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SUMMARY
This article proposes a method for incremental data dimensionality reduction in loop closure detec-
tion for robotic autonomous navigation. The approach uses dominant eigenvector concept for: (a)
spectral description of visual datasets and (b) representation in low dimension. Unlike most other
papers on data dimensionality reduction (which is done in batch mode), our method combines
a sliding window technique and coordinate transformation to achieve dimensionality reduction in
incremental data. Experiments in both simulated and real scenarios were performed and the results
are suitable.

KEYWORDS: SLAM; Loop closure detection; Incremental dimensionality reduction; Mobile
robots; Robot localization.

1. Introduction
Autonomous navigation of a mobile robot involves analyzing large amounts of data from different
types of sensors, such as optical, ultrasonic, and lasers. The robot must be able to take online deci-
sions about environment map building, determination of its own location, data association process,
and development of path planning. In robotics, often simultaneous localization and mapping (SLAM)
techniques1 are used as a navigation tool for a robot placed in unknown environment. In this context,
sensors installed in a mobile robot extract points of interest from the surroundings and probabilistic
models are built upon data association, allowing to evaluate robot pose (i.e., position and orienta-
tion) as well as the location of those points of interest in the map. However, SLAM techniques have
intrinsic uncertainties related to both location of landmarks and robot pose. As time goes by, such
uncertainties increase, until the data association guarantees that a previously mapped area is now
being visited again by the robot.2 When this occurs, it is said that a “loop closure” is solved. Loop
closure detection is a difficult problem. It demands good data association strategies to deal with the
uncertainties, already mentioned, inherent in probabilistic models of SLAM techniques. Some of the
techniques, called visual SLAM, can combine probabilistic models and computer vision methods
and have been developed in recent years to make data association more robust. During the naviga-
tion process, such techniques use analysis of images and visual landmarks collected by the robot to
solve the loop closure problem. This is because the association between sets of landmarks can be
employed to determine how much similar the images are. Methods based on characteristic points
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extraction using local descriptors, such as SIFT3 and SURF,4 are examples of approaches that can be
used to achieve this solution.
This paper proposes an incremental data dimensionality reduction method, which is applied to a loop
closure detection approach, based on spectral description of images. This process is incremental
because every time a dimensionality reduction method is applied to a set of points in a sequence, a
different representation in low-dimensional space is generated. To handle this inconsistency, we pro-
pose to find a transformation matrix that guarantees the representation of the points in a unique basis
on the tridimensional space R

3. And in order to illustrate the performance of the proposed method,
simulated experiments as well as experiments with a real robot are shown. The remainder of this
paper is organized as follows: Section 2 presents some related works about spectral graph theory in
mobile robotics and loop closure detection problem; Section 3 summarizes some data dimensionality
reduction methods, including Diffusion Maps5 − employed in our work; Section 4 illustrates the use
of Diffusion Maps to detect loop closures in batch mode; Section 5 shows an incremental version
of the Diffusion Maps; Section 6 presents results of the incremental method applied to loop closure
detection in both simulated and real environments; and Section 7 is devoted to conclusions and future
works.

2. Related Work
This section summarizes different papers about spectral graph theory for autonomous navigation
and similarity analysis techniques for loop closure detection related to our approach. Also, based on
literature review, we justify our choice of SIFT and SURF descriptors in the context of autonomous
navigation.

2.1. Spectral graph theory and mobile robotics
Many previous studies based on spectral graph theory have shown how eigenvalues and eigenvectors
of a graph can be applied to produce data analysis in autonomous navigation context, jointly to SLAM
techniques. Spectral properties of adjacency and Laplacian matrices of a graph were presented in a
theoretical framework by Zavlanos et al.6 to analyze mobile robot networks. Concepts such as alge-
braic connectivity of a graph (Fiedler value) are employed for connectivity control and maintaining
communication links between robots (e.g., in multirobot flocking and formation control). Olson et
al.7 have studied relaxed optimization problems regarding outliers rejection in autonomous naviga-
tion as well as parameter estimation for data association in SLAM. In this context, an adjacency
matrix A is constructed for each problem, which is solved by the dominant eigenvector u related to
Rayleigh quotient. Valgren et al.8 used graph-based spectral clustering algorithms to generate topo-
logical online mapping of large indoor and outdoor environments using only appearance data. In this
case, the method is a combination of algorithms presented by Ng et al.9 and Verma and Meila10 and
obtains k clusters using the components of the k largest eigenvectors that are solving a generalized
eigenvalue problem. Instead, in our paper, we use dominant eigenvectors as representative vectors
related to the images that are analyzed and as orthonormal basis to build a low-dimensional mapping
whereby these vectors are represented. Data obtained by 2D laser sensing from the navigation in large
environments were used by Blanco et al.11 to build hybrid metric-topological maps in an offline graph
partitioning approach. That work represents a recursive version of the classic technique of spectral
partitioning of graphs named Normalized Cut, due to Shi and Malik.12 Forster et al.13 have extended
that idea and developed an online recursive graph partitioning method from data of radiofrequency
tags placed in large environments. In that paper, the received signal strength indicator between tags
is used to build the corresponding adjacency matrix of the graph in question. In our work, we apply
a Gaussian function in two variables (dominant eigenvectors from images) to calculate the similarity
among these images and to build the adjacency matrix. Yairi14 presented a technique for 2D recon-
struction of the environment and for obtaining the navigation map for mobile robot without the need
for self-location. This approach is based on different graph-based spectral methods of machine learn-
ing and dimensionality reduction, such as the ISOMAP,15 the Locally Linear Embedding (LLE),16

and the Laplacian Eigenmaps.17 In our paper, we also employ an spectral method to obtain data
dimensionality reduction, but our main goal is to detect loop closure − a data association problem
related to localization.

https://doi.org/10.1017/S0263574720000570 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000570


Data dimensionality reduction in loop closure detection: An incremental approach 559

2.2. Visual analysis techniques and loop closure
Spectral decomposition of matrices and low-rank approximations were employed by Newman et al.18

to present a similarity analysis technique which filters common visual information in SLAM, such
as architectural patterns. However, this process is strongly dependent on building a vocabulary of
visual words to make feasible loop closure detection. FAB-Map, a probabilistic method based on
appearance, was presented by Cummins and Newman.19 This method uses SURF descriptors4 to
build a BoW (Bag of Words) and is classified as an offline visual vocabulary approach. In our work,
a single vector associated with these local descriptors is used without building any visual vocabulary.
Cadena et al.20 used stereo cameras combined to Conditional Random Fields to propose an offline
visual vocabulary approach in order to improve local recognition process, when considering nearby
and farway scenes. On the other hand, our method can use both stereo and monocular cameras. The
binary descriptor BRIEF21 and global descriptor Gist22 were adapted by Sünderhauf and Protzel23

to produce the BRIEF-Gist and develop a system to detect loop closure in large-scale scenarios
with the construction of no vocabulary of visual words. But this approach is not capable to detect
bidirectional loops. Arroyo et al.24 employed global binary descriptors and Hamming distance to
analyze panoramic images and identify bidirectional loop closures. Binary descriptors were used
also by Garcia-Fidalgo and Ortiz25 to construct a loop closure detection approach with no training
phase. Such technique is based on discrete Bayes filter, and it builds a visual vocabulary in online
mode. Our work does not depend on any training phase too, but only unidirectional loop closures are
detected. It is important to note that none of these studies uses spectral methods to analyze the loop
closure problem, such as it is done in ref. [26]. In that paper, the concept of dominant eigenvector
is employed as an image spectral descriptor, and a data dimensionality reduction method5 is used to
detect loop closures in batch mode. In this paper, we extend the approach from ref. [26] to perform
experiments in real and simulated environments with incremental method, through the combination
of sliding window and coordinate transformation concepts.

2.3. How to choose a local descriptor?
There is no unanimity concerning how to choose the local descriptor that allows to reduce the exe-
cution time, as well as to increase the rate of precision in the recognition, of visual marks for a
set of images. Mikolajczyk and Schmid27 did a comparative analysis between SIFT − based on
the precursor article from Lowe3 − and other classes of descriptors, such as the steerable filters
of Freeman and Adelson,28 the differential invariants of Koenderink and Doom,29 the complex fil-
ters of Schaffalitzky and Zisserman,30 and the invariant moments of Gool et al..31 Tests made in a
set of 1000 modified images (rotated, with changes of scale, point of view and illumination) allow
to conclude that, except for changes in illumination, the SIFT descriptors were more adequate to
identify some correspondence between images. Gil et al.32 have compared the behavior of different
methods of detecting points of interest and descriptor formation under typical visual SLAM-based
navigation conditions. In that comparison, the repeatability of points of interest and the invariance
and distinction between the description methods were evaluated. This process was done for either
images representing planar objects or images extracted from 3D scenarios. The repeatability of
points of interest was analyzed in a set of images obtained from the same scene and taken from
different distances, perspectives and lighting conditions − common situations in visual SLAM pro-
cesses. On the other hand, the evaluation of the descriptors was done with a series of experiments
to establish the correspondence between images. In addition to quality measurements of clustering,
precision and recall measures were employed to decide which descriptor method was more appro-
priate. The tested methods of detecting points of interest were the Harris corners detector,33 the
Smallest Univalue Segment Assimilating Nucleus,34 and the Maximally Stable Extremal Regions,35

among others. SIFT and SURF were also tested as methods of producing descriptor vectors, as well
as the Gradient Location-Orientation Histogram (GLOH).27 Then, the authors concluded that GLOH
and SURF were the most suitable methods for navigation with visual SLAM, and in case of cam-
era rotation, SURF was recommended. Hartmann et al.36 compared descriptors in the context of a
graph-based visual SLAM technique. Both, the histogram descriptors − such as SIFT and SURF −
as the so-called binary descriptors − such as BRIEF and BRISK (Binary Robust Invariant Scalable
Keypoints), of Leutenegger et al.,37 were compared . The ORB and FREAK (Fast Retina Keypoint)
descriptors from Ortiz38 were also used in the analysis. The objective was to determine the impact
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of the choice of a descriptor formation method in terms of accuracy and speed in different scenarios.
One of the scenarios tested by the authors was the RGB-D SLAM database, from Sturm et al..39

Based on experimental results, and despite of the lower computational cost offered by the binary
descriptors, the authors concluded that the method of detection and construction of SIFT descriptors
is the best choice when considering robustness of the associations between images regarding visual
SLAM methods.

3. Data Dimensionality Reduction
Huge amounts of high-dimensional data naturally arise in different fields of knowledge. Applications
in several areas such as signal acquisition, image processing, classification and pattern recognition,
and statistical learning are some examples. In such applications, what is intended is to make a simpler
characterization of these datasets, generally through a meaningful representation in low dimension.
One of the objectives of this characterization is to reveal the global and local structures of these
sets. A property of any dimensionality reduction method should be stability, in the sense that the
relationships between point-to-point distances in the original data space must be relatively preserved
in the low-dimensional space. Over the past years, many methods have been developed, aiming at
producing data dimensionality reduction. Some of these methods are briefly described in this section.

3.1. Principal Components Analysis
Principal components analysis (PCA)40–42 is, at the best of our knowledge, the first and indeed the
most popular method used to compute linear data dimensionality reduction in an unsupervised way.
By finding a suitable linear transformation that maps the original data to a low-dimensional space,
PCA constructs data representations where the variance in the data is maximal. Formally, con-
sider a set of points X

′ = {
x
′
i, 1≤ i≤ n

}
in a high-dimensional space, where x

′
i ∈Rd, i= 1, ..., n.

The average between the points is xm. By centering X
′

in xm, the matrix X= {xi, 1≤ i≤ n},
where xi = x

′
i − xm, i= 1, ..., n, is obtained. The covariance matrix of X is given by symmetric

and positive-semidefinite matrix � = 1/n(XXT), whose spectral decomposition is � =U�UT . The
transformation Y=UTX gives us a reference system where Y has mean zero and a diagonal covari-
ance matrix �, which contains the eigenvalues of �. The matrix Y has the vectors yi, which are
obtained by rotating X according to a new orthogonal basis and axes which capture the maximum of
the variance of X, in descending order. In this new reference system, it is possible to discard vari-
ables with small variance. This means to project (with the best possible approximation) data from
the original set X onto subspace spanned by the first p principal components, by means of Y=UT

p X,
where Up = {ui, 1≤ i≤ p}. This operation represents minor component truncation, used to achieve
the reduction of an original dimension m for a reduced dimension p, with p<m. To do so, we select
the top p from the m main components of a given dataset and ignore the others. This process preserves
the variability of the original data, within the limits of this low-dimensional space.

3.2. Kernel PCA
Schölkopf et al.43 has shown that it is possible to reformulate the traditional linear PCA to make
nonlinear mappings. The variant method so-called Kernel PCA (KPCA) is constructed using a ker-
nel function, similarly to other well-known techniques, such as SVM.44 Given a mean-centered set
of points X= {xi, 1≤ i≤ n} and a positive-semidefinite kernel K :X×X→R (e.g., Gaussian func-
tion), KPCA method computes the symmetric and non-negative matrix K= [kij]n×n, whose entries
are represented by kij = k(xi, xj). Instead to consider the covariance matrix � = 1/n(XXT), KPCA
computes the principal eigenvectors vi of the kernel matrix K. Finally, to obtain the data represen-
tation in a low-dimensional space, the set X is projected onto the eigenvectors ai of the covariance
matrix, computed as ai = 1√

λi
vi, where λi are eigenvalues of K.

3.3. Linear discriminant analysis
Consider a set X= {xi, 1≤ i≤ n} with points xi ∈X in a high-dimensional space. Suppose that X
can be partitioned in m classes Ck, such that X= {Ck, 1≤ k≤m}. Each class Ck has nk points xk

j ∈Rl,

1≤ j≤ nk. Thus, n=∑m
k=1 nk, and let be xk = 1

nk

∑nk
j=1 xk

j and x= 1
n

∑n
i=1 xi. The method linear
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discriminant analysis (LDA)45–47 is built to maximize between-class scattering and minimize within-

class scattering, which are given respectively by the matrices Mb =∑m
k=1 nk

(
xk − x

) (
xk − x

)T
and

Mw =∑m
k=1

∑nk
j=1

(
xk

j − xk
) (

xk
j − xk

)T
. Maximization and minimization above can be written at

the same time as arg max
U

|UT MbU|
|UT MwU| , and LDA seeks for the matrix U which solves this optimization

problem. It is possible to show that the max-between-class and the min-within-class variabilities are
found by the low-dimensional representation contained in the subspace spanned by the eigenvectors
u corresponding to the m− 1 largest eigenvalues from the equation Mbu= λMwu. The eigenvectors
u are the columns of U.

3.4. ISOMAP
ISOMAP15 is a method that relates the points of a set X= {xi, 1≤ i≤ n} in a high-dimensional space
by constructing a neighborhood graph G, where every point xi ∈X is connected to your k nearest
neighbors xij(j= 1, 2, ..., k). The shortest path between two points in the graph is an estimation for
the geodesic distance between these points and can be computed by the Dijkstra algorithm.48 The
geodesic distances among all points in X are computed and stored in a matrix D, and the repre-
sentations yi − in the low-dimensional space Y − corresponding to the points xi, are computed by
minimizing the function φ(Y)=∑

ij(d
2
ij − ||yi − yj||2). It is possible to show that the minimum of

the function φ(Y) is given by the spectral decomposition of the Gramian matrix K=XXT . Thus, the
principal eigenvectors of K are directly related to a low-dimensional representation of the original
set of points X.

3.5. Locally Linear Embedding
The method LLE16 is similar to ISOMAP, concerning to construction of a graph to relate data in
a high-dimensional space. But in turn, LLE seeks to accentuate local linearity characteristics by
proposing to rewrite each xi data point as a linear combination of its k nearest neighbors xij , thus get-
ting a wi vector of weights from the linear combination. This causes LLE to determine a hyperplane
passing through the xi point and its nearest neighbors. It can be shown that the representation of the
original data xi in a low-dimensional space Y is constructed by minimizing the function given by
φ(Y)=∑

i ||yi −∑k
j=1 wijyij ||2 . It is possible to show that the low-dimensional coordinates of the

yi representations that minimize the φ(Y) function can be obtained by calculating the eigenvectors
corresponding to the smallest non-null eigenvalues of (I−W)T(I−W). In this inner-product, I is
the identity matrix and W is the sparse matrix whose entries are 0 if xi and xj are not connected by
the neighborhood criterion and equals to wij, counterwise.

3.6. Laplacian Eigenmaps
Similarly to LLE, the method Laplacian Eigenmaps17 also seeks for a low-dimensional representa-
tion from a neighborhood graph construction, and by preserving local properties of the connectivity
relationships in the original data. Using the Gaussian function wij = e−||xi−xj||2/ε, this method com-
putes the distance between points xi and xj, if they are connected by the neighborhood graph G. All
the computed distances are stored in the sparse adjacency matrix W. Laplacian Eigenmaps minimizes
the function φ(Y)=∑

ij ||yi − yj||2wij to get the low-dimensional representations yi. By means of the
degree matrix M −M is diagonal and mii =∑

j wij −, we obtain the Laplacian matrix L=M−W.
It is possible to show that φ(Y)=∑

ij ||yi − yj||2wij = 2YTLY. Thus, it is easy to see that to min-
imize φ(Y) is equivalent to minimize the quadratic form YTLY. This optimization can be solved
through the generalized eigenvalue problem Lv= λMv, where the d eigenvectors vi, corresponding
to smaller non-null eigenvalues λi, define the low-dimensional representation Y.

3.7. Diffusion Maps
Diffusion Maps is a data dimensionality reduction method introduced by Coifman and Lafon.5 This
method builds a coordinate system based on eigenvalues and eigenvectors in order to represent data
in low dimension. Let X = {xi}ni=1 be a finite set of points in a p-dimensional space. Consider that X
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Algorithm 1 Basic version of Diffusion Maps
Input: X = {x1, x2, ..., xn}, ε , s , t
Output: Low-dimensional mapping of X by
eigenvalues and eigenvectors of P

1. Build matrix Kn×n, kij = e−
‖xi−xj‖2

ε ,
∀i, j ∈ {1, 2, ..., n}.
2. Obtain diagonal matrix Dn×n, Dii =∑n

j=1 kij.
3. Obtain the transition matrix P=D−1K.
4. Calculate eigenvalues λ1, ... , λs and eigenvectors ψ1, ... , ψs of P.
5. Define the mapping
�t(xi)=

[
λt

1ψ1(xi), λ
t
2ψ2(xi), . . . , λ

t
sψs(xi)

]
,

∀i ∈ {1, 2, ..., n}.

is on a differentiable manifold �⊂R
p not necessarily linear. One can see X as a graph G= (X, E,w)

since that w defines a measure of connectivity among their nodes xi. This connectivity measure
is called kernel and is represented by K : X × X→R. If two points xi and xj of X are connected
by K, then k(xi, xj)=wi,j �= 0. Finally, consider that K presents the symmetry and non-negativity

properties. Usually, the so-called Gaussian kernel defined by k(xi, xj)= e−‖xi−xj‖2
/ε is considered. All

evaluations of the kernel K can be stored in symmetric and non-negative matrix K= [kij]n×n, so that
kij = k(xi, xj). Moreover, it is possible to submit K into a normalization process obtaining a matrix
of transition probabilities P that represents a Markov chain on the state space X. For this, consider a
diagonal matrix Dn×n such that Dii =∑

j kij. The matrix P is obtained from the matrix product D−1K.
Coifman and Lafon define, given a certain time t, a diffusion distance between points xi and xj denoted
by Dt(xi, xj)=

∥∥pt(xi, •)− pt(xj, •)
∥∥
ξ
, where • indicates all points in X, pt(xi, •) is the transition

probability from point xi to points •, and ξ is a certain weighting factor. The diffusion distance defined
above establishes all distance relations − weighted by ξ − among all points in X. Diffusion Maps
method defines through eigenvectors of P a diffusion coordinate system in Euclidean space R

s (with
s p) where points in X are mapped at the same time the intrinsic dataset structure is preserved.
Thus, given t, an application �t : X→R

s is built, obtaining an embedding of the dataset X in the
Euclidian space R

s with the usual Euclidian norm. It can be shown that right eigenvalues of P form
the sequence 1= λ0 > |λ1| ≥ |λ2| ≥ ...≥ |λn−1| associated with right eigenvectors ψ0, ψ1, ..., ψn−1.
Thus, given a point xi ∈ X , its representation in space R

s on a certain instant t through diffusion
coordinates will be as follows:

�t(xi)=
[
λt

1ψ1(xi), λ
t
2ψ2(xi), . . . , λ

t
sψs(xi)

]

where ψq(xi) means the i-th component of q-th eigenvector of P. Eigenvalue λ0 = 1 and its corre-
spondent eigenvector are not used in the construction of � because all ψ0 components are equal to
each other. A pseudocode for Diffusion Maps is presented in Algorithm 1.

3.8. Discussion
Data dimensionality reduction methods based on graphs, such as ISOMAP proposed by Tenenbaum
et al.,15 LLE presented by Roweis and Saul16 and Laplacian Eigenmaps by Belkin and Niyogi,17

are particularly interesting. The establishment of some metric that relates the data in high dimension
and yields a graph is the common idea in all those methods. The coordinates of the eigenvectors
related to higher eigenvalues of a matrix associated with the graph are used to map the original data
to low-dimensional spaces. This idea is also present in the Diffusion Maps method,5 which in the
context of autonomous navigation, was recently used by Chen et al.49 to learn the geometry of a
map with memory-efficient parameterization allowing to develop motion planning algorithms based
on diffusion coordinates. In our work, we also apply Diffusion Maps, but in our case to detect loop
closures through spectral description of visual datasets, in both batch and incremental modes. One of
the reasons why we chose Diffusion Maps among graph-based methods is that it is the only one that
uses, in addition to eigenvectors, eigenvalues for the data representation in lower dimensions. This
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feature can produce better low-dimensional mappings, as pointed out by ref. [5]. Another reason
is that none of the previous methods addresses, in its construction, the role of the density of the
points that form the set X. Although we do not use this feature, Diffusion Maps, in its full version
(see the family of diffusion distances concept5), allows to consider this information and can produce
a mapping that shows the statistical characteristics of the sample, revealing something about the
density of the input points.

4. Loop Closure Detection using Diffusion Maps
This section describes the loop closure detection with visual similarity analysis through the use of
Diffusion Maps method. Given a set of images, each image is represented as a node of a graph
in high dimension. This node is characterized by its dominant eigenvector, obtained by a matrix
associated with the image, or by a matrix associated with local descriptors of the image. After this, the
dimensionality reduction method is applied. And the evidences of loop closure will be determined.
Basically, the applied methodology can be divided into three phases:

4.1. Phase A: Preprocessing
In the preprocessing phase, the dominant eigenvector v1 corresponding to a symmetric matrix should
be obtained. This is done in one of two possible ways:

I – Dominant eigenvectors of the Gramian matrix of a pixels matrix Given an image, let Im×n be
the corresponding matrix of pixels. Consider the square and symmetric Gramian matrix M= ITI of
size n× n. M can be written, according to the spectral decomposition, M=∑n

i=1 viμivi
T , where the

μi are the eigenvalues of M and the column vectors vi their respective orthonormal eigenvectors. It
is possible to verify the existence of a significant spectral gap between μ1 and the other eigenvalues.
This is a property of Gramian matrices, as described by Johnstone.50 Because of this gap, we use
the rank one approximation M1 = v1

√
μ1
√
μ1v1

T , where v1
∗ =√μ1v1 generates the outer product

M1 = v1
∗⊗ v1

∗. If two images are similar, so their respective v1
∗ ∈Rn (or normalized version v1)

have similar variational behavior. The dominant eigenvector v1
i will be used as representative vector

of a given image Ii.
II – Dominant eigenvectors of local descriptors matrix Although it has higher computational cost,

there is another preprocessing possibility, using the dominant eigenvector associated with the local
descriptors matrix of an image. We use the square and symmetric matrix Mr×r =D

T
D, where Dk×r

is the matrix of k local descriptors of r components obtained from an image I. In this case, results
were analyzed using SIFT3 and SURF4 descriptors, with r= 128 and r= 64, respectively. As in last
section, the dominant eigenvector of matrix Mr×r, vi

1 ∈Rr, will be used as a representation of a given
image Ii.

4.2. Phase B: Data dimensionality reduction
We apply the Diffusion Maps method5 in order to reduce the dimension of the representative vectors
for the images obtained in Phase A. In the underlying graph of Diffusion Maps method, a node xi

− correspondent to one image Ii − will be represented by eigenvector v1
i, for all i. Thus, given the

finite set V of eigenvectors v1
i correspondent to a finite set of images, the Gaussian kernel k(vi

1, vj
1)=

e
−

∥∥∥vi
1−vj

1

∥∥∥2
/ε

is defined and the mapping �t : V→R
s is obtained, according to Section 3.7. After

dimensionality reduction for s= 3, the low-dimensional representation in R
3 is obtained, where the

coordinate axes are represented by λ1ψ1, λ2ψ2 and λ3ψ3 − eigenvalues and eigenvectors of transition
matrix P corresponding to graph. Note that here we set t= 1 for the mapping �t.

4.3. Phase C: loop closure in low dimension
The data dimensionality reduction process allows to represent each dominant eigenvector v1 as a
point in a low-dimensional space. If two images are similar, then their dominant eigenvectors are also
similar. Hence, computing the Euclidean distance between every pair of points in low dimension, a
loop closure occurs when the points representing images in lower dimension are nearby. We consid-
ered the New College dataset,19 a benchmark widely used by researchers in recognition and visual
mapping, as an example of application of our method. This dataset is formed by pairs of images
(left and right) of 640 × 480 pixels captured by a camera mounted on a pan-tilt support installed
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Fig. 1. Example of five instances of diffusion coordinates of the k= 50 initial points of a toroidal helix. In (a),
the results obtained with representation in different orthonormal bases are shown. In (b), results after application
of a homogeneous transformation matrix calculated for each instance.

on a robot. The images belong to New College campus, at the University of Oxford, and to apply
our method, we have considered 992 pairs of them. The images were submitted to preprocessing
approach described in Section 4.1. Each matrix of pixels I is the result of concatenating left and right
images of each pair. As each image has 640× 480 pixels, the corresponding matrix to a concate-
nated pair will be represented by I480×1280, and the dominant eigenvector v1 of M= ITI is calculated.
Thus, each v1

i used as input for the Diffusion Maps method has dimension 1280. The representation
in low dimension (s= 3) obtained after applying Diffusion Maps to New College dataset, the matrix
representation of detected loop closures by our method and the processing times for this dataset are
shown in details in ref. [26].

5. Incremental Diffusion Maps
Typically, spectral data dimensionality reduction methods are used in batch mode, that is, all input
data are known before the construction of a single global graph and the subsequent mapping in
low dimension. However, in the context of mobile robotics, dimensionality reduction must be per-
formed in an online way, simultaneously to navigation. So, it is necessary to adapt the structure of
the proposed batch method to incremental processing. The generated graph and its diffusion coor-
dinates representation might be updated while the robot senses the surroundings. As an illustration
of the incremental problem adaptation, consider a sequence of points representing a discretization
of a toroidal helix in R

3. Every time the Diffusion Maps method is applied to a set of k points in a
sequence, a representation by diffusion coordinates – not necessarily the same as the previous one –
is generated. To handle this inconsistency, we propose to find a transformation matrix that guarantees
the representation of the points by a unique basis on the tridimensional space R3. Figure 1 shows five
computations of the diffusion coordinates in R

3 of a subsequence with k= 50 points of the toroidal
helix. In Fig. 1 part (a), the representations of the diffusion coordinates of the toroidal helix are ini-
tially on different bases of the three-dimensional space, while in part (b), these representations are in
a unique basis. We achieve this representation after having computed homogeneous transformation
matrices and applied them to the initial diffusion coordinates. A different shade of gray represents
each one of the five computations. Details about this process are explained ahead in the course of this
section.

Machine learning approaches are usually applied in graph-based methods for data dimensionality
reduction with incremental processing that exist in the literature. In these cases, the training set is, in
general, a sample of the full dataset to be analyzed. As an example, Lafon et al.51 use a training set
to infer the position in the low-dimensional mapping of a new sample of data, through an improved
version of the Nyström extension.52 Originally, the Nyström extension consists of finding numeri-
cal approximations for eigenvectors problems. Peng et al.53 suggest an incremental version of the
Laplacian Eigenmaps method.17 This method seeks to optimize preservation of local neighborhood
information from a new data point xn+1 introduced into a sample and, at the same time, correcting
the adjacency relations of points affected by the introduced new point. These tasks are done in three
steps. The first one consists of updating the adjacency matrix W, which having initial size n× n,
is increased to (n+ 1)× (n+ 1), followed by the reconstruction of weights corresponding to con-
nections among the points whose neighbors have been changed due to the insertion of xn+1. In the
second step, the low-dimensional representation yn+1 corresponding to xn+1 is computed. Finally,
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a strategy is applied to find a hyperplane that passes through the points, whose neighborhoods have
been changed and to compute the reconstruction weights, that are used to correct the low-dimensional
representation of those points. Considering a Gaussian kernel defined on a training set 
 and the
eigenvector φl of the kernel, it is possible to show that if a new point x̃ is included in 
, then an
approximation φ̃l(x̃) to the real φl(x̃) can be obtained. More recently, Shmueli et al.54 proposed an
incremental version of Diffusion Maps to detect web traffic anomalies. This method uses the concepts
of sliding windows and first-order approximations of eigenvalues and eigenvectors, according to ref.
[55]. However, ref. [54] offers no strategy for the representation and correction of the coordinates of
the points in low dimension. In this section, we present our incremental method that adapts the idea
of sliding windows from ref. [54] and propose the use of homogeneous transformation matrices, in
order to ensure consistency of the representation in low dimension.

The general idea of our incremental method is presented next. Given an initial sequence of images,
we select a subsequence of k first images and compute one of the two preprocessings, presented in
Section 4.1. As a result of the preprocessing, we obtain a set V1,k containing k dominant eigenvec-
tors corresponding to each image. After that, we build, in batch mode, the mapping �t : V1,k→R

3

that computes the low-dimensional representations of the elements in V1,k . This low-dimensional
representation defines a basis in R

3 that will be the basis in which all the images might be repre-
sented. When a new image is collected by the sensors of the robot, its dominant eigenvector will
be computed by the same preprocessing, and then a new subsequence of k images is considered,
namely V2,k+1 = (V1,k − v1)∪ vk+1. Now, the low-dimensional mapping � ′t : V2,k+1→R

3 is com-
puted. Observe that V1,k and V2,k+1 are two steps of the sliding window method, where the size of the
window is k. And we can conclude that the representations in low dimension�t(V1,k) and� ′t (V2,k+1)

are different, because the correspondent eigenvalues and eigenvectors have been computed for dif-
ferent matrices. So, in order to obtain the same basis for all the low-dimensional representation of
sets of k points, we consider that �t(V1,k) is a system in which all the images representations will
be computed. It is possible to consider that: (i) �t(v1) is a fixed point, and; (ii) there is a coordi-
nate transformation that maps points in � ′t (V2,k+1) to points in �t(V2,k+1). Then, we compute the
coordinates of the vector � ′t (vk+1) using the same coordinates transformation. The sliding window
and homogeneous transformation matrix method is repeated, as long as a new image is collected
by the robot. More formally, let it be �t(V1,k)= [f1, f2, ..., fk], where fi =

[
fix fiy fiz

]T
, ∀1≤ i≤ k, the

sequence of k initial points represented in low dimension through mapping �t:V1,k→R
3. The diffu-

sion coordinates�t define the coordinate system�f . Also consider� ′t (V2,k+1)= [m2,m3, ...,mk+1],
where mi =

[
mix miy miz

]T
, ∀2≤ i≤ k+ 1, to be the sequence of k points represented through map-

ping � ′t : V2,k+1→R
3, where the domain of � ′t was obtained by the advance of one step forward of

a sliding window of size k into the sequence of images of the dataset. The diffusion coordinates � ′t
define the coordinate system �m.

Naturally, coordinate systems �f and �m are defined by orthonormal bases in R
3, but usually

they are different from each other. However, it is possible to compute a homogeneous transformation
matrix,1 Hm→f , in such a way that the coordinates of the points in � ′t (V2,k) are mapped together and
ordered in the coordinates of the points of �t(V2,k), that is, m2→ f2, m3→ f3, ..., mk→ fk. So, �m

is transformed into �f . The matrix Hm→f − from here on denoted by H − is computed by Eq. (1)

H
[

m2 m3 ... mk
1 1 ... 1

]
=

[
f2 f3 ... fk
1 1 ... 1

]
(1)

It is straightforward to obtain, from Eq. (1), the overdetermined linear systems in Eqs. (2)–(4)
[
M 1

] [
H1,1 H1,2 H1,3 H1,4

]T = Fx
T (2)

[
M 1

] [
H2,1 H2,2 H2,3 H2,4

]T = Fy
T (3)

[
M 1

] [
H3,1 H3,2 H3,3 H3,4

]T = Fz
T (4)

1Hm→f =
[

R3×3 t3×1

0 1

]
, where R3×3 is a rotation matrix and t3×1 is a translation vector.
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Algorithm 2 Incremental version of Diffusion Maps with sliding window and coordinates transfor-
mation

Input: Initial sequence of k images, diffusion parameters ε and t
Output: Low-dimensional mapping of dominant eigenvectors V
1. Obtain the dominant eigenvectors V1,k (see Section 4.1).
2. Compute in batch mode in R

3 the diffusion coordinates [f1, f2, ..., fk] =�t(V1,k).
while new image Ik+i available (i � 1) do

1. Obtain the dominant eigenvector vk+i;
2. Vi+1,k+i = (Vi,i+k−1 − vi)∪ vk+i;
3. Compute in batch mode in R

3 the diffusion coordinates [mi+1,mi+2, ...,mi+k−1] =
�t(Vi+1,k+i);

4. Compute the homogeneous transformation matrix H such that H
[

mi+1 mi+2 ... mi+k−1
1 1 ... 1

]
=[

fi+1 fi+2 ... fi+k−1
1 1 ... 1

]
;

5. Update fk+i =Hmk+i;
6. Update �t(V1,i+k)←�t(V1,i+k−1)∪ fk+i.

end while

where M= [
m2 m3 ... mk

]T
, Fx =

[
f2x f3x ... fkx

]
, Fy =

[
f2y f3y ... fky

]
, and

Fz =
[
f2z f3z ... fkz

]
.

Systems (2)–(4) can be easily solved by least squares method, and thus the 12 variables Hi,j, 1≤
i≤ 3 and 1≤ j≤ 4 are calculated. After that, the coordinate transformation H is applied to the point
mk+1 (initially represented in the coordinate system�m). Then, we obtain a good approximation fk+1
in �f that will be included in �t(V1,k). Thus, �t(V1,k+1)=�t(V1,k)∪ fk+1 and the process described
above is repeated, until all images in the sequence have been represented in low dimension in only one
coordinate system �f . Algorithm 2 presents the pseudocode for the incremental version of Diffusion
Maps.

6. Experimental Results
In order to illustrate the proposed incremental method, we consider two sets of images captured both
simulated environment, as well as in real indoor environment.

6.1. Dataset 1: Images from simulated environment in Gazebo
We created an environment in Gazebo simulator to generate a sequence of 378 images with 640× 480
pixels, captured by a virtual mobile robot with a RGB-D embedded camera. The robot was positioned
at one point and only rotational motion around its axis was performed during just over two laps. Thus,
a sequence of images corresponding to two loop closures was produced. Figure 2 shows some of the
images in this set.

Images from this dataset were subjected to the preprocessing described in Section 4.1, with the
use of SIFT and SURF descriptors. Here, we have chosen the first 100 dominant eigenvectors related
to local descriptors matrices as the initial sequence of data. Then, the incremental process begins and
loop closure detection results are correctly obtained. Figure 3 shows the representation in low dimen-
sion of the dominant eigenvectors set related to SIFT (Fig. 3(b)) and SURF (Fig. 3(d)) descriptors
matrices, respectively. The grayscale used in those representations (Fig. 3(a)) is related to the order
of the images in the sequence captured by the robot. Also, the matrix representation of the 20 largest
Euclidean distances, between every pair of points in low dimension, is presented in Fig. 3(c) and (e).
The sequences of loop closure detection are represented by the secondary diagonals.

6.2. Dataset 2: Images from real environment
In order to obtain the second dataset, we have employed a Pioneer 3DX robot with a RGB-D embed-
ded camera in an indoor environment to capture a sequence of 565 images with 640× 480 pixels.
The robot performed a rectangular path in this second experiment, generating a sequence of images
correspondent to only one loop closure. Again, images from this dataset have been preprocessed
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Fig. 2. Sample of dataset 1 captured in an environment created by Gazebo simulator.

Fig. 3. Incremental Diffusion Maps: low-dimensional mappings ((b) and (d)), and Euclidean distances matrices
((c) and (e)) corresponding to dataset 1, using SIFT and SURF descriptors, respectively.
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Fig. 4. Sample of dataset 2 captured in an indoor environment.

Fig. 5. Incremental Diffusion Maps: low-dimensional mappings ((b) and (d)), and Euclidean distances matrices
((c) and (e)) corresponding to dataset 2, using SIFT and SURF descriptors, respectively.
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accordingly to Section 4.1, with the use of SIFT and SURF descriptors. Figure 4 shows some of the
captured images. Here, we have chosen the first 200 dominant eigenvectors, related to local descrip-
tors matrices, as the initial sequence of data. Then, the incremental process begins and loop closure
detection results are correctly obtained again.

Figure 5 shows the representation in low dimension of the dominant eigenvectors set related to
SIFT (Fig. 5(b)) and SURF (Fig. 5(d)) descriptors matrices, respectively. The grayscale used in those
representations (Fig. 5(a)) is related to the sequence of images captured by the robot. Also, the matrix
representation of the 20 largest Euclidean distances, between every pair of points in low dimension, is
presented in Fig. 5(c) and (e). Thus, the incremental procedure, which combines the ideas of sliding
window and change of coordinates by homogeneous transformation, can be directly applied in loop
closure detection by visual analysis.

7. Conclusions
This paper proposed an approach for incremental data dimensionality reduction, based on spectral
description of sets of images, to produce experimental results for loop closure detection in mobile
robotics. We have combined a sliding window technique and coordinate transformation to create low-
dimensional data representation in incremental mode (namely, as the robot senses its surroundings,
the coordinates system of the lower dimension is updated). Experiments were performed in both
computationally simulated and real environments, using Gazebo and a robot Pioneer 3DX, respec-
tively. Results have shown that the proposed technique can detect loop closures correctly in situations
where data collection is continuously performed, and the representation of the data computed in low
dimension (with the consequent detection of loop closures) must be done online and simultaneously.
An interesting work in the future will be to analyze the robustness of the method in relation to detec-
tion of false positives and false negatives. Precision and recall measures can be employed in this
analysis.
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