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Abstract

In order to study integers with few prime factors, the average of Λk = µ ∗ logk has been a central object
of research. One of the more important cases, k = 2, was considered by Selberg [‘An elementary proof
of the prime-number theorem’, Ann. of Math. (2) 50 (1949), 305–313]. For k ≥ 2, it was studied by
Bombieri [‘The asymptotic sieve’, Rend. Accad. Naz. XL (5) 1(2) (1975/76), 243–269; (1977)] and later
by Friedlander and Iwaniec [‘On Bombieri’s asymptotic sieve’, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4)
5(4) (1978), 719–756], as an application of the asymptotic sieve.

Let Λ j,k := µ j ∗ logk, where µ j denotes the Liouville function for ( j + 1)-free integers, and 0 otherwise.
In this paper we evaluate the average value of Λ j,k in a residue class n ≡ a mod q, (a, q) = 1, uniformly
on q. When j ≥ 2, we find that the average value in a residue class differs by a constant factor from the
expected value. Moreover, an explicit formula of Weil type for Λk(n) involving the zeros of the Riemann
zeta function is derived for an arbitrary compactly supported C2 function.
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1. Introduction

The generalized von Mangoldt function is defined by

Λk(n) :=
∑
d|n

µ(d)logk n
d
. (1-1)

This function is supported on integers with at most k distinct prime factors. Also we
observe that the sum runs over the square-free divisors of n. In order to obtain a variant
of Selberg’s inequality [18], Levinson [13] showed that∑

n≤x

Λk(n) = kxPk−1(log x) + O(x), (1-2)

c© 2020 Australian Mathematical Publishing Association Inc.

127

111 (2021), 127–144

https://doi.org/10.1017/S1446788719000715 Published online by Cambridge University Press

https://orcid.org/0000-0002-2406-7328
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1446788719000715&domain=pdf
https://doi.org/10.1017/S1446788719000715


128 N. Robles and A. Roy [2]

where Pn is a monic polynomial of degree n. (It should be noted that there is a typo in
Levinson’s paper and the right-hand side is misprinted as (k + 1)xPk−1(log x) + O(x).)
Ivić [11] improved the error term in the asymptotic formula (1-2) and showed that∑

n≤x

Λk(n) = kxPk−1(log x) + O(x exp{−ckδ(x)}),

where ck > 0 and δ(x) = (log x)3/5(log log x)−1/5.
For any relatively prime positive integers a and q, let us define

a(n) =

1 if n ≡ a (mod q),
0 otherwise.

To give an elementary proof of the prime number theorem in arithmetic progressions,
Selberg [19] and Shapiro [20] showed that∑

n≤x

a(n)Λ2(n) ∼
2x
φ(q)

log x, (1-3)

where φ(n) denotes the Euler totient function, which counts the positive integers up to
n which are coprime to n. It seems that the uniformity of q is missing in their results.

In [21, 23], Siegel and Walfisz separately obtained the following result. The
asymptotic formula ∑

n≤x

a(n)Λ(n) ∼
x

φ(q)
(1-4)

holds uniformly in the range q < logA x, for any fixed A. This is a uniform version
of the prime number theorem in arithmetic progressions. This theorem is in general
noneffective. The asymptotic formula is only known to be effective if A is chosen to
be smaller than 2.

In [9], by adapting a method of Bombieri [2, 3], Friedlander and Iwaniec [10]
proved (1-3) uniformly in the range

log q < ε(x) log x.

In the same paper, by using the L-function (analytic) techniques Friedlander proved
(1-3) uniformly in a smaller range

log q < ε(x)
log x

log log x
,

where ε(x) is a fixed positive function, tending to 0 as x → ∞. For k ≥ 2, the
presence of an extra log x in the residue coming from the principal character allows
for improvement of the length of log q even in (1-4). In other words, effects due to the
hypothetical Siegel (or exceptional) zero can be reduced in this case.

In [12], Knafo proved that∑
n≤x

a(n)Λk(n) ∼
kx
φ(q)

logk−1 x,
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for k ≥ 2 and

log q < ε(x)1/(k−1) log x
log log x

.

Let j, n ≥ 1 be integers. Then an analogue of the Möbius function is

µ j(n) :=


1 if n = 1,
0 if p j+1 | n for some prime p,
(−1)

∑
α if pα || n implies α ≤ j for some prime p.

(1-5)

If j = 1, then this function coincides with the Möbius function µ(n); and if j→∞ then
this function coincides with the Liouville function λ(n).

Analogously to (1-1) we define

Λ j,k(n) :=
∑
d|n

µ j(d)logk n
d

for j, k ≥ 1. Here we consider a sum which is taken over ( j + 1)-free divisors of n. If j
is an odd integer, then Λ j,k is supported on n = ab, where b has at most k prime factors
and pα || a implies α is even and α < j. If j is an even integer, then Λ j,k is supported on
n = ab, where b has at most k prime factors and pα || a and if α ≤ j then α is even. It is
clear that if j = k = 1, then we recover the usual von Mangoldt function Λ(n). If j = 1
and k ≥ 1, then Λ1,k(n) = Λk(n). Recent applications of these functions can be found
in [14, 15] where they were used to improve the proportion of zeros of the Riemann
zeta function on the critical line. In [17], the function Λk is an important ingredient in
the mollifier to obtain a zero-density result of the derivative of the completed Riemann
zeta function.

We shall also define

Lk(n) :=
∑
d|n

λ(d) logk n
d
,

for k ≥ 1 integer.
Consider the following two generalizations of the Chebyshev function in arithmetic

progressions:

ϑk(x; q, a) :=
∑
n≤x

a(n)Lk(n)

for k ≥ 1 integer, and

ψ j,k(x; q, a) :=
∑
n≤x

a(n)Λ j,k(n) (1-6)

for j, k ≥ 1 integers. Calderón [4] obtained an asymptotic formula for (1-6) when a, q
are fixed positive integers with (a, q) = 1. We will prove the following results.
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Figure 1. (a) Plot of left-hand side/right-hand side of (1-7) for j = k = 2, q = 11 and a = 7 for 1 ≤ x ≤ 2000.
(b) Plot of left-hand side/right-hand side of (1-7) for j = 3, k = 2, q = 13 and a = 5 for 1 ≤ x ≤ 2000.

Theorem 1.1. Let j, k ≥ 1 be integers. Then the asymptotic formula

ψ j,k(x; q, a) ∼ k
c( j, q)
φ(q)

x logk−1 x (1-7)

holds uniformly in

log q < εk(x)
log x

log log x
,

where εk(x) be a fixed positive function, such that εk(x) = o(1) as x→∞. Here

c( j, q) =


(−1) j+3/2 ( j + 1)!

12B j+1(2π) j−1

∏
p|q

1 − 1/p2

1 − 1/p j+1 if j ≥ 1 odd,

(−1) j ζ( j + 1)(2( j + 1))!
12B2( j+1)(2π)2 j

∏
p|q

1 − 1/p2

1 + 1/p j+1 if j ≥ 2 even,

and Bn is the (n + 1)th Bernoulli number. Here p denotes a prime.

One should note that the product over primes in the representation of c( j, q) can be
expressed as Jordan totient functions.

Figure 1 gives a comparison between the left-hand side and the right-hand side
of (1-7). Figure 2 illustrates the distribution of φ(q)/c( j, q) for odd and even values of
j.

Let
ψ j,k(x) =

∑
n≤x

Λ j,k(n).

At the end of the proof of Theorem 1.1 we find that

ψ j,k(x) ∼ kc( j, 1)x logk−1 x.

Then for any residue class one should expect

ψ j,k(x; q, a) ∼ k
c( j, 1)
φ(q)

x logk−1 x.

But Theorem 1.1 produces an extra factor c( j,q)/c( j,1) < 1 or c( j,q)/c( j,1) > 1, which
shows that the average value of Λ j,k(n) increases or decreases (see Figure 3), depending
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Figure 2. (a) Plot of φ(q)/c( j, q) for j = 1 (red/dark grey), j = 3 (blue/black), j = 5 (green/grey) j = 7
(yellow/light grey) for 2 ≤ q ≤ 1000. (b) Plot of φ(q)/c( j, q) for j = 2 (red/dark grey), j = 4 (blue/black),

j = 6 (green/grey) j = 8 (yellow/light grey) for 2 ≤ q ≤ 1000 (colour available online).

Figure 3. (a) Plot of right-hand side of (1-7) for j = 11, k = 2, a = 5, q = 5000 (blue/black) and
kc( j, 1)x logk−1 x/φ(q) (orange/grey) for 1 ≤ x ≤ 1000. (b) Plot of right-hand side of (1-7) for j =

12, k = 2, a = 7, q = 5000 (blue/black) and kc( j, 1)x logk−1 x/φ(q) (orange/grey) for 1 ≤ x ≤ 1000
(colour available online).

on j, in any given residue class compared to its expected value. This is a strange
phenomenon and this occurrence cannot be seen in the case of j = 1; in other words, it
cannot be seen for Λk (see Friedlander [9], Knafo [12]) and most of the other arithmetic
functions.

The case λ(n) is treated below.

Theorem 1.2. Let k ≥ 1 be an integer. Then the asymptotic formula

ϑk(x; q, a) ∼ k
c(q)
φ(q)

x logk−1 x (1-8)

holds uniformly in

log q < βk(x)
log x

log log x
,

where βk(x) is a fixed positive function, such that βk(x) = o(1) as x→∞. Here

c(q) =
π2

6

∏
p|q

(
1 −

1
p2

)
,

and p denotes a prime.
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Figure 4. (a) Plot of left-hand side/right-hand side of (1-8) for k = 2, q = 11 and a = 5 for 1 ≤ x ≤ 2000.
(b) Plot of left-hand side/right-hand side of (1-8) for k = 2, q = 19 and a = 7 for 1 ≤ x ≤ 2000.

Figure 4 gives a comparison between the left-hand side and the right-hand side
of (1-8).

The explicit formula for Λ(n) was derived by Riemann and later by von Mangoldt
[6, Ch. 17]. It is given by∑

n≤x

Λ(n) = x −
∑
ρ

xρ

ρ
− log(2π) −

1
2

log(1 − x−2),

for x > 1 and x , pm, where p is again a prime and m is an integer. The sum over ρ is
performed over all nontrivial zeros of the Riemann zeta function. This is a cornerstone
result in the analytic proof of the prime number theorem.

The Weil explicit formula is a generalization of the Riemann explicit formula for
more general test functions. The Weil explicit formula also links the zeros of the
Riemann zeta function and the von Mangoldt function as follows. Suppose that f is a
compactly supported C2 function and let

F(s) =

∫ ∞

0
f (x)xs−1 dx

be the Mellin transform of f . Weil [24] proved that∑
ρ

F( ρ) +
∑
n≥1

F(−2n) = F(1) +
∑
n≥1

Λ(n) f (n). (1-9)

This is in fact a specific case of a more general set-up studied by Weil [24] who treated
general L-functions associated with a Grössencharakter χ. These are representations of
the group of idèle classes of an algebraic number field K into the multiplicative group
of nonzero complex numbers.

We now provide the Weil explicit formula analogue of the function Λk(n).

Theorem 1.3. Suppose that h ∈ C2(0,∞) and is compactly supported. Suppose that the
nontrivial zeros of ζ(s) are simple. Let ĥ be the Mellin transform of h. Then, for any
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positive integer k ≥ 1, we have
∞∑

n=1

Λk(n)h(n) = Φ(k) + (−1)k
∑
ρ

ζ(k)

ζ′
( ρ)ĥ( ρ) + (−1)k

∞∑
m=1

ζ(k)

ζ′
(−2m)ĥ(−2m),

where

Φ(k) :=
(−1)k

(k − 1)!
lim
s→1

dk−1

dsk−1

(
(s − 1)k ζ

(k)

ζ
(s)ĥ(s)

)
.

The first few values of Φ(k) are given by

Φ(1) = ĥ(1), Φ(2) = 2(ĥ′(1) − γ0ĥ(1)),

and
Φ(3) = 3(ĥ′′(1) − 2γ0ĥ′(1) + 2γ2

0ĥ(1) + 2γ1ĥ(1)).

Here γn are the Stieltjes constants given by the limit

γn = lim
m→∞

( m∑
k=1

logn k
k
−

logn+1 m
n + 1

)
,

with the case 00 taken to be 1. In particular, γ0 = γ = 0.577 · · · is Euler’s constant. For
simplicity we have supposed that all the nontrivial zeros ρ of ζ(s) are simple, which is
harmless in our proofs. This assumption can be lifted at the cost of adding extra terms.

Recently some arithmetic properties of the generalized von Mangoldt function
have been studied in the literature. In order to obtain the pair correlation of zeros
of derivatives of the completed Riemann zeta function, Gonek, Farmer and Lee [7]
first deduced certain asymptotics involving Λk. To improve the positive proportion
zeros of the Riemann zeta function on the critical line, the present authors, along with
Zaharescu [16], have exploited the combinatorial properties of Λk(n).

2. Preliminary results
The following tools will be needed in the proofs of our results.

Lemma 2.1. For each real number T ≥ 2 there is a T1, T ≤ T1 ≤ T + 1, such that

ζ(k)

ζ
(σ + iT1)�k log2k T

uniformly for −1 ≤ σ ≤ 2.

Proof. Set s = σ + it. From [22, page 217] we have
ζ′

ζ
(s) =

∑
|t−γ|≤1

1
s − ρ

+ O(log t),

uniformly for −1 ≤ σ ≤ 2, where ρ = β + iγ runs through zeros of ζ(s). By Cauchy’s
integral formula one finds that(

ζ′

ζ
(s)

)(k−1)
=

∑
|t−γ|≤1

(−1)k−1(k − 1)!
(s − ρ)k + O(logk t)
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uniformly for −1 ≤ σ ≤ 2. If N(T ) denotes the number of zeros of ζ(s) in the critical
strip up to height T , then

N(T + 1) − N(T ) = O(log T )

as T →∞ (see [22, page 221]). Hence, there exist zeros whose imaginary parts lie in
the interval [T,T + 1] and the gap between them is at least 1/ log T . Therefore(

ζ′

ζ
(σ + iT1)

)(k−1)
�k logk+1 T, (2-1)

for some T ≤ T1 ≤ T + 1 and uniformly for −1 ≤ σ ≤ 2. Now, an application of the
Faà di Bruno formula [8, page 188] allows us to write

f (n)

f
(s) = n!

∑
µ1+2µ2+···+kµk=n

µi≥0

k∏
i=1

1
µi!(i!)µi

(( f ′

f

)(i−1)
(s)

)µi

, (2-2)

for any analytic function f with f (s) , 0. Setting f (s) = ζ(s), and using equations (2-1)
and (2-2) yields the desired result. �

Lemma 2.2. LetA denote the set of those points s ∈ C such that σ ≤ −1 and |s + 2m| ≥
1
4 for every positive integer m. Then

ζ(k)

ζ
(s)�k logk(|s| + 1)

uniformly for s ∈ A.

Proof. From the functional equation of ζ(s) we obtain

ζ′

ζ
(s) = −

ζ′

ζ
(1 − s) + log 2π −

Γ′

Γ
(1 − s) +

π

2
cot

πs
2

;

see [22, page 20]. Hence(
ζ′

ζ
(s)

)(k)
= (−1)k−1

(
ζ′

ζ
(1 − s)

)(k)
+ (−1)(k−1)

(
Γ′

Γ
(1 − s)

)(k)
+ Q

(
cot

πs
2

)
, (2-3)

where Q is a polynomial of degree k + 1. Since s is away from integers,

cot
πs
2

= i
eπis + 1
eπis − 1

= i +
2i

eπis − 1
� 1. (2-4)

From the definition of the logarithmic derivative of the gamma function we have

Γ′

Γ
(s) = −

1
s

+ Γ′(1) −
∞∑

n=1

( 1
s + n

−
1
n

)
. (2-5)

It can be shown that
Γ′

Γ
(s) = log s + O

( 1
|s|

)
(2-6)
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for |s| > δ, and | arg s| < π − δ for any δ > 0 (see [6]). By differentiation of (2-5) we get(
Γ′

Γ
(s)

)(k)
= (−1)k−1

∞∑
n=0

k!
(s + n)k+1 .

Therefore for k ≥ 1 we see that (
Γ′

Γ
(s)

)(k)
�k

1
|s|k

. (2-7)

Combining (2-2), (2-3), (2-4), (2-6), and (2-7), we conclude the proof. �

Let q > 1 and let χ be a character modulo q. Let L(s, χ) be the associated Dirichlet
L-function. From [6, Section 14], there is a positive absolute constant A4 (which we
take to be less than 1

12 ), such that if

σ ≥ 1 −
A4

log(q(|t| + 1))
, (2-8)

then there is at most one zero of L(s, χ). If such a zero exists, then it is real and simple,
χ is real and nonprincipal, and L(s, ψ) has no zeros in the above region for any other
character ψ of the modulus q.

If such a zero β exists and if β > 1 − (A4/9 log 2q), then we shall call χ an
exceptional character, β an exceptional zero, and the modulus q an exceptional
modulus.

Next, from [12] we have the following result.

Lemma 2.3. Let 2 ≤ T ≤ x and define the contour Cχ to consist of σ = 1 −
(A4/B log(q(|t| + 2))), t ≤ |T |, together with the line segments

t = ±T, 1 −
A4

B log(q(|T | + 2))
≤ σ ≤ 1 +

1
log x

,

where we take B = 8 if χ is exceptional and B = 10 otherwise. Let k ≥ 1. Then on the
contour Cχ,

L(k)

L
(s, χ)�k log(q(|T | + 2))k+4.

3. Proof of Theorems 1.1 and 1.2

First we prove the following theorem.

Theorem 3.1. Let j, k ≥ 1 be integers. Let 2 ≤ T ≤ x, q ≤ x, and A4 be as in (2-8). For
each character χ mod q, we have

ψ j,k(x, χ) =
∑
n6x

χ(n)Λ j,k(n)

= W j,k(x, χ) + Ok, j

( x
T

logk+3 x
)

+ Ok, j

(
x logk+5(qT ) exp

(
−

A4 log x
20 log qT

))
.

Here W j,k(x, χ) is given as follows:
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(1) if χ is a principal character, then

W j,k(x, χ) = xkc( j, q) logk−1 x + O j,k

(
x

k−2∑
n=0

logn(x)(log log q)k−n−1
)
,

for all k ≥ 2;
(2) if χ is an exceptional character and β is the exceptional zero, then

W j,k(x, χ)�k, j x(log q log log q)k−1,

for all k ≥ 2;
(3) otherwise

W j,k(x, χ) = 0.

Proof. Suppose that χ is a Dirichlet character mod q. From Equation (1-5) we find that
∞∑

n=1

χ(n)µ j(n)
ns =

∏
p

j∑
k=0

(−1)k χ(pk)
pks (3-1)

for Re(s) > 1. If j ≥ 2 is an even integer, then the right-hand side of (3-1) can be written
as ∏

p

j∑
k=0

(−1)k χ(pk)
pks =

∏
p

1 +
χ(p j+1)
p( j+1)s

1 +
χ(p)
ps

=
∏

p

1 − χ2( j+1)(p)
p2( j+1)s

1 − χ2(p)
p2s

1 − χ(p)
ps

1 − χ j+1(p)
p( j+1)s

=
1

L(s, χ)
L(2s, χ2)L(( j + 1)s, χ j+1)

L(2( j + 1)s, χ2( j+1))

for Re(s) > 1. On the other hand, if j ≥ 1 is an odd integer, then the right-hand side of
(3-1) is ∏

p

j∑
k=0

(−1)k χ(pk)
pks =

∏
p

1 − χ(p j+1)
p( j+1)s

1 +
χ(p)
ps

=
1

L(s, χ)
L(2s, χ2)

L(( j + 1)s, χ j+1)

for Re(s) > 1. For convenience we define

F( j, s, χ) :=


L(2s, χ2)

L(( j + 1)s, χ j+1)
if j ≥ 1 is odd,

L(2s, χ2)L(( j + 1)s, χ j+1)
L(2( j + 1)s, χ2( j+1))

if j ≥ 2 is even.

For Re(s) > 1 we have
∞∑

n=1

χ(n)µ j(n)
ns =

1
L(s, χ)

F( j, s, χ).
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This formula appeared, for example, in [5, page 465] for the simpler case of the
Riemann zeta function. By the properties of the convolution we have

(( χ · µ j) ∗ ( χ · logk))(n) =
∑
d|n

( χ · µ j)(d)( χ · logk)
(n
d

)
=

∑
d|n

χ(d)µ j(d)χ
(n
d

)
logk

(n
d

)
= χ(n)

∑
d|n

µ j(d)logk
(n
d

)
= χ(n)Λ j,k(n).

Therefore the generating Dirichlet series for χ(n)Λ j,k(n) for Re(s) > 1 is( ∞∑
n=1

χ(n)µ j(n)
ns

)( ∞∑
n=1

χ(n)logk(n)
ns

)
= (−1)k L(k)

L
(s, χ)F( j, s, χ).

We remark that Λ j,k(n) � logk n. By [22, Lemma 3.12] with c = 1 + (1/ log x) we
obtain∑

n6x

χ(n)Λ j,k(n) =
1

2πi

∫ c+iT

c−iT
(−1)k L(k)

L
(s, χ)

xs

s
F( j, s, χ)ds + Ok

( x
T

logk+1 x
)
.

Let Cχ be the contour given in Lemma 2.3. Clearly F( j, s, χ) is bounded on Cχ. Now
applying Lemma 2.3 when we encounter the residues at the poles of the integrand we
get∑

n6x

χ(n)Λ j,k(n) = R j,k(x, χ) +
1

2πi

∫
Cχ

(−1)k L(k)

L
(s, χ)

xs

s
F( j, s, χ)ds + Ok

( x
T

logk+1 x
)

= R j,k(x, χ) + Ok

( x
T

logk+1 x
)

+ Ok

( x
T

logk+4(q(T + 2))
( 1
log q(T + 2)

+
1

log x

))
+ Ok

(
x logk+5(qT ) exp

(
−

(A4

20
log x

log qT

)))
,

where R j,k(x, χ) is the aggregate of the residues of the poles of the integrand in Cχ.
Now we compute the residue. By the use of the fact that

dn

dsn

xs

s

∣∣∣∣∣
s=1

= n!x
n∑

i=0

(−1)n−ilogix
i!

,

we see that
dn

dsn

( xs

s
F( j, s, χ)

)∣∣∣∣∣
s=1

=

n∑
l=0

(
n
l

)( dn−l

dsn−l

xs

s

)( dl

dsl F( j, s, χ)
)∣∣∣∣∣

s=1

=

n∑
l=0

(
n
l

)
x(n − l)!

n−l∑
i=0

(−1)n−l−ilogix
i!

F(l)( j, 1, χ)

= xn!
n∑

l=0

(−1)lF(l)( j, 1, χ)
l!

n−l∑
i=0

(−1)n−ilogix
i!

. (3-2)
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Now consider the fact that

L(s, χ0
q) = ζ(s)hq(s), (3-3)

for Re(s) > 1 with χ0
q the principal character, and where

hq(s) :=
∏
p|q

(
1 −

1
ps

)
.

Clearly

h′q(s)

hq(s)
=

∑
p|q

log p
ps − 1

and
(h′q(s)

hq(s)

)′
= −

∑
p|q

log2 p
ps − 1

+
∑
p|q

log2 p
(ps − 1)2 .

Therefore(h′q(1)

hq(1)

)′
�

∑
p|q

log2 p
p − 1

and similarly
(h′q(1)

hq(1)

)(n)
�n

∑
p|q

logn+1 p
p − 1

.

Now∑
p|q

logn+1 p
p − 1

�
∑
p≤V

logn+1 p
p − 1

+
∑
p|q

p>V

logn+1 p
p − 1

� logn V
∑
p≤V

log p
p

+
logn+1 V

V

∑
p|q

p>V

1

� logn+1 V +
log q logn V

V
� (log log q)n+1,

where we chose V = log q in the penultimate step. Therefore, by (2-2),

h(n)
q (1)

hq(1)
� (log log q)n (3-4)

for n ≥ 0. For |s − 1| < 1/2, we have

ζ(s) =
1

s − 1
+

∞∑
n=0

c0(s − 1)n,

where the cn are constants and

hq(s) =

∞∑
n=0

h(n)
q (1)
n!

(s − 1)n.

Therefore the Laurent series of L(s, χ0
q) at s = 1 is given by

L(s, χ0
q) =

hq(1)
s − 1

+

∞∑
n=0

an(s − 1)n.
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Hence

(−1)k L(k)

L
(s, χ0

q) =

k!hq(1)
(s−1)k +

∑∞
n=k(n)kan(s − 1)n−k

hq(1) +
∑∞

n=0 an(s − 1)n+1 ,

where (n)k = n(n − 1) · · · (n − k + 1). Let

G(s, χ0
q) := (−1)k(s − 1)k L(k)

L
(s, χ0

q) =
k! +

∑∞
n=k(n)kbn(s − 1)n

1 +
∑∞

n=0 bn(s − 1)n+1

= k!(1 + d1(s − 1) + d2(s − 1)2 + · · · ).

Then, by (3-4), dn �k (log log q)n for n ≤ k. Now we compute the residue for the
principal character

R j,k(x, χ0
q) =

1
(k − 1)!

lim
s→1

dk−1

dsk−1

(
G(s, χ0

q)
xs

s
F( j, s, χ0

q)
)
.

Invoking (3-2) and the fact F(l)( j, 1, χ0
q)� 1, we find

R j,k(x, χ0
q) =

x
(k − 1)!

k−1∑
n=0

(
k − 1

n

)
G(n)(1, χ0

q)

×

k−1−n∑
l=0

(−1)l(k − n)!F(l)( j, 1, χ0
q)

l!

k−1−n−l∑
i=0

(−1)k−1−n−ilogix
i!

= xkF( j, 1, χ0
q) logk−1 x + O j,k

(
x

k−2∑
n=0

logn(x)(log log q)k−n−1
)
.

Next we consider the case where χq is an exceptional character. By the density lemma
[1, page 42] and following similar lines as in [9], we have

L′

L
(s, χq) =

1
s − β

+ O(log q log log q),

where
|s − β| ≤

A5

log q
.

Here β is the exceptional zero. Then, by Cauchy’s integral formula, we find(L′

L
(s, χq)

)(n)
=

(−1)nn!
(s − β)n+1 + O((log q log log q)n+1). (3-5)

Let gn(β) be the residue of L(n)/L(s, χq) at s = β. Since s = β is a simple pole,

L(n)

L
(s, χq) =

gn(β)
s − β

+ · · · .

Now, from (2-2) and (3-5),

gn(β)�n (log q log log q)µ1−1+2µ2+3µ+···+kµk �n (log q log log q)n−1.
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Therefore

R j,k(x, χq) = lim
s→β

(s − β)(−1)k L(k)

L
(s, χq)

xs

s
F( j, s, χq) = (−1)kgk(β)

xβ

β
F( j, β, χq).

Since β is the exceptional zero, xβ/β� x and F( j, β, χq)� 1. Hence

R j,k(x, χq)�k x(log q log log q)k−1.

Now, from the definition of F,

F( j, 1, χ0
q) =

L(2, χ0
q)

L(1 + j, χ0
q)
, F( j, 1, χ0

q) =
L(2, χ0

q)L(1 + j, χ0
q)

L(2(1 + j), χ0
q)

for j ≥ 1 odd and j ≥ 2 even, respectively. We know that

ζ(2n) = (−1)n+1 B2n(2π)2n

2(2n)!
,

where Bn denotes the Bernoulli numbers and n is a nonnegative integer. From (3-3)
and for j ≥ 1 odd, we have

F( j, 1, χ0
q) = (−1)( j+3)/2 ( j + 1)!

12B j+1(2π) j−1

∏
p|q

1 − 1/p2

1 − 1/p j+1 ,

and for j ≥ 2 even,

F( j, 1, χ0
q) = (−1) j ζ( j + 1)(2( j + 1))!

12B2( j+1)(2π)2 j

∏
p|q

1 − 1/p2

1 + 1/p j+1 .

This completes the proof of the theorem. �

Finally, we can now prove Theorem 1.1. This follows from the orthogonal relation
of Dirichlet characters, Theorem 3.1 with T = logk+5 x, and the fact that

ψ j,k(x; q, a) =
∑
m6x

m≡a mod q

Λ j,k(m) =
1
φ(q)

∑
χ

χ̄(a)
∑
m6x

χ(m)Λ j,k(m).

Thus, by Theorem 3.1,

ψ j,k(x; q, a) ∼
k

φ(q)
xc( j, q) logk−1 x,

for
log q = o

( log x
log log x

)
.

Define

W( j, s) :=

1/ζ(s) if j ≥ 1 is odd,
ζ(s)/ζ(2s) if j ≥ 2 is even.
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For Re(s) > 1 we may write
∞∑

n=1

Λ j,k(n)
ns = (−1)k ζ(2s)

ζ(s)
W( j, ( j + 1)s)ζ(k)(s).

Lemma 2.3 can be modified to read

ζ(k)

ζ
(s)�k log((|T | + 2))k+4

on a similar contour C, which is simpler than Lemma 2.3 because of the absence of the
exceptional zero. Now if we proceed along lines similar to the proof of Theorem 1.1
then ∑

n≤x

Λ j,k(n) ∼ kc( j, 1)x logk−1 x.

The proof of Theorem 1.2 is also similar. The only modification that is needed is that
∞∑

n=1

χ(n)Lk(n)
ns = (−1)k L(k)

L
(s, χ)L(2s, χ)

for Re(s) > 1 and Lk(n)� logk x.

4. Proof of Theorem 1.3

First, for a large positive number T , let T1 be the number supplied by Lemma 2.1
and consider the positively oriented contour C determined by the line segments

[c − iT1, c + iT1], [c + iT1, λ + iT1], [−K + iT1,−K − iT1], [−K − iT1, c + iT1]

with some K > 0. Let us assume that the horizontal line segments do not pass through
any poles of ζ(k)/ζ. We then have

ĥ(s) =

∫ ∞

0
h(x)xs−1 ds. (4-1)

Let h be supported on the subinterval [J0, J] of (0,∞). Now we observe from (4-1) that

ĥ(s) =

∫ J

J0

h(x)xs−1 ds�
Jσ

|s|
, (4-2)

for |s| > δ. Therefore
∞∑

n=1

Λk(n)h(n) =

∞∑
n=1

Λk(n)
1

2πi

∫ c+i∞

c−i∞
ĥ(s)n−s ds =

1
2πi

∫ c+i∞

c−i∞
ĥ(s)

∞∑
n=1

Λk(n)
ns ds

=
1

2πi

∫ c+i∞

c−i∞
(−1)k ζ

(k)

ζ
(s)ĥ(s) ds,

with c = 1 + (1/ log J) so that the interchange is justified. The poles of the integrand
are located at s = 1, s = ρ and s = −2m. Here ρ runs over the nontrivial zeros of ζ(s)
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and m runs over the positive integers. By Cauchy’s theorem we have

1
2πi

∮
C

(−1)k ζ
(k)

ζ
(s)ĥ(s) ds = R1(k) +

∑
−T<Im ρ<T

R2(k, ρ) +
∑

1≤m≤K

R3(k,m),

where R1,R2 and R3 are the residues at s = 1, s = ρ and s = −2m respectively, that is,

R1(k) = res
s=1

(−1)k ζ
(k)

ζ
(s) = lim

s→1

(−1)k

(k − 1)!
dk−1

dsk−1

(
(s − 1)k ζ

(k)

ζ
(s)ĥ(s)

)
=: Φ(k),

as well as

R2(k, ρ) = res
s=ρ

(−1)k ζ
(k)

ζ
(s) = (−1)k ζ

(k)

ζ′
( ρ)ĥ( ρ),

and finally,

R3(k,m) = res
s=−2m

(−1)k ζ
(k)

ζ
(s) = (−1)k ζ

(k)

ζ′
(−2m)ĥ(−2m).

Next, we can make the horizontal and far-left integrals tend to zero as K →∞ and
T →∞ using the well-chosen sequence that T1 obeys. In particular, by Lemma 2.1
and (4-2), we have∫ c±iT1

−1±iT1

(−1)k ζ
(k)

ζ
(s)ĥ(s) ds�ε log2k T

∫ c

−1
|ĥ(σ + T1)| dσ

� log2k T
∫ c

−1

Jσ

|σ + iT1|
dσ.

Using the fact that |σ + iT1| � T , we arrive at∫ c±iT1

−1±iT1

(−1)k ζ
(k)

ζ
(s)ĥ(s) ds�

J log2k T
T log J

.

By Lemma 2.2, we find∫ −K±iT1

−1±iT1

(−1)k ζ
(k)

ζ
(s)ĥ(s) ds�

∫ −1

−K

logk |σ + iT1|

|σ + iT1|
Jσ dσ�

logk T
T J log J

.

Similarly, for the vertical line at the far left, we get∫ −K+iT1

−K−iT1

(−1)k ζ
(k)

ζ
(s)ĥ(s) ds�

logk |K + iT |
|K + iT |

J−K
∫ T1

−T1

1 dt�
T logk(KT )

KJK → 0

as K →∞, by Lemma 2.2. Thus as T →∞ we obtain
∞∑

n=1

Λk(n)h(n) = Φ(k) + (−1)k
∑
ρ

ζ(k)

ζ′
( ρ)ĥ( ρ) + (−1)k

∞∑
m=1

ζ(k)

ζ′
(−2m)ĥ(−2m),

as was to be shown. If k = 1, then we obtain the Weil explicit formula (1-9).
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[11] A. Ivić, ‘On the asymptotic formulas for a generalization of von Mangoldt’s function’, Rend. Mat.

(6) 10(1) (1977), 51–59.
[12] E. Knafo, ‘On a generalization of the Selberg formula’, J. Number Theory 125(2) (2007), 319–343.
[13] N. Levinson, ‘A variant of the Selberg inequality’, Proc. Lond. Math. Soc. 14a(3) (1965), 191–198.
[14] K. Pratt and N. Robles, ‘Perturbed moments and a longer mollifier for critical zeros of ζ’, Res.

Number Theory 4(9) (2018).
[15] K. Pratt, N. Robles, D. Zeindler and A. Zaharescu, ‘More than five-twelfths of the zeros of ζ are

on the critical line’, Res. Math. Sci. 7(2) (2020), Article 2.
[16] N. Robles, A. Roy and A. Zaharescu, ‘Twisted second moments of the Riemann zeta-function and

applications’, J. Math. Anal. Appl. 434(1) (2016), 271–314.
[17] A. Roy, ‘Unnormalized differences of the zeros of the derivative of the completed L-function’,

Preprint.
[18] A. Selberg, ‘An elementary proof of the prime-number theorem’, Ann. of Math. (2) 50 (1949),

305–313.
[19] A. Selberg, ‘An elementary proof of the prime-number theorem for arithmetic progressions’,

Canad. J. Math. 2 (1950), 66–78.
[20] H. N. Shapiro, ‘On primes in arithmetic progressions. I’, Ann. of Math. (2) 52 (1950), 217–230.
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