the rate of rotation and lateral spread of the side cylinders increase
as the inter-particle gap decreases.

5. Conclusions and future work
In this paper, we have studied the falling pattern and dynamics of a horizontal array

of settling cylinders at Reynolds number 200, using direct numerical simulation. Given
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FIGURE 8. (Colour online) Dynamics of the middle cylinder in a 3-cylinder settling array
for different values of the initial spacing, d0. d0 = 1.1 (dashed line, red online), d0 = 1.5
(continuous line, green online) and d0 = 2 (dotted line with circles, blue online). Re= 200.

y
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FIGURE 9. (Colour online) Oscillation frequency of the force on the falling cylinder in the
streamwise (y) and cross-stream (x) directions. The oscillation frequencies satisfy fy = 2fx.

the unsteadiness of the flow, we asked whether such a system exhibits a steady state
and if so, how it depends on the initial conditions. We investigated the dependence
of the falling dynamics on the number of cylinders, n, and on the initial spacing, d0.
We found that the cylinders reach a dynamic steady state independent of the value
of n or d0. The steady configuration depends both on n and d0. When n is odd,
the middle cylinder is always leading, whereas when n is even, the array adopts a

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

22
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.227


146 A. El Yacoubi, S. Xu and Z. J. Wang

FIGURE 10. (Colour online) Steady-state rotation pattern of the array of cylinders as a
function of their number n.

concave-down shape. We then fixed n = 3 and studied the effect of the initial spacing
on the dynamics of the middle cylinder. We compared them to those of an isolated
settling cylinder as well as to results in Stokes flow. We found that the middle cylinder
experiences a higher drag force due to the presence of its left and right neighbours,
resulting in a slower settling velocity. This result is opposite to that in the Stokes
regime where a sphere in the presence of its neighbours settles faster than an isolated
one. Our results also showed that the closer the initial spacing is, the sooner wake
asymmetries arise for the middle cylinder and the sooner it settles to a steady state.
At steady state, for all values of d0, there is a left–right symmetry in the falling
configuration, the wake pattern and the direction of rotation of the left and right
cylinders, with respect to the centreline of the domain.

To solve for these dynamics, we developed a robust implementation of the immersed
interface method. The novel aspect of this implementation is an efficient handling of
the coupling between the rigid body and the fluid, using an iterative method. The
method is stable at high Reynolds numbers, at standard CFL (Courant-Friedrichs-Levy)
conditions. The method is almost second-order accurate, including along the interface.
The code was validated against experiments on falling plates in a fluid. This method
provides an efficient tool for us to further investigate collective behaviour and self-
organization of particles subject to hydrodynamic interactions.
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